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Abstract Coronal mass ejections (CMEs) are the primary drivers of severe space weather
disturbances in the heliosphere. Models of CME dynamics have been proposed that do not
fully include the effects of magnetic reconnection on the forces driving the ejection. Both ob-
servations and numerical modeling, however, suggest that reconnection likely plays a major
role in most, if not all, fast CMEs. Here, we theoretically investigate the accretion of mag-
netic flux onto a rising ejection by reconnection involving the ejection’s background field.
This reconnection alters the magnetic structure of the ejection and its environment, thereby
modifying the forces acting upon the ejection, generically increasing its upward accelera-
tion. The modified forces, in turn, can more strongly drive the reconnection. This feedback
process acts, effectively, as an instability, which we refer to as a reconnective instability.
Our analysis implies that CME models that neglect the effects of reconnection cannot ac-
curately describe observed CME dynamics. Our ultimate aim is to understand changes in
CME acceleration in terms of observable properties of magnetic reconnection, such as the
amount of reconnected flux. This flux can be estimated from observations of flare ribbons
and photospheric magnetic fields.

Keywords Coronal mass ejections, initiation and propagation · Coronal Mass ejections,
low coronal signatures · Magnetic fields, corona · Magnetic fields, models

1. Introduction

In a coronal mass ejection (CME), magnetic forces in the low corona accelerate a hot
(∼1 MK) mass (∼1015 g) of magnetized plasma at high speed (from a few hundred km s−1

at the slow end of the observed range to 2000 km s−1 or more at the fast end) into inter-
planetary space. These events are the primary drivers of severe space weather disturbances
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at Earth (Kahler, 1992). While CMEs are believed to be driven by the release of magnetic
energy stored in electric currents in the solar corona (e.g., Forbes 2000), key aspects of their
initiation and subsequent evolution are not well understood. Characterizing the processes at
work during the eruption process is therefore essential to understand their dynamics.

Here, we present a model of the development of fast CMEs, the “flux accretion” CME
model, which describes how reconnection affects the dynamics and structure of fast CMEs
as they form. Simply put, the central thesis of the model is that magnetic reconnection un-
derneath a rising ejection can accelerate the ejection both: i) directly, by momentum transfer
from the reconnection outflow jet; and ii) indirectly, from the reconnection-modified mag-
netic structure of the ejection and its surrounding magnetic field. As explained in detail in
subsequent sections, we believe the second, indirect acceleration mechanism is the dominant
influence. The model is not directly focused on CME initiation, but rather on the evolution
of CMEs after their rise has been triggered.

The effect of reconnection on CME dynamics is ignored in models of CME acceleration
that only include forces that would be present if reconnection did not modify the ejection and
its background field. For instance, Kliem and Török (2006) model CMEs as the expansion of
a torus. Their model requires reconnection to occur for the torus to “slide” through overlying
field, but they neglect dynamic effects due to changes in the ejection’s magnetic field arising
from this reconnection. Most importantly, reconnection would cause poloidal flux that was
initially external to the expanding torus to become entrained with it. This additional flux
would produce a hoop force leading to greater acceleration of the torus than would occur
without the added poloidal flux.

We argue that reconnection should fuel further reconnection, as magnetic flux external
to the ejection is pulled into the low-density void created by the ejection’s increasingly
rapid rise. Note that this “pull” reconnection (e.g., Yamada et al. 1997, Kusano et al. 2012)
is driven by the evolution of the global system; no local driver of reconnection inflow is
needed. We remark that hints of the CME’s rapid acceleration driving further reconnection
to occur were seen in simulations that exhibited numerically problematic cavitation in the
wakes of CMEs after reconnection began (MacNeice et al., 2004): the numerical difficulties
arose when very low densities occurred near strong Lorentz forces in the outflow region.
Note also that the sites of reconnection will tend to rise with time, as the low-density region
trails the rising ejection.

The reinforcing interplay between the upward motion of the ejection and the reconnec-
tion – feedback – is effectively a macroscopic instability, which we refer to as a reconnective
instability. We adopt this term because it is distinct from resistive instabilities, such as the
tearing mode (Furth, Killeen, and Rosenbluth, 1963), since this feedback need not arise
from the presence of resistivity per se: in some magnetic field configurations, the presence
of resistivity (which enables reconnection) might not produce any feedback between recon-
nection and large-scale dynamics. For example, a current sheet (or “current ribbon” in 3D)
should develop when the footpoints of an initially potential pair of bipoles are displaced a
small distance, causing the coronal field, subject to fixed field-line connectivity, to evolve
slightly away from the potential state (e.g., Longcope 1996). Onset of reconnection in such
a system should decrease the current in the sheet.1 In contrast, Longcope and Forbes (2014)

1It should be noted that near-potentiality is not required for reconnection to be quenched by large-scale
dynamics. For instance, consider two bipolar, parallel, twisted flux systems in an ideal MHD equilibrium.
With no flux shared between the two systems, a separatrix surface exists between them. Now imagine that
their footpoints were displaced slightly. This would cause a current sheet to develop between them (or enhance
any already present). Onset of reconnection between the two systems should lead to reduction of current in
the sheet.
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found that “kinematic and quasi-static” flux transfers via reconnection across a current sheet
in some configurations that they investigated “resulted in an increase in the size and strength
of the current sheet.” They noted that if “large-scale dynamics” intensify some initial, local
reconnection process, then a “resistive eruption mechanism” could operate. Sturrock (1989)
qualitatively discussed a similar possibility. This suggests that, depending on how a large-
scale system responds to a differential change in magnetic connectivity within the system,
the configuration might be “reconnectively stable” or “reconnectively unstable.” Because
this feedback effect would be inherently dynamic and nonlinear, it is not easily tractable
with analytic methods. A large-scale reconnective instability would be distinct from both
ideal MHD instabilities, which assume the field’s connectivity is fixed, and resistive insta-
bilities, which do not necessarily produce feedback to the reconnection process. In a sense,
the breakout configuration proposed by Antiochos, DeVore, and Klimchuk (1999) was inten-
tionally engineered to become reconnectively unstable as the large-scale field is evolved by
shearing on its boundary. While reconnective stability could be investigated in equilibrium
configurations, a reconnective instability in CMEs might arise as a secondary instability
when the system is already evolving away from equilibrium due to some other (perhaps
ideal), primary instability (e.g., a kink instability).

It is possible that global-scale dynamics might depend sensitively upon the details of the
reconnection process. In the pull-reconnection framework, the ejection will rise regardless
of how quickly flux reconnects. The speed of this rise, however, likely will be affected by
the rate at which the operating reconnection mechanism processes flux, because both the
reconnection outflow and the ejection structure will differ from cases in which reconnec-
tion proceeded at different rates. This motivates theoretical or numerical investigations of
eruption dynamics with varied reconnection parameters.

Our model fits within the overall framework of the “standard model” of eruptive flares,
often called the CSHKP model (after Carmichael–Sturrock–Hirayama–Kopp–Pneumann,
by Svestka and Cliver 1992; for a more recent review, see Webb and Howard 2012), which
was essentially created to explain the formation and evolution of the two-ribbon emission
pattern frequently associated with CMEs in terms of reconnection beneath a rising ejection.
In the model, this reconnection leads, either directly or indirectly, to the acceleration of
particles, which propagate downward along the newly reconnected magnetic fields toward
the transition region and upper chromosphere. Here, they interact with the denser plasma
to create hard X-rays via bremsstrahlung and heat the surrounding plasma. (Hudson 2011
and Benz 2008 provide excellent reviews.) The resulting intensity enhancements typically
form two parallel, elongated emission structures, known as flare ribbons. Ribbons are of-
ten observed in Hα and UV images (e.g., in the 1600 Å channel of the TRACE satellite;
Handy et al. 1999), although some CMEs occur without ribbons or other obvious emission
signatures (e.g., Robbrecht, Patsourakos, and Vourlidas 2009). Flare ribbons always strad-
dle the polarity inversion line (PIL; where the photospheric radial magnetic field changes
sign) beneath the ejection. It is presumed that the ribbon emission occurs on conjugate foot-
points of newly reconnected magnetic flux. Observations typically show ribbons moving
apart from each other (perpendicular to the PIL); in the CSHKP model, this arises naturally
as reconnection successively acts on flux tubes with footpoints that are farther and farther
apart.

Flare ribbons overlie strongly magnetized areas of the photosphere within and near active
regions (ARs), and it was long ago hypothesized that the rate of (unsigned) magnetic flux
being swept out by the ribbons as they move apart should be related to the rate of coronal
magnetic reconnection (Forbes and Priest 1984, Poletto and Kopp 1986; for a recent obser-
vational study, see Hinterreiter et al. 2018). In a study of 13 halo CMEs with flares, Qiu and
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Yurchyshyn (2005) reported a very strong correlation between the total unsigned magnetic
flux swept out by ribbons over the course of each event – which we hereafter refer to as the
ribbon flux – and the CME speed: they found a linear correlation coefficient of 0.89. In a
related study, Qiu et al. (2004) reported an association between the rate of flux being swept
out by ribbons and CME acceleration. These findings are consistent: the time integral of ac-
celeration yields velocity, and the time integral of the rate of magnetic flux being swept by
ribbons (∝ acceleration) yields the total magnetic flux swept by ribbons (∝ velocity). Bein
et al. (2012) suggested a “feedback relationship” between CME acceleration and the rate of
magnetic reconnection that, in principle, is directly related to the rate of flux being swept out
by ribbons. In numerical simulations of a CME’s formation and acceleration, Karpen, An-
tiochos, and DeVore (2012) also found that their model ejection’s acceleration was closely
tied to the onset of fast reconnection beneath the rising ejection. More recently, Lynch et al.
(2016) found a similar association between the onset of reconnection underneath a “stealth”
ejection and acceleration of that ejection.

The idea that reconnection can affect the acceleration of CMEs dates at least to work by
Anzer and Pneuman (1982), who noted that reconnection under the eruption “produces an
increasing outward magnetic pressure gradient” across the CME. In addition, as Moore et al.
(2001) later noted, reconnection under an eruption can also cut “magnetic tethers” (inward
magnetic tension) restraining an eruption. Vršnak et al. (2004) observed that a “two-ribbon
flare appears as a consequence of . . . fast magnetic field reconnection,” and then explicitly
referred to a “feed-back relationship between the CME motion and the flare energy release.”
More recently, Inoue et al. (2018) invoked “a nonlinear positive feedback process between
the flux tube evolution and reconnection,” in which their numerically simulated ejection’s
rise drove tether-cutting reconnection that, in turn, enabled the ejection to rise farther. Zhang
and Dere (2006) also explored the idea of positive feedback between reconnection and CME
acceleration. A concise passage in that paper’s concluding section discusses several ideas
that we explore further below. We therefore quote this succinct paragraph in full:

“The temporal coincidence [between CME acceleration and flare radiative flux] also
suggests that the CME run-away process and the magnetic reconnection process may
mutually feed each other. The two processes not only start at the same time, but also
end at almost the same time based on observations. The magnetic tether-cutting pro-
cess is known to be very effective in accelerating the CME flux rope (Vršnak et al.,
2004). First, it reduces the tension of the overlying restraining field by cutting the tie
with the photosphere. Second, it increases the magnetic pressure below the flux rope
by adding the poloidal flux through reconnection. Third, it enhances the outward hoop
force due to the curvature of the flux rope thanks to the poloidal flux added. The es-
cape of the flux rope reduces the magnetic pressure below, and thus induces an inflow
toward the central current sheet; the current sheet is caused by the magnetic stretch as
a result of the rising flux rope. Therefore, a faster rise of the flux rope causes a faster
inflow, which results in a faster tether-cutting reconnection. At the same time, a faster
reconnection causes a stronger outward force and thus a faster CME acceleration. The
whole process, through flux rope rising, magnetic field stretching underneath, inflow
tether-cutting reconnection, and further accelerating, forms a closed loop of positive
feeding, which leads to the simultaneous CME acceleration and flare energy release.”

