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Abstract Magnetic helicity is a quantity of great importance in solar studies because it is
conserved in ideal magnetohydrodynamics. While many methods for computing magnetic
helicity in Cartesian finite volumes exist, in spherical coordinates, the natural coordinate sys-
tem for solar applications, helicity is only treated approximately. We present here a method
for properly computing the relative magnetic helicity in spherical geometry. The volumes
considered are finite, of shell or wedge shape, and the three-dimensional magnetic field is
considered to be fully known throughout the studied domain. Testing of the method with
well-known, semi-analytic, force-free magnetic-field models reveals that it has excellent ac-
curacy. Further application to a set of nonlinear force-free reconstructions of the magnetic
field of solar active regions and comparison with an approximate method used in the past
indicates that the proposed method can be significantly more accurate, thus making our
method a promising tool in helicity studies that employ spherical geometry. Additionally,
we determine and discuss the applicability range of the approximate method.

Keywords Magnetic fields, Models · Helicity, Magnetic · Magnetic fields, Corona

1. Introduction

Magnetic helicity is a geometrical quantity that describes the twist, writhe, and linkage of
magnetic-field lines. It is invariant in ideal magnetohydrodynamics (MHD; Woltjer, 1958)
and is approximatelly conserved even in nonideal MHD conditions (Taylor, 1974; Pariat
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et al., 2015). These properties make helicity an important quantity in plasma physics studies
(e.g. Ji, Prager, and Sarff, 1995; Brown et al., 1999; Dasgupta et al., 2002).

Magnetic helicity of a magnetic field [B] in a volume [V ] is defined as Hm(B) =∫
V

dV A · B , where A is the vector potential such that B = ∇ × A. This quantity is gauge-
invariant as long as the surface enclosing V is a flux surface, i.e. when the normal component
of the magnetic field vanishes there. This is obviously not the case for arbitrarily shaped vol-
umes, but an appropriate helicity with respect to a reference field can still be defined (Berger
and Field, 1984; Finn and Antonsen, 1985). This is the relative magnetic helicity, which is
given by

H =
∫

V

dV (A + Ap) · (B − Bp), (1)

with Bp = ∇ ×Ap the reference field, usually taken to be a potential field, and Ap its vector
potential. The important condition allowing gauge independence is that the studied field and
the potential field must have the same normal component on the whole boundary of the
system.

The application range of relative magnetic helicity (hereafter simply helicity) in the Sun
is quite broad, extending from the solar dynamo (e.g. Brandenburg and Subramanian, 2005)
to the triggering of coronal mass ejections: according to Rust (1994), the existence of solar
eruptions might be attributed to the need to shed the coronal magnetic helicity, constantly
accumulating from a continuous injection through the photosphere.

In the solar context, different methods and approaches can be used to evaluate mag-
netic helicity. A review and comparison of several of these methods is presented by Valori
et al. (2016). The focus of this article is on the finite-volume methods (e.g. Thalmann, In-
hester, and Wiegelmann, 2011; Valori, Démoulin, and Pariat, 2012; Yang et al., 2013), that
is methods that employ the definition of helicity as a volume integral and thus require the
three-dimensional (3D) magnetic field in the entire volume as input.

In all of these methods, the relative magnetic helicity is computed in Cartesian geometry.
The natural coordinate system for the Sun, however, is the spherical one, and so it is nec-
essary to be able to calculate helicity in spherical coordinates. Possible applications of such
a calculation include MHD simulations in spherical geometry (e.g. Masson, Antiochos, and
DeVore, 2013; Fan, 2016; Karpen et al., 2017), as well as nonlinear force-free (NLFF) field
extrapolations (e.g. Gilchrist and Wheatland, 2014; Savcheva et al., 2016).

Although there are studies that compute magnetic helicity in spherical coordinates (e.g.
Bobra, van Ballegooijen, and DeLuca, 2008; Fan, 2010; Savcheva et al., 2015; Karpen et al.,
2017), they used various assumptions and/or simplifications. The respective helicity com-
putations are then problem dependent, and the methods used cannot be generalized to other
datasets. In the MHD simulations of Fan (2010), for example, no magnetic flux penetrates
the lateral boundaries of the volume, which results in the simplification of the helicity calcu-
lations. In another example, Karpen et al. (2017) drove a coronal-hole jet with a rotational
photospheric plasma motion that left the initially prescribed potential magnetic field (and
corresponding vector potential) approximately unchanged, thus simplifying the helicity cal-
culations.

In other cases, such as Bobra, van Ballegooijen, and DeLuca (2008), a different helicity
formula was used. In spherical coordinates, this reads

HR =
∫

V

dV (A · B − Ap · Bp) +
∫

S

dSχBr. (2)

This relation stems from the original definition of relative helicity (Berger and Field, 1984)
where space is divided into two regions; the volume of interest [V ] and a complementary
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volume [V ′], where B ′ = B ′
p, and thus A′ − A′

p = ∇χ for some scalar function χ (the
primed quantities refer to V ′). The interface of the two volumes is denoted as S, while Br

is the radial field component. Additionally, the boundary of V ∪ V ′ is considered as a flux
surface, or extending to infinity.

In the particular case examined by Bobra, van Ballegooijen, and DeLuca (2008), V is
the coronal wedge-shaped volume of interest, and V ′ its sub-photospheric extension to the
center of the Sun, and so neither of them is in general bounded by a flux surface. Following
Bobra, van Ballegooijen, and DeLuca (2008), however, V ′ is a bounded volume, and since
V ∪ V ′ is bounded by a flux surface, it follows that V ′ should be bounded by a flux surface
below the photosphere. This necessarily implies that the photospheric boundary S has to be
flux balanced, i.e. without net magnetic flux. These restrictions could be lifted by consid-
ering V ′ as the whole volume outside V , but this was not the choice made in the original
derivation of Equation 2, as the limitation of the surface integral to the photosphere demon-
strates. The first term in Equation 2 indeed represents the contribution to helicity from V ,
while the same quantity in V ′ reduces to the surface integral of the second term because of
the assumption B ′ = B ′

p there. Had a different geometry of V ′ been adopted, an additional
contribution to Equation 2 should be considered.

To determine whether, and under which conditions, Equation 1 is equivalent to Equa-
tion 2, we apply the latter to the same volume as the former V ∪ V ′. The contribution to
relative magnetic helicity from V ′ is exactly zero, however, since B ′ = B ′

p there. In the
volume of interest [V ] we can expand the terms in Equation 1 as

H =
∫

V

dV (A · B − Ap · Bp) +
∫

V

dV (Ap · B − A · Bp). (3)

The first term coincides with the respective term in Equation 2, while the second is a mixed
term that can also be written as the surface integral

Hmix =
∮

∂V

dSn̂ · (A × Ap), (4)

after using standard vector identities (Valori, Démoulin, and Pariat, 2012). Here n̂ stands for
the outward-pointing unit