Vršnak (2006) described the ejection process in very similar terms. Both pictures are mostly
consistent with our view. In the pull-reconnection scenario that we envision, there is actually
cavitation behind the rising ejection, between it and the reconnection site. Nearer to the
trailing edge of the rising ejection, concave-up post-reconnection flux can exert additional
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magnetic pressure on the ejection, thereby modifying the hoop force. While Zhang and Dere
separate the pressure and hoop effects in their second and third items above, in our view
these two points essentially refer to the same effect. (In the context of CMEs, the hoop force
was probably first introduced by either Anzer (1978) or Mouschovias and Poland (1978).)
In addition to these ideas, we also believe that upward-moving post-reconnection flux below
the core of the ejection exerts a force on the ejection arising directly, from the momentum
flux in the reconnection outflow. We discuss these issues in greater detail below.

Our chief aims here are i) to highlight additional observations of CME properties consis-
tent with the key role of reconnection in producing fast CMEs, and ii) to extend foregoing
qualitative picture by quantitatively characterizing how reconnection affects CME dynam-
ics. What is new in this work? To our knowledge, estimates of reconnection-related changes
to CME dynamics have not been analyzed in the terms we consider: as functions of the
properties of reconnecting fields.

The remainder of this paper is organized as follows. In Section 2, we outline four obser-
vations that motivate our view of magnetic reconnection as a key driver of many eruptions,
rather than a by-product of some other mechanism (e.g., an ideal instability) that powers
ejections. In Section 3, we discuss our model in the framework of the CSHKP model, and
distinguish aspects of the flux accretion model from other models of CME initiation and
dynamics. In Sections 4 and 5, we use simplistic models of reconnection and changes in
CME structure, respectively, to characterize the effects that reconnection can have on CME
dynamics. In Section 6, we conclude with a brief discussion of the significance of flux ac-
cretion for CMEs.

2. Review of Relevant Observations

The key observations implicating reconnection in the development of CMEs are:

i) Reconnection is typical when CMEs occur: Patterns of emission in the solar atmo-
sphere interpreted as signatures of reconnection (flare ribbons and post-flare arcades)
are generic features of many, if not most, CMEs. Observers have reported the exis-
tence of “stealth CMEs” (e.g., Robbrecht, Patsourakos, and Vourlidas 2009, Lynch et al.
2010), which lack low coronal signatures (LCSs) such as dimmings, coronal waves, and
flares. Stealth events are believed to be a minority of CMEs. In a study of 34 events with
STEREO, Ma et al. (2010) found that about 1/3 had no LCSs, and that the speeds of
their stealth events were typically slow, below 300 km s−1.

ii) Reconnection fluxes and CME speeds are correlated: As noted above, CME velocity
is correlated with ribbon flux. In addition to the study by Qiu and Yurchyshyn (2005),
Gopalswamy et al. (2017a) estimated reconnection fluxes using post-eruption arcades
and report correlation coefficients between reconnection fluxes and CME speeds near
0.6 in a sample of about four dozen CMEs. In a sample of 16 events, most of which
were also in the sample analyzed by Qiu and Yurchyshyn (2005), Deng and Welsch
(2017) computed a linear fit of CME speed as a function of ribbon flux, and found the
no-ribbon-flux intercept to be about 550 km s−1, roughly the speed of the slow solar
wind. This suggests that reconnection might be a key factor in accelerating CMEs to
speeds much faster than the slow solar wind. Further, the close temporal association be-
tween CME accelerations and flare energy release reported by Zhang and Dere (2006) –
major acceleration starts and ends as the flare energy release starts and ends – implicates
reconnection in the acceleration process.
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Figure 1 A scatterplot of CMEs’ linear speeds versus their masses, from the CDAW CME catalog. A least-
absolute-deviation fit to the logarithms of each is overplotted. Although a large amount of scatter is present,
a trend is clear. (Quantization visible in this plot arises from two-digit precision used for masses in the catalog.
The effect is most visible where changes in the tenth digit are fractionally largest – i.e., just to the right of
each power of 10.)

iii) CME masses and speeds are correlated: The velocities of CMEs are correlated with
their masses. This mass–speed relationship was noted long ago, as in Figure 4 of Vourl-
idas et al. (2002), which shows that the average mass of CMEs tends to be higher
when their accelerations are larger. (Since the fitted accelerations were assumed constant
[Vourlidas et al. 2000], higher acceleration directly implies higher velocities.) Vršnak,
Vrbanec, and Čalogović (2008) also noted that “the driving force is greater in more mas-
sive CMEs.” The mass–speed relationship can also be verified directly from the CDAW
CME catalog.2 Figure 1 shows a scatter plot of speeds versus masses, and a relationship
between the two can be discerned. A least-absolute-deviation fit to the logarithms of
each was performed, and is overplotted. For the N = 17792 CMEs with masses and lin-
ear speeds listed in the catalog’s text version from 1996 January – 2016 May, the linear
and rank-order correlation coefficients between CME linear speeds and logarithms of
mass were 0.42 ± 0.01 and 0.40 ± 0.1, respectively, where the 1-σ confidence intervals
were computed using Fisher’s z-transform. While this correlation is statistically signif-
icant, it is not strong, indicating that factors other than mass strongly influence CME
speed. Uncertainties in estimating CME masses and true speeds, made by assuming
plane-of-sky position and velocity, respectively, introduce some scatter into this corre-
lation. We note that for halo events, the linear and rank-order correlations are stronger:
0.48 ± 0.03 and 0.55 ± 0.03, respectively. (We also note that these correlations do not
arise from CMEs’ velocities scaling with their sizes: the linear and rank-order corre-
lations between non-halo CMEs’ linear speeds and angular widths are weaker, at 0.29
and 0.18, respectively.) Because magnetic flux is frozen to the plasma outside the small
diffusion region where the reconnection occurs, magnetic flux that is accreted onto an
ejection should increase its mass. This process was modeled by Lin, Raymond, and van
Ballegooijen (2004a), who found that reconnection approximately doubles the ejection
mass compared to the mass of the pre-eruptive structure in their model. They also found
more mass added when a stronger background magnetic field was present, due to the
higher inflow speed. An example of mass loading from flare reconnection can be seen
in the lower panels of Figure 4 of the breakout simulations described by MacNeice

2http://cdaw.gsfc.nasa.gov/CME_list/UNIVERSAL/text_ver/univ_all.txt.

http://cdaw.gsfc.nasa.gov/CME_list/UNIVERSAL/text_ver/univ_all.txt
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et al. (2004). It should be noted, though, that causality might run the other way: the
mass–speed correlation might arise because faster CMEs become more massive by col-
lecting ambient material at their leading edges, via a “snow-plow” effect. Entrainment of
solar wind plasma onto the CME is, however, uncertain (e.g., Feng et al. 2015.) One dif-
ference between the processes would be the density distribution: snow plowing should
increase density at the CME’s front, while mass loading from the reconnection outflow
would increase the density in the trailing half of the CME. It is probable that both pro-
cesses are at work. (Reconnection also adds mass in what was previously external flux
at the eruption’s leading edge to the ejection, but would not, by itself, strongly affect the
mass density at that leading edge.) But this does suggest an observational question: how
does mass distribution within CMEs compare between fast and slow CMEs?

iv) Reconnection fluxes and ICME poloidal fluxes are correlated: As reported by Qiu et al.
(2007), the ribbon fluxes in CMEs are correlated with the poloidal magnetic flux in-
ferred from in situ flux-rope fitting. Gopalswamy et al. (2017a,b) found similar results.
These associations are consistent with the picture that the key properties of the struc-
tures of interplanetary CMEs (ICMEs) that are measured in-situ are produced during
the eruption process. The physical picture is that flux overlying an eruption becomes
entrained with the eruption via magnetic reconnection beneath the rising ejection, and
this entrained flux forms the poloidal flux in interplanetary flux ropes. If true, then the
flux in flare ribbons, which reflects the amount of flux reconnected in the corona, should
closely match the poloidal flux in interplanetary flux ropes. We also remark that in situ
observations suggest that interplanetary flux ropes possess several turns (e.g., eight in a
case studied by Larson et al. 1997), far beyond the number expected to be stable in a
pre-eruptive structure.

3. Flux Accretion and Existing CME Models

Many models of CME initiation have been proposed, and we discuss some below. While
some of these focus on the initiation of CMEs, and not necessarily their further development
and acceleration, it is still worthwhile to consider their consistency with the observations
above. All share a property: the pre-eruption state is marked by a balance between outward
magnetic pressure from the confined fields that will erupt and inward magnetic tension from
overlying fields. In each case, evolution of some component of the system disrupts this
balance. Because magnetic reconnection will generally modify the structure of an erupting
flux system, we refer to the core of the fields that will erupt as a proto-ejection – a not-
yet-fully formed eruptive structure. After an eruption has begun, the reconnection process
causes the magnetic structure of the material that is erupting to evolve.

i) The tether-cutting model (Moore and Roumeliotis, 1992; Moore et al., 2001) is fo-
cused on the initiation of CMEs. In it, initial reconnection within sheared fields of a
highly stressed magnetic configuration removes downward tension that was inhibiting
the upward expansion of the stressed fields. Having thus cut some of its tethers, the
proto-ejection that was poised for rapid rise is free to do so. Reconnection then plays
an ongoing role in the eruption. Moore and Roumeliotis (1992) state that continuing
reconnection:

“further untethers the core field, providing a positive feedback that sustains the
magnetic explosion . . . The whole process of coordinated eruption and reconnec-
tion is driven by the magnetic pressure of the unleashed core field.”
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The role of reconnection is described similarly in the later paper by Moore et al.
(2001):

“During the explosion, the reconnection within the core of the sigmoid progres-
sively cuts more and more of the tethers, allowing the unleashed part of the core
field to expand upward, the new short loops to implode downward, and the crossed
arms of the sigmoid and surrounding inner envelope field to flow into the recon-
nection site.”

These descriptions do suggest a basis for the observed correlation between ribbon
fluxes and CME speed: more reconnection cuts more tethers, enabling faster escape
of the proto-ejection. But they ignore any effect from the increased hoop force on the
ejection due to flux added by the reconnection. As with the model of Kliem and Török
(2006) mentioned above (and discussed further below), this view holds that reconnec-
tion removes downward forces restraining the ejection but does not result in any addi-
tional upward forces driving the ejection. The acceleration of the ejection predicted by
the tether-cutting view would differ from that if the hoop force were increasing during
the eruption. The tether-cutting model also does not account for the observed correlation
between CMEs’ masses and speeds. If the sole effect of reconnection is to cut tethers,
why should more massive CMEs be faster?

ii) In the framework of the breakout model (Antiochos, DeVore, and Klimchuk, 1999), re-
connection occurs in two regions: initially, it occurs only above a proto-ejection, which
removes strapping fields that were inhibiting its rise. Strapping fields essentially act
as tethers, but instead of being cut by reconnecting below the proto-ejection, as in the
tether cutting model, they are cut from above by reconnection with fields external to the
erupting system. Subsequently, after the proto-ejection has begun to rise, flare recon-
nection begins beneath the rising ejection. This flare reconnection is a generic feature
of many CME simulations, including those outside the breakout framework, such as
the flux cancellation model (e.g., Amari et al. 2010). Accordingly, flare reconnection
is not a unique characteristic of the breakout model. Unlike the tether cutting model,
the breakout model provides no natural explanation of why CME speeds should be cor-
related with ribbon fluxes. Like the tether-cutting model, the breakout model does not
predict the correlation between CME speed and ejection mass.

iii) As noted above, Kliem and Török (2006) describe an eruption evolving via the torus
instability that involves reconnection. But their description does not incorporate any
changes to the force driving the escaping torus due to the effects of reconnection on
the magnetic structure of the escaping field. Thus, it provides no explanation for the
correlations between either CME speed and ribbon flux, or CME speed and mass.

iv) A kink instability might lead to onset of an eruption (e.g., Williams et al. 2005). Since
this initiation mechanism does not, by itself, address the subsequent evolution of an
eruption, this mechanism also cannot directly account for the correlations between CME
speed and either ribbon flux or ejection mass.

Again, these models are focused on CME initiation, not subsequent evolution of the
eruption. Our model also operates within this conceptual framework, although our primary
focus is on the development rather than the initiation of the eruption. Our primary criticism
of the models of CME processes above is that they are incomplete – i.e., that they should be
modified, not rejected. It should also be remarked that all the models above operate within
the “storage-and-release” paradigm, in which the coronal field possesses enough magnetic
energy prior to the onset of the eruption to power it – i.e., any external forcing might trigger
an eruption, but would not supply any significant energy to it.
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The consequences of reconnection for CME dynamics have been modeled before. Lin,
Raymond, and van Ballegooijen (2004b) analytically considered 2.5D reconnection in
Cartesian geometry in a current sheet that formed in the wake of a flux rope that had sud-
denly jumped to a higher position due to loss of equilibrium at a lower, initial position.
They note that some amount of reconnection is necessary for the flux rope to escape, and
modeled the reconnection kinematically. With a reconnection rate near 0.1 MA, where MA

is the upstream Alfvén Mach number of the inflow, their modeled evolution was similar
to that observed in long-duration eruptive events. Lin et al. (2005) analyzed sequences of
EUV imager, spectrograph, and coronagraph observations to constrain the properties of re-
connection in a current sheet in the wake of a CME and reported reconnection rates in the
range 0.01 – 0.23 MA, broadly consistent with those modeled by Lin, Raymond, and van
Ballegooijen (2004b).

An alternative CME paradigm was proposed by Chen (1996), in which a pre-existing,
stable coronal flux rope would be driven to erupt ideally by a sudden increase of the poloi-
dal flux wrapping around the rope. In this geometry, the field along the axis of the flux rope
is toroidal, a nomenclature we will use below. In Chen’s model, this flux increase is driven
ideally, by photospheric flows at the time of the eruption, in effect supplying power to drive
the CME as it happens. A careful analysis of observed photospheric flows near the time of
a CME by Schuck (2010) found the predictions of the model to be strongly inconsistent
with the data, with model parameters and observed quantities differing by orders of magni-
tude. As Vršnak et al. (2004) and Forbes et al. (2006) noted, however, coronal reconnection
during a CME can add poloidal flux to an erupting flux system in much the same way as
Chen’s hypothesized flows would. If so, then aside from its unrealistic driving mechanism,
the model’s predictions of CME dynamics could be accurate in some cases (e.g., Chen et al.
2006).

4. Momentum Transfer from the Reconnection Outflow

Although many numerical models of CMEs exhibit flare-type reconnection, relatively little
is known about the significance of this reconnection in accelerating ejections, versus accel-
eration that would have occurred by ideal mechanisms alone – e.g., after strapping fields
were reconnected away in the breakout model, or after sufficient photospheric flux were
canceled in the flux cancellation model. While some amount of reconnection is essentially
inevitable in numerical MHD models, we suggest that its nearly ubiquitous presence in sim-
ulations of CMEs is related to its key role in the eruption process on the actual Sun. We
note that the role of reconnection versus ideal evolution could be investigated in studies
with a “reconnection-controlled” model, like the FLUX finite-element code employed by
Rachmeler et al. (2010).

In this section and the next, we investigate how magnetic reconnection in the wake of a
rising ejection – flare reconnection – can accelerate that ejection.

We focus in this section on how flare reconnection can directly transfer momentum from
the outflow jet to the ejection, thereby accelerating it. In the standard CSHKP model of
an eruptive flare, magnetic reconnection occurs below a rising ejection, with outflow jets
directed upward and downward. The downward-moving flux eventually forms post-flare
loops, and the upward-moving flux eventually merges with the rising ejection. Reconnection
likely occurs in a kinetic-scale diffusion region, within which magnetic flux is not frozen into
the plasma.

As post-reconnection flux first enters the outflow region, field lines are �- or V-shaped
(for downward and upward outflows, respectively), with sharp kinks near the diffusion
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Figure 2 A schematic illustration of post-reconnection flux moving through the outflow region at equally
spaced time intervals. The diffusion region shown is unrealistically large compared to the scale of magnetic
variations shown here; in the actual solar corona, kinetic scales (on the order of meters) are far below the
scale of observable structure (on the order of a few hundred kilometers). The opening angle of the outflow
region was chosen arbitrarily. The key point is that the dipolarization of post-reconnected fields occurs over
a much larger area than the diffusion region.

region. While the plasma flow directly exiting the diffusion region should be essentially
Alfvénic, magnetically connected plasma over a larger volume will be moving much more
slowly. But the strong magnetic tension from the large-scale kink in the field will rapidly ac-

celerate magnetically linked plasma to the perpendicular Alfvén speed, vA⊥ =
√

B2
⊥/(4πρ).

Figure 2 illustrates the geometry. (As usual, we define B⊥ to be the component of the mag-
netic field in the 2D plane containing the X-point associated with the reconnection.) This
process of dipolarization (e.g., Priest and Forbes 2000) implies a nonzero momentum flux
Fp is present in each outflow region, with magnitude

Fp = (ρvA⊥)vA⊥ = B2
⊥

4π
. (1)

A key point is that the dipolarization occurs over a much larger scale than the diffusion
region, with the acceleration coming from the large-scale structure of the magnetic field.
Eventually the upward-moving flux catches up to the slower-moving ejection, and slows to
the proto-ejection’s speed – in the process, transferring its excess momentum to the proto-
ejection as it merges with it.

Integrated over a solar eruption, how much momentum might be transferred by this mech-
anism? Leroy, Bommier, and Sahal-Brechot (1983) and Casini et al. (2003) report typical
axial magnetic fields of ∼10 G or more along the axes of non-active-region coronal promi-
nences above the limb, with fields tilted by about 20◦ with respect to prominence axes. If a
prominence with a 10 G field erupts as a CME, a perpendicular field strength of ∼3 G is
plausible. Assuming B⊥ = 3 G implies a momentum transfer from the outflow jet of roughly
1 (g cm s−1) per cm2 per s. While the diffusion region is likely on ion kinetic scales (perhaps
on the order of a few meters for typical fields in the corona), the outflow only becomes
Alfvénic after it expands and accelerates. Hence, momentum transport from the outflow oc-
curs over macroscopic area, and might be a few Mm across and a few tens of Mm long,
meaning this could occur over an area of ∼ (3 × 108 cm)(3 × 109 cm) � 1018 cm2. Zhang
and Dere (2006) studied acceleration in a few dozen CMEs, and report the median duration
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of the “main” acceleration phase of 50 minutes, implying the strongest burst of momentum
flux might perhaps last 3000 s. These roughly estimated parameters imply a net momentum
transfer near 3 × 1021 g cm s−1.

A CME with a mass of 1015 g and a speed of 300 km s−1 (e.g., Vourlidas et al. 2000) has
a momentum of 3 × 1022 g cm s−1. This suggests momentum transfer from the reconnection
outflow might supply ∼10% of the momentum of a CME with typical mass and modest
speed. Different choices for the reconnection field strength, the area of the outflow region or
duration of the reconnection could substantially alter this very uncertain estimate.

Many CMEs are much faster than this, but such CMEs typically originate from within
active regions, where coronal field strengths might be a factor of 10 or more larger. Given the
B2

⊥ scaling of Fp in Equation 1, it is possible that momentum transfer from the reconnection
outflow supplies a substantial part of an active region CME’s final momentum. The size of
the reconnection outflow region can be larger in active regions, too. To cite a large case,
Aschwanden and Alexander (2001) report the length of the post-flare arcade in the Bastille
Day event of July 2000 to be about 200 Mm. The width of the upward outflow region in
the simulations of Karpen, Antiochos, and DeVore (2012) is nearly the width of the sheared
PIL at the model’s base. If similar photosphere-to-coronal scaling is present on the Sun, the
width of the accelerated outflow in the Bastille Day event might still be about 3 Mm. The
axial field might be of order 100 G. Because the reconnection typically proceeds from more
sheared to less sheared field lines (e.g., Aschwanden and Alexander 2001, Su, Golub, and
Van Ballegooijen 2007), the average reconnecting component might be 30 G. The associated
GOES curves show a rise time of a bit less than 20 minutes, implying momentum transfer
over ∼ 1000 s. With these parameter choices, the momentum transfer would be about 5 ×
1023 g cm s−1. This is about 20% of the CME’s momentum of 2.3 × 1024 g cm s−1, from the
CDAW CME catalog’s linear speed and mass of 1674 km s−1 and 1.4 ×1016 g, respectively.

The observations discussed in Section 2 imply that both a CME’s mass and speed are
correlated with reconnected flux, so its momentum should be, too. So momentum transfer
from flare-reconnection outflow is partly consistent with the observations. Our parameter
estimates, however, are very uncertain, so we cannot tightly constrain the significance of the
reconnection outflow for CME dynamics. We expect that more detailed assessments of the
role of the reconnection outflow in CME acceleration can be investigated by analyzing the
results of existing numerical models of CMEs. For instance, in the simulations performed by
Karpen, Antiochos, and DeVore (2012), the morphology of outflows where the reconnection
jet meets the body of the ejection in their Figure 14 suggests that the jet’s flows distort – and
therefore exert forces on – the ejection.

5. Reconnection-Induced Changes in External Forces

In the CSHKP model, reconnection in the wake of a rising ejection alters field line con-
nectivity between the background magnetic field and the ejection. In general, this modifies
the forces on the ejection, a scenario that we investigate in this section. We emphasize that
models that do not account for changes in forces on CMEs arising from reconnection-driven
field evolution must be incomplete: their predictions for CME height versus time, for in-
stance, will not be based upon valid physics. A key point is that we explicitly assume that
the eruption is already underway: the proto-ejection is already moving upward, due to an
unbalanced force, so our focus is not on initiation.

When flux surrounding an ejection reconnects underneath it, some of the reconnected
flux then becomes entrained with the ejection. We refer to this entrainment as flux accre-
tion. This accretion can simultaneously increase the outwardly directed forces driving the
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Figure 3 Left: A schematic illustration of some magnetic force densities present in a 2D, non-force-balanced
magnetic configuration, at a given time ti . By hypothesis, the configuration is not in equilibrium, and a net
upward Lorentz force acts upon the CME (in the z direction here). The solid black lines show a sample of
magnetic field lines, meant to approximately convey field strengths. The dashed black lines show two sepa-
ratrix surfaces, one of which encloses the ejection (closed, dashed circle). The red vector shows the upward
component of then magnetic pressure gradient within the ejection due to upwardly decreasing field strength,
and blue vectors show the inward magnetic tension forces at two points that act to restrain the ejection. The
vertical dotted line denotes a current sheet in the wake of the rising ejection. Here, field lines’ shapes are
unphysical; our focus is on their connectivity. Right: An illustration of some magnetic force densities present
in a 2D, non-force-balanced magnetic configuration, but at a slightly later time, ti + �t . In this case, coronal
magnetic flux that was anchored at the photosphere between points C and D in the left panel has reconnected
in the wake of the rising ejection. Hence, the flux between C and D that previously overlay the ejection has
been accreted onto the ejection, and now lies within the dashed circle enclosing the ejection. The newly re-
connected, concave-up flux near the base of the ejection, between the points C’ and D’, exerts an upward
magnetic tension, shown acting at the point labeled T’, that cancels the previously unbalanced downward
magnetic tension from flux above the ejection, shown acting at the point labeled T. This reconnection implies
that the downward magnetic tension T that formerly restrained the ejection as an external force acting upon
it is now an internal force that cancels with the newly created upward magnetic tension force T’. Since some
restraining force was removed, the net upward force on the ejection is therefore larger.

ejection and decrease the inwardly directed forces restraining it, for some of the reasons
outlined in the text passage from Zhang and Dere (2006) cited above. As noted previously,
because magnetic flux is frozen to the plasma outside the small diffusion region where the
reconnection occurs, flux accretion will increase the mass and size of an ejection. Recently,
Compagnino, Romano, and Zuccarello (2017) used statistical matching criteria to associate
flares and CMEs based upon their timing, and report a correlation between flare radiative
flux in the GOES 1 – 8 Å band and CME mass. This is consistent with the idea that recon-
nection both leads to flare emission and adds mass to associated CMEs.

Figure 3 qualitatively illustrates an idealization of this process. In the figure, we assume
that a finite amount of reconnection has occurred, but we now ignore the dynamical relax-
ation that would occur with realistic reconnection, since that effect was discussed above.
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Hence, in this sketch, the post-reconnection field lines have already dipolarized. This as-
sumption of very simplistic field geometries for the pre- and post-reconnection fields greatly
simplifies our comparisons between the two. It should be noted that each vector shown in
Figure 3 represents a force density (i.e., the force per unit volume at a given point).

To quantitatively investigate the process, we now analyze the momentum equation for
the ongoing ejection. We assume that the combined configuration of the CME and its back-
ground field is not in equilibrium, and a net upward Lorentz force acts upon the CME. Some
process having triggered the eruption, we then wish to consider the effects of reconnection
upon its further development.

A key challenge arising from this assumption is that simplifying assumptions typically
adopted to study pre-eruptive configurations – for example, that the magnetic field is “force-
free,” i.e., that (J × B) = 0 (see, e.g., Schrijver et al. 2008) do not apply. Unfortunately, it
is difficult, without resorting to numerical simulations, to model the spatial variation of B ,
as would be required to analyze how reconnection modifies the (J × B) force.

Consequently, we idealize the ejection as an object distinct from its coronal surroundings,
and we estimate the net forces on it. Newton’s second law for the CME at a given instant in
time ti is given approximately by

dp

dt
= −(PoutSout − PinSin) + F Lorentz, ext − mg − F drag, (2)

where p is the CME’s momentum, equal to meffv; v is the CME’s center-of-mass velocity,
meff is the CME’s effective mass, equal to the CME’s mass m plus its virtual mass (e.g.,
Forbes et al. 2006, equal to the mass of the background plasma that it displaces); Pin and
Pout are the plasma (gas) pressures on the CME’s inner (or back, or bottom) and outer (or
front, or top) surfaces, respectively, and Sin and Sout are the corresponding surface areas; g
is the gravitational acceleration due to the Sun at the location of the CME’s center of mass;
F Lorentz, ext is the Lorentz force on the ejection by external fields; and Fdrag is the drag on the
CME. We further assume that: the coronal plasma is magnetically dominated (e.g., Forbes
2000), so that the gravity and pressure gradient terms can be neglected; and that drag on the
rising proto-ejection is negligible in the high-β plasma near the Sun while reconnection is
ongoing (Cargill et al., 1996). We then have

dp

dt
= F Lorentz, ext. (3)

Although we have assumed a net upward Lorentz force is exerted on the proto-ejection,
external fields exert both downward and upward forces on it. The dominance of Lorentz
forces is only expected to hold low in the corona.

We next consider the change �F Lorentz in net external Lorentz force on the CME due to
the reconnection of a small amount of flux �	, assumed to occur over a small time inter-
val (relative to the duration of the eruption) �t . Observations of supra-arcade downflows
(SADs) thought to represent cross sections of magnetic structures in reconnection outflow
suggest the reconnection is patchy (McKenzie and Savage, 2009), and creates structures on
length scales on the order of a few Mm (Savage and McKenzie, 2011). Considering a single
reconnection event in isolation is consistent with assuming that the reconnection is patchy
(Linton and Longcope, 2006; Linton, DeVore, and Longcope, 2009).

5.1. Reduction in Downward Magnetic Tension

First, as emphasized in Figure 3, some component of the downward magnetic tension act-
ing on the CME is canceled after reconnection occurs. The force density from downward
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magnetic tension prior to the reconnection was

f tension = 1

4π
(B · ∇)B, (4)

integrated over the volume containing the to-be-reconnected flux overlying the ejection.
(Here and elsewhere we will use f for force densities, and F for forces, which are volume-
integrated force densities.) To simplify this analysis, we first assume no guide field (a com-
ponent of the field into the plane of the figure) is present where the reconnection occurs,
an assumption we will relax later. We refer to this field as purely poloidal, and denote the
reconnecting field’s strength as BP. This means the component of the field into the page
is not contributing to the change in tension due to the reconnection that we compute here.
Idealizing the overlying flux tube as forming a half-toroid with major radius R and constant
cross sectional area �A along its length, the pre-reconnection force �F in the downward
direction integrated over the sub-volume that overlies the ejection and whose flux reconnects
is then

�Ftension = 1

4π

∫
dV

∣∣ẑ · (B · ∇)B
∣∣ (5)

= 1

4π

∫
dV

B2
P

R

∣∣∣∣ẑ · ∂b̂

∂θ

∣∣∣∣ (6)

= 1

4π

∫
B2

P

R
dA

∫ π/2

−π/2
R dθ cos θ (7)

� BP �	

4π

(
1

R
(2R)

)
= �	BP

2π
, (8)

where b̂ = θ̂ = cos(θ)x̂ − sin(θ)ẑ, θ is the angular position around the ejection’s axis (with
θ = 0 along ẑ, and increasing clockwise), dV = dAR dθ , �	 = BP �A is the flux that will
be reconnected, and we approximate the tension term’s magnitude as B2

P over the radius of
curvature, R (Spruit, 1981).

Physically, this force is not eliminated by reconnection in our idealized model. Rather,
this small component of the overall downward force is canceled by the formation of con-
cave up flux, resulting in a net change in Lorentz force directed upward equal to �	B/2π .
Strictly, the pre-reconnection downward tension force density was present in a volume ex-
ternal to the ejection, so it did not act directly on the ejection itself (as, for instance, gravity
and external pressure can). For the ejection to rise, however, the forces driving it would have
had to also accelerate plasma in this external volume upward, too. By both incorporating
this external flux into the erupting system and canceling its downward force, reconnection
thereby reduces this impediment to the ejection’s rise.

We note that our result is a simplistic approximation, for a few reasons. First, it is clear
that any realistic reconnection model would not yield the geometries depicted in Figure 3,
from which the result in Equation 8 was derived. As discussed in the previous subsection,
post-reconnection field lines start with sharp vertices, then dipolarize while traversing the
outflow region and become more rounded. The field geometry shown in Figure 3 is meant
represent the already-dipolarized state, to enable characterizing the effect of reconnection
on forces that act on the ejection independent of the outflow-driven momentum flux that we
already analyzed. Nonetheless, the already-dipolarized, post-reconnection fields underneath
the ejection will not precisely mirror fields above the ejection, so the upward and downward
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forces will not exactly cancel as we have described. In fact, from the typical decrease in total
pressure (gas plus magnetic) with height in the corona, the field strength below the ejection’s
core will be greater than that above the core – meaning the upward-directed tension force
would be stronger. This point will be revisited in Section 5.3.

A second complication is that the ejection will rise during the time interval �t that the re-
connection and subsequent dipolarization occur. The combination of this rising motion with
the decreasing total pressure in the solar atmosphere with height, which we have ignored,
will cause the ejection’s structure to evolve over �t . Here, we simply ignore changes in the
CME’s structure due to its upward displacement during this brief interval.

A third complication is that we have ignored the 3D structure of the eruption. Perhaps
most importantly, our simplistic picture neglects the proto-eruption’s axial field – the com-
ponent of the magnetic field in the direction normal to the plane containing Figure 3. Ob-
servations of prominences and soft-X-ray over PILs generally indicate the existence of an
important component of the magnetic field along the PIL. A component of the field along
the PIL corresponds to a nonzero guide field in the ensuing reconnection above the PIL. Ac-
cordingly, we now incorporate the effect of this guide field into our estimate of the change in
tension force due to the reconnection. We assume the total field strength remains fixed, and
focus on how reconnection modifies the tension force as the reconnecting field’s direction
varies with respect to the proto-ejection’s axis. Figure 4 illustrates an idealized configuration
before, during and after a reconnection event, with a guide field present. The field’s con-
figuration is consistent with observations showing that lower-lying loops are more closely
parallel to the PIL than higher loops (Martin and McAllister, 1996; Schmieder et al., 1996).
In the figure, the presence of a guide field alters the post-reconnection field’s morphology
from the purely 2D case: it leads to accretion of helical instead of circular flux. We define
the B‖ to point in the invariant direction (the y direction in Figure 3, into/out of the figure
plane), with BP being perpendicular to the invariant direction (within the plane of Figure 3).
For a field line pitch angle ω with respect to the guide field B‖, and tanω = BP/B‖, the
infinitesimal of length, ds, along the helical field line segment is

ds =
√

ds2
P + ds2

‖ =
√

(R dθ)2 + (R dθ)2(B‖/BP)2 = (R dθ)
√

1 + cot2 ω. (9)

So the segment arching over the proto-ejection is longer, by an amount
√

1 + cot2 ω, mean-
ing that the volume over which the tension force acts (the volume of the reconnected flux
tube) is larger compared to that integrated in deriving Equation 8. But, with fixed total field

strength, Btot =
√

B2
P + B2

‖ , nonzero B‖ means BP is smaller, with BP = Btot/
√

1 + cot2 ω.

This, in turn, means that the force density is also smaller, B2
P/R = B2

tot/[R(1 + cot2 ω)].
This lower force density can be understood in terms of the larger radius of curvature of
the reconnected flux tube, which traverses a longer distance when crossing underneath the
proto-ejection. The net effect of including the guide field is that the reduced force density,
integrated over the larger volume, is smaller than the result in Equation 8, yielding

�Ftension = �	Btot

2π

1√
1 + cot2 ω

. (10)

But this result can also be understood in terms of the field’s components: B‖ does not con-
tribute to the tension, so the BP in Equation 8 is replaced with Btot/

√
1 + cot2 ω here. With

ω = 20◦, the factor 1/
√

1 + cot2 ω is equal to 0.34. So the reduction in tension due to tether-
cutting reconnection with a relatively small pitch angle is significantly smaller than our
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estimate without a guide field (a pitch angle of 90◦). As noted previously, the angle between
the reconnecting field and the PIL will vary from more to less parallel over the course of an
eruption. So the decrease in restraining force on a proto-ejection produced by tether-cutting
reconnection should vary in a typical event, as i) the shear angle of reconnecting fields de-
creases as the reconnection proceeds and ii) the strength of reconnecting fields decreases as
flux farther from the active region core reconnects.

We digress briefly to consider another significant result of this analysis: even though a
magnetic flux �	 reconnected in the corona, there is a flux of (4�	) in the associated
photospheric footpoints. If ribbon emission were produced at the footpoints of reconnecting
coronal fields, then four footpoints would produce ribbon emission. This counts flux at both
ends of each reconnected flux tube, because emission is believed to appear at both. Thus,
four distinct ribbons could appear, a situation that Goff et al. (2007) refer to as a quadrupolar
flare. But it is also possible that emission from each same-polarity pair of footpoints will
occur within the same, contiguous ribbon.

Ribbon emission often precedes emission from post-flare loops, rooted in the ribbons,
which have a morphology similar to the solid magenta line in the right column of Figure 4.
But is there something different about ribbon emission at the footpoints of helical loops –
corresponding to the dashed magenta line in the figure’s right column – that do not subse-
quently produce bright, post-flare loops? The enhanced density from chromospheric evapo-
ration that brightens short post-flare loops might be too dilute to brighten longer loops, since
emission measure scales as density squared. Or is there a quantitative difference in ribbon
emission at footpoints of these longer loops? If the reconnection process accelerates ribbon-
causing non-thermal particles near the reconnection site, then all four footpoints should pro-
duce similar ribbon emission. Chandra et al. (2009) and Zhao et al. (2016) relate observed
ribbon emission to helical field lines, based upon their J- or reversed-J-shaped morphology
(e.g., Williams et al. 2005, Green et al. 2007), and report that emission from such footpoints
is more faint. This suggests that the acceleration of ribbon-causing non-thermal particles
does not solely involve processes near the reconnection site. A major difference between the
long and short post-reconnection loops is that the latter dipolarize downward into layers of
the solar atmosphere that are much more dense and contain much higher field strengths. This
contraction itself could lead to particle acceleration directly, by betatron acceleration (e.g.,
Somov and Bogachev 2003), or indirectly, via wave excitation (e.g., Fletcher and Hudson
2008).

We have also ignored dynamic effects arising from curvature along the axis of the erupt-
ing flux system, which we address in our discussion of the hoop force (Section 5.3) shortly.

5.2. Global-Scale Magnetic Pressure Variations

In addition to the reduction in downward-directed magnetic tension force restraining the
CME, magnetic reconnection would, considered by itself, increase the magnetic pressure
underneath the CME. This is because the reconnection introduces additional magnetic flux
into the volume underlying the CME, without changing the amount of magnetic flux above
the CME. If the CME were not rising, this would enhance the difference in magnetic pres-
sure across the CME, which would increase the upward force upon it. In Figure 3, for in-
stance, reconnection of the flux between points C and D at the photosphere adds the fluxes
between points C’ and D’, and between points C” and D” into the space below the CME’s
bottom boundary. This change increases the average flux density – equivalently, magnetic
field strength – beneath the ejection. The higher average field strength underneath the ejec-
tion implies an increased upward magnetic pressure acting the ejection from below.
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Figure 4 An illustration of evolving connectivity due to magnetic reconnection in the presence of a guide
field during an eruption. Top left: A schematic, overhead view of field lines above a PIL prior to an eruption.
Flux represented by the blue line forms the proto-ejection, and is drawn thickest to aid visualization of the
connectivity configuration, as viewed from the bottom side of the top-left image. Note that magnetic shear –
how closely the field runs parallel to the PIL – decreases with increasing height: the blue (lowest-lying) field
line is the most sheared, the red (highest) field line is relatively unsheared. Top middle: An overhead view of
the configuration after the proto-ejection has begun to rise. Cavitation in its wake draws in flux, represented
by the magenta field lines. The upper magenta field line is shown as a dashed line to more clearly display
connectivity. Bottom middle: an end-on view of the configuration in the top-middle image, as viewed from
the bottom of that image. Top right: overhead view of the configuration after flux represented by the magenta
lines has reconnected, forming two post-reconnection flux domains: one containing flux that winds around
the ejection (dashed magenta line) and one containing shorter flux (solid magenta line) that runs beneath
it. Bottom right: an end-on view of the configuration in the top-right image, as viewed from the bottom of
that image. Flux represented by the dashed magenta field line has accreted onto the ejection. Note that this
entrained flux is longer than the pre-reconnection magenta lines, and contains two segments with downward
magnetic tension (above the blue line) and one with upward magnetic tension (below the blue line). Flux
represented by the solid magenta field line might be observed as a post-flare loop.

This increased magnetic flux density underneath the CME might be thought to supply
pressure that acts like the gas behind a bullet in a gun barrel: the pressure difference across
the bullet accelerates it. As noted in the introduction, however, in our pull-reconnection sce-
nario, an ejection can rise sufficiently fast that there is a decrease in the average magnetic
pressure in its wake, rather than an excess. So, compared to a stationary flux rope, the up-
ward magnetic pressure behind a rapidly rising rope could be smaller. Note, however, our
emphasis on “average” here; to the extent that the upward-dipolarizing, post-reconnection
flux catches up with the CME, B2 near the CME’s trailing edge would be higher than farther
into its wake. So the force from the magnetic pressure gradient is not necessarily monoton-
ically upward. We need to consider the increase in magnetic pressure at the trailing edge of
the CME due to the reconnection, our focus in the next subsection.
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Figure 5 An illustration of quantities used in describing the torus geometry used in hoop force calculations.
Left: This end-on view of a cross section of the torus’s volume shows major and minor axes, r and R,
respectively. The poloidal angle, θ , about the torus’s axis increases clockwise, and the azimuthal angle, φ,
increases into the page. Newly dipolarized flux is depicted as a shaded semicircle at the torus’s inner edge,
and its conjugate flux fills the hashed area at the outer edge. Magnetic flux densities at the inside, middle,
and outside surfaces are labeled as Bin, Bmid, and Bout, respectively. Right: This side (edge-on) view shows
a segment of the torus. Newly dipolarized flux is depicted as a shaded patch at the torus’s inner edge, and its
conjugate flux fills the hashed area at the outer edge.

5.3. CME-Scale Magnetic Pressure Variations: Changed Hoop Force

We now consider how magnetic reconnection affects the hoop force on an erupting flux
system. We first briefly review the hoop force (Section 5.3.1). Then, treating a proto-ejection
as a torus with a purely poloidal external field, we derive expressions for the hoop force
(Section 5.3.2) and the change in this force due to the reconnection (Section 5.3.3). Finally,
we consider the effect of a toroidal component in field external to the torus (Section 5.3.4).

5.3.1. The Hoop Force in CMEs

Erupting flux systems must be, in a rough sense, �-shaped: the photospheric footpoints
of fields participating in an eruption do not move significantly during the event, but the
flux in the corona balloons outward into the heliosphere. Curvature of the magnetic field
along the axis of the �-shaped erupting flux system – the axial field being due to the flux
system’s toroidal component – implies that a large-scale, downward magnetic tension force
is present. (This large-scale, downward tension force from axial curvature is not expected to
change directly due to reconnection, so we do not consider it further.)

Set against this inward force from curvature of the eruption’s toroidal field, the compo-
nent of the field winding around the eruption’s axis – the poloidal field, BP – tends to exert
an outward hoop force (e.g., Anzer 1978) on the ejection. We analyze the hoop force arising
from poloidal flux that winds around a toroidal volume. We assume the cross section of the
torus is circular, with the geometry illustrated in Figure 5. The hoop force can be under-
stood qualitatively in the following way (Freidberg, 1987): i) poloidal flux passing through
each differential area in the torus’s hole (�Ain = �rinrin �φ) must pass through a conjugate
differential area outside the torus (�Aout = �routrout �φ); ii) the area of the outside half of
the torus’s surface, Sout, is larger than the inside half of its surface, Sin, since the differential
surface area, dS, increases linearly with distance from the center of the hole (dS ∝ r dφ);
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iii) if �rout = �rin, then BP decreases as 1/r (and BP falls off more rapidly if �rout > �rin),
meaning that BP must be weaker on the outside half of the torus’s surface than on its inside
half; iv) but the inward and outward magnetic pressure forces on the torus scale as B2

P times
Sout and Sin, respectively, so the inverse-square decay of magnetic pressure with distance im-
plies that the surface-integrated inward pressure force on Sout is less than the outward force
on Sin. Hence, the poloidal field exerts a net outward force. If this outward force were suf-
ficient to overcome inward tension from curvature of the toroidal field, and no other forces
were present, then the major radius of the torus would increase. This expansion might be
inhibited by magnetic fields external to the torus. But if fields external to the torus decay
sufficiently rapidly with distance, then the torus will accelerate outward (Kliem and Török,
2006).

As a starting point for our analysis, we assumed that our flux system was not in force
balance: it was already erupting. So a hoop force, or something akin to it, must already be
present. But how does reconnection affect this force?

The key assumption that we make about the evolution of the post-reconnection field is
that the concave-up flux from the flare reconnection under the proto-ejection does, indeed,
catch up to it. Stated another way: the reconnection adds flux to the ejection faster than the
ejection’s flux moves outward. That flux catches up to the ejection is evident in the lower
panels of Figure 4 of the breakout simulations described by MacNeice et al. (2004), which
show that the erupting flux system maintains a circular cross section as flux is added to it. (In
Figure 3d of the paper by Karpen, Antiochos, and DeVore (2012), the simulated eruption’s
cross section is deformed by the reconnection jet to become somewhat concave, suggesting
that post-reconnection flux easily overtakes the outward-moving eruption.) The catch-up of
post-reconnection flux is consistent with our earlier treatment of momentum transfer to the
ejection from the reconnection outflow. Essentially, this flux dipolarizes as it catches up
to the CME’s trailing edge, and its dipolarization is arrested (in the co-moving frame) by
backwards-directed magnetic pressure at that edge. Given this assumption, magnetic pres-
sure from the post reconnection flux will exert an additional upward force on the CME. Due
to the cavitation farther back in the CME wake, however, the hoop force might be less than
the estimate that we derive below, which might therefore represent an upper bound.

It should be noted here that an ejection’s evolution will differ if reconnection is assumed
not to occur. If the major radius r of an axisymmetric torus with nonzero poloidal field
increases ideally, the poloidal flux density, Bp, must decrease, because the same amount of
poloidal flux is spread out over a larger area. Accordingly, the hoop force will also decrease.
When reconnection occurs in the wake of an expanding torus, however, the accretion of
additional flux onto the erupting system means that BP at its trailing edge will generally not
decrease with increasing r in the same manner as the ideal case. In particular, the added flux
can affect BP there in two ways: i) by increasing magnetic pressure at the rear of the ejection,
which keeps flux compressed; and ii) increasing the pitch angle at the rear of the ejection, as
less-sheared fields reconnect and accrete onto the CME. The hoop force must still weaken
as the ejection moves outward, but reconnection should decrease the rate at which the hoop
force weakens with distance. We also remark that, due to this reconnection, the magnetic
helicity of the erupting flux system is not conserved. We discuss some aspects of helicity
evolution in Appendix A.

5.3.2. Hoop Force on a Torus Segment

Before we estimate the change in the hoop force from the reconnection, we first analyze the
hoop force itself. We assume that the field at the surface of the torus is purely poloidal, and
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derive the inward and outward components of the hoop force due to external poloidal flux
�	 in contact with the segment’s annular surface. The poloidal flux �	 at the inner edge
of the torus segment matches a corresponding flux �	 at its outer edge, so the poloidal flux
densities are related via

Bin

Bout
= �	/�Ain

�	/�Aout
= �Aout

�Ain
= �Rout �φ(r + R)

�Rin �φ(r − R)
= (r + R)

(r − R)
. (11)

Here, �	 refers to reconnected flux, but �φ refers to an angular interval in the toroidal
coordinate, φ. We remark that we have assumed �Rin = �Rout here; if �Rout > �Rin, then
the outside magnetic field strength (and pressure force) will be weaker. Consistent with this
expression for Bin/Bout, we model the variation of the poloidal field with θ to be

BP(θ) = Bmid

(
r

r + R cos θ

)
, (12)

where Bmid is the poloidal field strength at the lateral, mid-position of the torus (i.e.,
θ = ±π/2). The outward and inward forces on the inner and outer halves of the segment,
respectively, are given by the magnetic pressure, BP(θ)2/8π on each, projected onto the
(outward) radial direction, integrated over the area of each half. Infinitesimal areas on the
inner and outer halves of the segment are

dSin = (r − R cos θ)dφR dθ, (13)

dSout = (r + R cos θ)dφR dθ. (14)

To find the inward force on the outer segment of the torus, we integrate θ from
(−π/2,π/2) over the outside surface, and φ over the range �φ. Projection onto the out-
ward direction introduces a factor of − cos(θ). This yields (Dwight 1961, p. 105, integral
446.00)

Fouter =
∫

dSout
B2

mid

8π

(
− r2 cos θ

(r + R cos θ)2

)
(15)

= −r2 �φR
B2

mid

8π

∫ π/2

−π/2
dθ

cos θ

r + R cos θ
(16)

= r2 �φR
B2

mid

8π

[
− θ

R
+ 2r

R
√

r2 − R2
tan−1

(√
r − R√
r + R

tan(θ/2)

)]∣∣∣∣
π/2

−π/2

(17)

= r2 �φ
B2

mid

2π

[
r√

r2 − R2
tan−1

(√
r − R√
r + R

)
− π

4

]
(18)

= r2 �φ
B2

mid

4

[
r√

r2 − R2

(
2

π

)
tan−1

(√
r − R√
r + R

)
− 1

2

]
. (19)

The outward force on the inner segment of the torus involves an analogous integration, with
a projection factor of + cos(θ) and complementary domain, yielding

Finner = r2 �φ
B2

mid

4

[
r√

r2 − R2

(
2

π

)
tan−1

(√
r + R√
r − R

)
− 1

2

]
. (20)
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Figure 6 Plots of the radial
dependence of the terms in
square brackets in Equations 19,
20, and 22, corresponding to the
outward Finner (dashed), inward
Fouter (dash/dots), and Fhoop
(solid). For comparison, the
curve 1/r is plotted (dotted line).

In the limit that torus’s minor radius R were to expand to approximately its major ra-
dius, then the force on the inner surface would diverge, and the force on the outer surface
would remain finite. The inverse tangents in Equations 19 and 20 are related via the identity
(tan−1[x] + tan−1[1/x]) = π/2, so their values are coupled. The hoop force on the torus
segment is given by the sum of Fouter and Finner, which yields

Fhoop = Finner + Fouter = r2 �φ
B2

mid

2π

(
π

2

)[
r√

r2 − R2
− 1

]
(21)

= r2 �φ
B2

mid

4

[
r√

r2 − R2
− 1

]
. (22)

This is manifestly positive (outward).
Figure 6 plots the radial dependence of the terms in square brackets in the expressions for

Fouter, Finner, and Fhoop (from Equations 19, 20, and 22, respectively) as functions of major
radius r . In the limit that the torus’s major radius r expands to become much larger than its
minor radius (so r 	 R),

Fhoop � r2 �φ
B2

mid

4

[(
1 + (1/2)(R/r)2

) − 1
]

� R2 �φ
B2

mid

8
. (23)

As shown in Appendix B, the hoop force per unit length here scales as I 2/r , where I is the
total electric current within the torus, consistent with the result derived by Shafranov (1966).
Therefore, if the evolution were ideal, the net outward force per unit length would decrease
like 1/r if the major radius r grew much greater than its minor radius R.

5.3.3. Change in Hoop Force Due to Reconnection

How does reconnection affect the hoop force on the ejection? The addition of flux should
widen the proto-ejection, i.e., the minor radius R of the ejection should increase. To analyze
this effect, we must account for the change in minor radius by �R as �	 is added. This de-
pends on the flux density at the proto-ejection’s trailing edge. In the frame co-moving with
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the ejection, the upward motion of the dipolarizing post-reconnection flux �	 is arrested by
the back reaction of magnetic pressure at that trailing edge. This implies that magnetic pres-
sures, and therefore field strengths, are approximately equal at the proto-ejection’s trailing
edge and in the arrested flux. So the addition of flux �	 at the same field strength implies

�	 = Bin�R (r − R)�φ =
[
Bmid

r

r − R

]
�R (r − R)�φ (24)

= Bmid r�R �φ (25)

�	

�R
= Bmid r �φ, (26)

where Bin is the field strength at the proto-ejection’s trailing edge, which is related to Bmid

by Equation 12.
The change in hoop force, �Fhoop, due to the differential increase in R is then the differ-

ence of two versions of Equation 22, evaluated for minor radii R + �R and R. Assuming
�R is small compared to (r − R), we have

�Fhoop = Bmid

4

�	

�R
r

[
r√

r2 − (R + �R)2
− r√

r2 − R2

]
(27)

= Bmid �	

4�R
r2

[
1√

r2 − R2 − 2R �R − �R2
− 1√

r2 − R2

]

= Bmid �	

4�R

r2

√
r2 − R2

[(
1 − 2R �R + �R2

(r2 − R2)

)−1/2

− 1

]
(28)

� Bmid �	

4�R

r2

√
r2 − R2

[
1 + R �R

(r2 − R2)
− 1

]
(29)

� Bmid �	

4

r2

√
r2 − R2

R

(r2 − R2)
(30)

� Bmid �	

4

r2R

(r2 − R2)3/2
(31)

= Bmid �	

4

[
(R/r)

(1 − (R/r)2)3/2

]
. (32)

The coefficients in this result are similar in form to those in Equation 8, but the change in
force depends on the ejection’s height r and half-width R. For r 	 R, Equation 32 implies

�Fhoop,r	R = Bmid �	

4

(
R

r

)
. (33)

The results in Equations 32 and 33 can also be derived by differentiating the expressions
in Equations 22 and 23, respectively, with respect to R, and expressing the result in terms
of �	.

Figure 7 plots the variation with (R/r) of the term in the square brackets in Equation
32, and includes the scaling predicted by Equation 33 for comparison. To the extent that
CMEs evolve with constant angular width (e.g., Zhao, Plunkett, and Liu 2002), the ratio
(R/r) would remain fixed as major radius r increases. The mean and median CME widths
in the CDAW catalog dataset referenced above are 50◦ and 63◦, respectively. These probably
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Figure 7 The solid line plots the
term in square brackets in
Equation 32 as (R/r) varies. The
dashed line plots (R/r) versus
(R/r). To the extent that CMEs
propagate with fixed angular
width (e.g., Zhao, Plunkett, and
Liu 2002), the ratio (R/r) should
be constant as r increases.

overestimate the actual angular widths of typical erupting flux ropes due to tilts of flux ropes’
axes along the line of sight. So a typical value for (R/r) might be 1/3, corresponding to a
torus cross section that subtends an angle of 37◦, for which

�Fhoop,r=3R = Bmid �	

4

(1/3)

(8/9)3/2
= Bmid �	

4

9

64
√

2
� 0.1Bmid �	. (34)

This is a bit smaller than the change in tension force for a purely poloidal field, �Ftension �
0.16Btot�	 from Equation 8, and a bit larger than the change in tension force for guide-field
reconnection with field line pitch ω = 20◦, �Ftension � 0.05Btot�	 from Equation 10.

Equation 32 and subsequent results assume that the reconnected flux �	 is completely
dipolarized. The total change in hoop force should also account for how the hoop force
increases as �	 evolves from the pre-dipolarized state to the post-dipolarized state. In Ap-
pendix C, we consider this change in force due to dipolarization, and we find that the change
in force predicted by Equation 32 could be a lower estimate.

5.3.4. Toroidal and Poloidal External Field

The derivation above has neglected any toroidal component in the reconnecting field external
to the torus. The presence of a toroidal component, BT, in the reconnecting field alters the
relationships we derived above (Equations 19, 20, 22, and 32). The modified inward force
on the outer surface, F ′

outer, is given by

F ′
outer =

∫
dSout

(B2
P + B2

T)

8π
, (35)

and the modified outward force on the inner surface, F ′
inner, is given by

F ′
inner =

∫
dSin

(B2
P + B2

T)

8π
. (36)

For fixed total field strength B , nonzero BT implies the poloidal field, BP, is weaker. We
assume, however, that the dependence of BP on θ is unchanged, because Equation 11 must
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Figure 8 Left: The solid lines depict a cross section of a torus segment, viewed from the side, and the dashed
lines show an Ampèrian loop in the plane of the cross section. Right: The two long, thin flux tubes crossing
below the torus (solid being nearer the viewer, dashed farther) depict reconnecting fields with nonzero BT
below a rising ejection. Upward-dipolarized, post-reconnection flux (the upper, thick, half-dashed, half-solid
flux tube) is in contact with the inner surface of the torus over a longer distance than with purely poloidal
reconnecting field. The volume integral in Equations 39 and 40 runs over the length of the upward-dipolarized
flux tube.

still apply: every unit of poloidal flux threading the interior of the torus must map to a larger
area exterior to it.

Without developing a particular model of a field with a toroidal component, we can,
with some basic assumptions, make some inferences about the effect that a nonzero toroidal
field component, BT, would have on the hoop force. We start with the simplifying assump-
tions that i) fields in the torus and external to it are axisymmetric (invariant in the toroidal
direction), and ii) there is no net current across (perpendicular to) the plane of the torus.
Physically, assumption ii) is equivalent to requiring that net charge does not accumulate on
either side of the torus; such an accumulation could not persist.

We now show that these assumptions imply that BT must also decrease as the inverse
of radial distance from torus center. Consider the closed path shown in the left panel of
Figure 8, which lies in the plane of the figure. By Ampère’s law, the net electric current, In,
normal to the plane of the figure that is enclosed by the loop, is proportional to

∮
B · d�

around the loop. Axisymmetry implies that the line integrals across the torus,
∫

Br dr for
segment two and − ∫

Br dr for segment four, must cancel. The integrations along segments
one and three then imply

In ∝
∮

B · d� = �φ
[
r3BT(r3) − r1BT(r1)

]
. (37)

The radial coefficient of each term implies that, for In to vanish, BT must decrease as the
inverse of distance from the torus center. The assumed axisymmetry implies that this result is
valid even if In �= 0 for r < r1. In accordance with this result, when comparing Equations 35
and 36, we know that dS increases linearly with distance from torus center, but (B2

T + B2
P)

decreases quadratically with distance from torus center, so |F ′
inner| > |F ′

outer|, and again the
hoop force is outward as in the case of purely poloidal field.

Our argument that BT should scale as 1/r does rest upon somewhat restrictive assump-
tions, which might not apply on the Sun. In particular, our assumption of patchy reconnec-
tion implies that the assumed axisymmetry is, at best, only approximately correct.

As shown in the right panel of Figure 8, reconnection of fields below the torus with
nonzero BT will lead to post reconnection flux (upper, half-dashed, half-solid tube) in con-
tact with the inner surface of the torus. This post-reconnection field would exert an outward
force F ′

inner on the torus.
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5.4. Comparing Changes in Hoop and Tension Forces

To better understand reconnection-driven changes in forces acting on CMEs, it is useful to
compare the changes in tension and hoop forces.

As a preliminary remark, we note that the presence of axial curvature of the erupting flux
system, which is ultimately responsible for the hoop force, could, in principle, modify the
tension force from the poloidal field. In Appendix D, we show that axial curvature does not
affect the tension of a poloidal flux tube with BP given by Equation 12.

Taking the ratio of the change in hoop force for r 	 R, from Equation 33, to the change
in tension force, from Equation 8, yields

�Fhoop,r	R

�Ftension
� (R/r)�φBmid/4

�φBmid/2π
� π

2

(
R

r

)
. (38)

Hence, the force changes from these effects are similar in magnitude for R comparable to r .
Using instead the change in tension force due to reconnection with a guide field, from

Equation 10 with a value of ω = 20◦, reduces the tension force by a factor of 1/3. In this
case, with (R/r) = 1/3 as discussed previously, �Fhoop due to the widening of the proto-
ejection would be commensurate with or slightly larger than �Ftension.

5.5. Changes in CME Acceleration

We now seek to characterize the change in the CME’s acceleration due to these changes in
external forces acting on the eruption. To do so, we derive the first-order difference in the
time rate of change of momentum between two instants, t1 and t2, separated in time by �t .
Recall that a flux �	B accreted onto the CME increases its mass by �m because the flux is
frozen to the plasma outside the diffusion region. (Here, �	B refers to the total flux in the
flux tube, not just the flux from the reconnecting component of B .) The mass in the segment
of the flux tube that is added to the ejection is

�m =
∫

ρ dV =
∫

ρ dAdL (39)

=
∫

ρ

B
�	B dL = �	B

∫
ρ

B
dL. (40)

The integral here runs over the upward-dipolarized, thick flux tube in the right panel of
Figure 8. (Notice that the presence of a toroidal field component – a guide field – in recon-
nection beneath the ejection yields accretion of post-reconnection flux tubes that are longer
than if purely poloidal fields reconnected.) For field strengths of a few gauss, lengths of a
few tens of Mm, and mass densities near 10−15 g cm−3 (a few times 108 electrons per cm3),
the added mass per unit reconnected flux is around ∼10−6 g/Mx. For events with a few
times 1021 Mx of reconnected flux (Qiu and Yurchyshyn, 2005; Kazachenko et al., 2017),
the increase in mass of a proto-ejection by flux accretion would be of order ∼1015 g. The
mean of nonzero CME masses in the CDAW catalog is 1.6 × 1015 g.

The time rate of change in momentum is given by

dp

dt
= dmeff

dt
v + meff

dv

dt
. (41)
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Assuming the increase in the CME’s effective mass is very small compared to the total
effective mass, we neglect dmeff/dt here and in the following steps. We then have

dp(t2)

dt
− dp(t1)

dt
= F (t2) − F (t1), (42)

meff

(
dv(t2)

dt
− dv(t1)

dt

)
� �F , (43)

�a � �F

meff
, (44)

where the changes in tension and hoop forces due to the reconnection are given by Equations
10 and 32, respectively. For reconnection of a small amount of flux �	, both Equations 10
and 32 scale as the product of the reconnecting field strength multiplied by the reconnected
flux,

�a ∝ B�	

meff
. (45)

Hence, these assumptions predict that the rate of acceleration of a CME increases linearly
with reconnected flux.

How significant is the acceleration from reconnection-driven changes in the forces (Equa-
tions 10 and 32) acting on a CME? Our formalism analyzes the change in Lorentz forces
from reconnection of a discrete amount of flux, �	. In Section 4, we considered reconnec-
tion for a total field strength of 10 G with a 3 G poloidal component. The SADs identified by
Savage and McKenzie (2011) and McKenzie and Savage (2011) suggest that patchy recon-
nection occurs over areas on the order of 10 Mm2. Accordingly, we consider reconnection
of a 10 Mm2 patch of 3 G field, corresponding to �	 = 3 × 1017 Mx, and an effective CME
mass meff = 2×1015 g. For the tension force, the contribution to Equation 44 from 10 alone,
with ω = 20◦, would imply an increase in acceleration of ∼24 cm s−2. For the hoop force,
with (R/r) = 3, the increase in acceleration would be ∼ 38 cm s−2. Roughly, the two effects
both act to accelerate the ejection with similar magnitude, and the combined �a from both
is on the order of 0.6 m s−2.

Qiu and Yurchyshyn (2005), Kazachenko et al. (2017), and Gopalswamy et al. (2017a)
report typical reconnection fluxes 1021 Mx for the CMEs in their samples. Qiu and
Yurchyshyn (2005) also suggest that this could be an underestimate, because not all recon-
nected flux exhibits ribbon emission that is detectable by their methods. It should be noted,
however, that their approach might produce an overestimate: if the reconnection is patchy,
and both footpoints in each polarity produce ribbon emission captured by their method,
then some reconnected flux is double counted. These two effects – missing some flux from
weakly emitting footpoints, and double counting some flux – might offset each other, so
we assume the flux estimates from Qiu and Yurchyshyn (2005) approximate the true recon-
nected flux. Simply summing 3 × 103 similar reconnection events, each of 3 × 1017 Mx,
to reconnect ∼1021 Mx of flux would yield a total acceleration near 2000 m s−2. Also, this
analysis assumes that each reconnection event accelerates the final mass of the CME – but
the CME mass should initially be smaller, and grow as reconnection accretes mass onto it.
Moreover, several events studied by Qiu and Yurchyshyn (2005), Kazachenko et al. (2017),
and Gopalswamy et al. (2017a) have substantially higher ribbon fluxes.

For comparison, using data from the LASCO C1 coronagraph (Brueckner et al., 1995)
before it failed, Zhang and Dere (2006) report accelerations for 50 CMEs, with a mean value
of 300 m s−2, and a standard deviation of 600 m s−2. Vršnak (2006) reports a few CMEs with
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Figure 9 This plot shows the
ratio of the inward magnetic
pressure force, |Fouter|, which
acts on the ejection’s outer face,
to the outward magnetic pressure
force, |Finner|, which acts on its
inner face. This ratio increases
from near zero at (r/R) � 1 to
about 0.85 for large (r/R).

accelerations near 1000 m s−2. The accelerations implied by our crude estimates of Lorentz
force changes due to reconnection are much larger than those observed in most CMEs,
an issue we revisit shortly. It should be clear from Equations 10 and 32 that this too-high
acceleration does not depend upon our choice that �	 = 3 × 1017 Mx – the key factors are
the typical field strength of the post-reconnection field as it accretes onto the ejection, and
the total amount of reconnected flux over the course of the eruption.

We now consider our model of reconnection-driven changes in forces on CMEs in the
context of observations that show CMEs’ speeds scale with the reconnected flux. Equa-
tion 45 suggests that CME accelerations, not speeds, should scale with the amount of recon-
nected flux. This inconsistency with observations might be reconciled by the field-strength
dependence in Equation 45, which implies that the added force on the ejection from re-
connected flux will diminish with increasing height, because field strengths decrease with
height.

While we have focused on changes in forces on an ejection due to reconnection, Lorentz
forces from external fields not directly involved in reconnection also act on the ejection, both
to drive and to resist the ejection’s rise. In addition to weakening forces from reconnected
fields, the decrease of magnetic field strengths as the ejection moves outward will also re-
duce all other Lorentz forces acting on it. Equations 19 and 20 were derived for a small
section of a torus, but they are also valid for external hoop forces acting on a longer torus
section in the absence of reconnection. The ratio of inward to outward hoop forces, plotted
as |Fouter/Finner| in Figure 9, aids consideration of how the total hoop force on the ejection
changes as the ejection rises. At initiation of the eruption, r is nearest R, so |Fouter/Finner|
is smallest, and the acceleration is largest. As r increases relative to R, however, |Finner|
decreases relative to |Fouter|, so the external forces slowing the ejection increase substan-
tially relative to the external forces driving it. Consistent with this, Vršnak (2006) estimated
the accelerations of flare sprays, eruptive prominences, and the leading edges of white-light
CMEs, and found a trend of decreasing acceleration with distance; see especially his Fig-
ure 2. The effect of decreasing field strength with height could be investigated using MHD
models of erupting CMEs.

Another factor that we have ignored is drag force on the CME. Vršnak, Vrbanec, and
Čalogović (2008) analyzed CME accelerations, and found drag to be dynamically significant
over the height range that they analyzed, (2 – 30) R�. They expressed the drag force as

Fdrag ∼ ρamb(v − vamb)
2CDA, (46)
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where CD is the dimensionless drag coefficient, ρamb is the density of the ambient plasma
through which the CME propagates, vamb is the speed of the ambient plasma, and A is the
effective area the ejection perpendicular to its relative motion with respect to the background
plasma. In the outer corona and heliosphere, vamb is the solar wind speed. In assessing drag
forces on Hα flare surges within 0.25 R�, Vršnak (2006) noted that drag forces can be
relatively strong there, because the ambient plasma speed is zero and ambient densities
are highest. Increases in CME speed and area due to flux accretion would, all else equal,
increase drag forces on the CME. (We have also ignored changes in gravity as the ejection
rises, because that the gravitational energies of many CMEs are dwarfed by their kinetic
energies – e.g., Emslie et al. 2012.)

6. Summary and Conclusions

Several observations indicate that magnetic reconnection in flare-associated CMEs plays a
central role in the development such ejections. i) Emission patterns consistent with recon-
nection are common. ii) Estimates of reconnected flux inferred from these emission patterns
are correlated with CME speeds, so a causal link between reconnection and CME acceler-
ations is plausible. iii) The masses of CMEs are correlated with their speeds. iv) Estimates
of reconnected flux are correlated with fitted poloidal fluxes in CME flux ropes. Taken to-
gether, these observations implicate reconnection in the formation and acceleration of some
CMEs.

We noted that reconnection tends to add mass to CMEs. This occurs because reconnec-
tion joins external flux with the ejection as it rises, and plasma is frozen to this flux outside
of the small diffusion region where the reconnection occurs. If reconnection had no other
effect besides adding mass to the erupting flux system, the ejection would slow. We expect,
however, that reconnection should also affect the Lorentz forces acting on the ejection.

Accordingly, we then sought to quantify, using order-of-magnitude estimates, how recon-
nection might affect the dynamics of a rising ejection. First, we estimated the momentum
flux into a rising ejection due to outflow from the flare reconnection underneath it. We found
that the reconnection outflow might be responsible for ∼10% of the final momentum of a
moderate-speed CME, although the uncertainties in this estimate are large – it is plausible
that momentum transfer from the reconnection outflow supplies significantly more or less
than this.

Second, we considered simple models of the magnetic structure of an ejection before
and after reconnection of a small amount of flux �	. We started by estimating the resulting
changes in the net magnetic tension on the ejection, and found that downward magnetic
tension was reduced by an amount proportional to B�	, where B is the strength of the
reconnecting field component and �	 is the amount of reconnected flux. We then estimated
the change in upward magnetic pressure, due to the increased hoop force from accretion of
post-reconnection flux onto the ejection, which was also proportional to B�	, where B is
the total field strength.

A key result of our analysis is that changes in tension and hoop forces due to reconnec-
tion are commensurate. This implies that a tether-cutting model of dynamics misses half of
the story: “hoop adding” is just as important. This also highlights a significant difference
between breakout reconnection above a proto-ejection, which reduces downward tension
from overlying fields, and flare reconnection below a proto-ejection, which both reduces
downward tension forces and adds hoop forces. Because the added hoop force is on the or-
der of the reduced tension force, if the reconnecting fields were the same at each location,
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then flare reconnection would produce about twice the change in Lorentz force as breakout
reconnection. But the decrease in field strength with height together with the field-strength
dependence of the change in force implies that flare reconnection should much more strongly
affect a proto-ejection’s acceleration than breakout reconnection. This accords with the re-
sults reported by Karpen, Antiochos, and DeVore (2012).

For reasonable choices of reconnecting field strengths and CME mass, we estimated the
change in CME acceleration due to changes in Lorentz forces alone. This yielded rough
estimates of CME accelerations near 2000 m s−2. Such accelerations are, however, larger
than the observed accelerations of most CMEs. We hypothesize that the decrease in Lorentz
forces on the CME with increasing height above the solar surface (e.g., in Figure 9), com-
bined with drag on the ejection, both neglected in our model, can reconcile the discrepancy
between observed CME accelerations and those predicted by our model. Another possibil-
ity, discussed in Section 5.5 above, is that the reconnected flux estimated from flare ribbons
and magnetograms, by double counting flux in each polarity, overestimates the actual recon-
nected flux.

We hope the rough estimates made here will be tested with data from MHD simulations
of ejections. In particular, it would be illuminating to compare the contributions of momen-
tum flux from the reconnection outflow, reduction in magnetic tension, and increase in hoop
force to the overall momentum budgets of model CMEs.
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Appendix A: Evolution of Magnetic Helicity

Magnetic reconnection not only alters the Lorentz forces acting on an erupting flux rope, it
also changes the rope’s magnetic helicity (e.g., Berger et al. 1998). To consider the effect of
reconnection on the ejection’s helicity, we idealize the erupting flux system as a toroidal rope
of purely azimuthal flux, 	T, formed by the ejection’s core, surrounded by purely poloidal
flux, 	P. The mutual helicity of the two flux systems, |Hmut| = |2	P	T|, quantifies linkages
between the two flux systems. If the poloidal or azimuthal flux systems contained internal,
“self” linkages, then the total helicity would be the sum of these self helicities and the mutual
helicity. Because magnetic helicity is an ideal MHD invariant, no ideal process can lead to
the increase of poloidal flux wrapping around the azimuthal core field. (Ideal processes
could, however, cause poloidal flux to bunch up, leading to regions with stronger BP.)

When reconnection occurs in the wake of the outward-moving toroidal rope, however, it
adds flux that wraps around the rope. Helicity is approximately globally conserved in fast
reconnection (e.g., Berger 1999), and this increase in the helicity of the erupting flux system
is offset by an opposing change in mutual helicity between the erupting system and sur-
rounding fields. Figure 10 illustrates key aspects of this evolution. For simplicity, both flux
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Figure 10 Left: Flux systems A and B, each assumed untwisted, have a mutual helicity that is greater than
zero, due to their positive crossing number. Middle: System A is erupting upward through B. Right: Flux from
B has reconnected with itself, and thereby formed two flux systems, one that is closed and linked to system
A and one that is anchored at the photosphere. The mutual helicity between A and the flux from system B
that is anchored at the photosphere has changed sign, since the sign of their crossing has changed. Globally,
helicity is conserved here, though it has been transferred between mutual and self helicities.

tubes shown are assumed to have no internal twist; relaxing this assumption would not sub-
stantively alter results of the analysis. Essentially, some of the mutual helicity between the
rising, toroidal system (A in the figure) and the initially overlying, external flux system (B in
the figure) is transformed into self helicity of the erupting system (toroid plus reconnected
flux that encircles it) (Berger et al., 1998).

This transfer of helicity between the erupting and background flux systems may be seen
by considering the sign of the crossing between the external flux and toroidal flux, which
changes when the rising flux passes through the external field by driving the latter to re-
connect with itself. Initially (left panel), their mutual helicity is Hi = +	A	B(b+ + b−)/π ,
and in the final state (right panel), their mutual helicity is Hf = −	A	B(a+ + a−)/π . (De-
moulin, Pariat, and Berger (2006) review the sign convention for angles: the mutual helicity
is defined from footpoint angles of the overlying loop; angles swing from the footpoint with
the same sign as the apex loop’s footpoint toward the opposite-sign footpoint; and counter-
clockwise is positive.) The difference in mutual helicities is

�Hmut = Hf − Hi = −	A	B(a+ + a− + b+ + b−)/π = −2	A	B. (47)

The difference in mutual helicities from the changed crossing sign has been added to the
self helicity of the erupting system: the flux that reconnected to encircle the rising flux
contributes to the erupting system’s self helicity. The linking number of fluxes in the erupting
system is +1, so the helicity within that system is +2	A	B .

More detailed studies of helicity evolution due to reconnection in an eruption with re-
connection have been undertaken (e.g., Priest and Longcope 2017).

Appendix B: Large-r Scaling of Hoop Force

From Equation 23, the hoop force Fhoop on a length of torus r �φ scales as R2 �φ(B2
mid/8)

for r 	 R. The force per unit length therefore scales as

Fhoop

r �φ
∼ R2B2

mid

r
. (48)

Shafranov (1966) derived an expression for the hoop force per unit length in terms of the
total azimuthal electric current, I , finding that the force per unit length scaled as I 2/r . In



Flux Accretion and CME Dynamics Page 31 of 37 113

our model, with the poloidal field in Equation 12, the electric current along the torus’s axis
is

I = c

4π

∮
B · dL = c

4π

∫ π

−π

Bmid r

r + R cos θ
R dθ (49)

= crRBmid

4π

[
2√

r2 − R2
tan−1

(√
r − R√
r + R

tan(θ/2)

)∣∣∣∣
π

−π

]
(50)

= crRBmid

4π

2π√
r2 − R2

= crRBmid

2
√

r2 − R2
. (51)

Therefore, in our model, I 2/r varies with r as

I 2/r ∼ rR2B2
mid

(r2 − R2)
= R2B2

mid

r(1 − (R/r)2)
. (52)

In the r 	 R limit, then,

I 2/r ∼ R2B2
mid

r
. (53)

This matches the scaling of our force per unit length, from Equation 48. Figure 6 shows a
comparison of 1/r (dotted line) with the radial dependence of the term in square brackets in
the expression for Fhoop in Equation 22 (solid line).

Appendix C: Pre- to Post-Dipolarization Change in Hoop Force

Another aspect of the change in hoop force is more subtle: the total change in force on the
proto-ejection by the addition of reconnected flux �	 is likely larger than the value given
in Equation 32. To see why, we must consider how the net force exerted by the reconnected
field on the ejection changes as a result of the dipolarization.

We define ti to be an instant after this flux has reconnected but before it has fully dipo-
larized, and tf to be after full dipolarization. At ti , the field strength on the inner side of the
proto-ejection is weaker than assumed in deriving Equation 20, as shown in the left magnetic
field configuration in Figure 11. Consequently, the pre-dipolarization, inner-surface compo-
nent of the hoop force, Finner,pre, is weaker than Finner derived above. We assume that flux
arching over the proto-ejection’s leading edge is unchanged by the reconnection, so always
acts on the proto-ejection with the same inward pressure force Fouter. This implies that the
instantaneous hoop force acting on the proto-ejection due to just the annulus of reconnected
flux is strongest after complete dipolarization, as depicted in the right panel of Figure 11.
This force is equal to the value given in Equation 32, which can also be understood as the
net pressure force due to only the annulus of reconnected flux �	 that wraps around the
proto-ejection,

�Fhoop = Finner,�	 + Fouter,�	, (54)

where the �	 subscripts indicate that these forces are due only to the reconnected flux, and
Fouter,�	 is negative.

This instantaneous force, however, is not the same as the change in pressure force acting
on the proto-ejection due to the accretion of reconnected flux. The change in pressure force
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Figure 11 Left: Prior to complete dipolarization of post-reconnection flux, the flux density behind the ejec-
tion, Bpre, is less than the inner-edge flux density Bin assumed in deriving Equation 20. The distance from the
reconnection site to the trailing edge of the proto-ejection is assumed to be ∼ r/2. The inward pressure force
on the proto-ejection’s outer surface due to the reconnected flux, Fouter,�	, assumed to be unchanging, is
depicted as a blue vector. The pre-dipolarization outward pressure force on its inner surface due to the recon-
nected flux, Finner,pre,�	, is depicted as a red vector. For the configuration shown, at time ti , the net pressure
force from the annulus of reconnected flux is inward (negative). Right: After complete dipolarization at tf ,
the outward pressure force from the reconnected flux (denoted Finner,�	) is larger, and the net (outward)
pressure force from the annulus of reconnected flux is strongest, and equal to �Fhoop from Equation 32. The
total change in the magnetic pressure force on the proto-ejection is the net pressure force at tf minus the net
pressure force at ti , �Ff i and this difference can exceed the value for �Fhoop.

on the ejection from ti to tf is the difference between the net forces at tf and ti ,

�Ff i = (Finner,�	 + Fouter,�	) − (Finner,pre,�	 + Fouter,�	) (55)

= (Finner,�	 − Finner,pre,�	), (56)

where the subscripts denote the outward and inward forces (subscripted inner and outer,
respectively) on the proto-ejection from the reconnected flux �	. It can be seen that if
|Finner,pre,�	| < |Fouter,�	|, then �Ff i > �Fhoop from Equation 32. We remark that, much
like the magnetic tension force from a flux tube �	 that is inward prior to tether-cutting
reconnection, the net force due to inward and outward magnetic pressures from a flux tube
�	 might also be inward in the pre-dipolarization state (i.e., (Finner,pre,�	 + Fouter,�	) < 0
in Equation 55).

How much weaker would the pre-dipolarization magnetic field, Bpre, have to be for the
pre-dipolarization force to be inward? As a first step to addressing this question, we use
Equation 20 to crudely approximate the outward pressure force prior to complete dipolar-
ization, Finner,pre,�	, to be

Finner,pre,�	 � (Bpre/Bin)
2Finner,�	. (57)

We expect that the behavior of Finner,�	 follows Finner, and similarly that Fouter,�	 follows
Fouter. It is helpful to refer again to Figure 9, which plots the ratio of |Fouter/Finner| as a
function of major radius r , in units of minor radius R. For (r/R) near unity, |Fouter| 
|Finner|, but |Fouter| is more comparable to |Finner| at larger (r/R). For the ratio (r/R) = 3
assumed above, |Fouter/Finner| is near 0.6, implying that a ratio of (Bpre/Binner) of 0.7, for
instance, would yield an initially inward force:

Finner,pre,�	 + Fouter,�	 � 0.49Finner,�	 − 0.6Finner,�	 < 0. (58)
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A flux density of 0.7 times the dipolarized value would occur if the average thickness of the
shaded region in Figure 11 were more than about (0.7)−1 � 1.4 times the final thickness,
�R.

It might be suggested that having an Finner,pre,�	 weaker than Fouter,�	 is somehow un-
physical, and that (Finner,�	 + Fouter,�	) must for some reason always be outward for an
accelerating CME. But our analysis does not consider all forces on an ejection, just forces
from a single flux tube �	, and forces from individual tubes may oppose the ejection. As
noted above, a similar analysis is implicit in the tether-cutting model, which supposes that
many individual tethers oppose an eruption’s upward motion, but nonetheless that eruption
can have a net outward force.

How much larger is the change in hoop force �Ff i than the estimate in Equation 32? It
is problematic to estimate the diminished pressure force on the inner surface of the ejection
prior to complete dipolarization without assuming a model of the field structure in recon-
nection outflow, which is beyond the scope of this analysis.

Appendix D: Tension Force for Torus

We revisit the change in tension estimated in Equation 8 above to investigate the effect, if
any, of the axial curvature that gives rise to the hoop force, since this could also affect the
change in tension from BP. To get the total (sum of upward and downward) tension, we now
use Equation 12 in Equation 5 and integrate over [−π,π],

�Ftension = 1

4π

∫
dV ẑ · (B · ∇)B (59)

= 1

4π

∫
R dθ dABP(θ)

ẑ

R
· ∂(BP(θ)b̂)

∂θ
(60)

= �	

4π

∫
dθ ẑ · ∂(BP(θ)b̂)

∂θ
(61)

= �	

4π

∫ π

−π

dθ

(
−∂BP(θ)

∂θ
sin θ − BP(θ) cos θ

)
(62)

= −�	Bmid

4π

∫ π

−π

dθ

(
rR sin2 θ

(r + R cos θ)2
+ r cos θ

r + R cos θ

)
(63)

= −�	Bmid

4π

∫ π

−π

dθ

(
rR + r2 cos θ

(r + R cos θ)2

)
(64)

= −�	Bmid

4π

∫ π

−π

dθ

(
(r/R) + (r/R)2 cos θ

(r/R + cos θ)2

)
(65)

= −�	Bmid c

4π

∫ π

−π

dθ

(
1 + c cos θ

(c + cos θ)2

)
, (66)

where, as before, the unit vector of the poloidal field is given by b̂ = θ̂ = (cos θx̂ − sin θ ẑ),
dV = dAR dθ , �	 = BP �A is the flux that reconnects, and in the last line we have defined
c = r/R.
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From Dwight (1961) (p. 106), we first evaluate

∫ π

−π

dθ
1

(c + cos θ)2
= sin θ

(1 − c2)(c + cos θ)

∣∣∣∣
π

−π

− c

1 − c2

∫ π

−π

dθ
1

(c + cos θ)
(67)

= c

c2 − 1

∫ π

−π

dθ
1

(c + cos θ)
. (68)

Second, and also from Dwight (1961) (p. 106), we evaluate

∫ π

−π

dθ
c cos θ

(c + cos θ)2
= c2 sin θ

(c2 − 1)(c + cos θ)

∣∣∣∣
π

−π

− c

c2 − 1

∫ π

−π

dθ
1

(c + cos θ)
(69)

= − c

c2 − 1

∫ π

−π

dθ
1

(c + cos θ)
. (70)

Equations 68 and 70 are equal and opposite.
This cancellation is reasonable, given that our model poloidal field is essentially circular,

so the curvature is uniform around the flux tube over which the force density is integrated.
It is true that, due to the higher flux density on the inner section of the flux tube, the force
density is higher there. But the force density is not integrated over equal volumes for the
inner and outer segments; it is over different volumes threaded by equal amounts of flux.
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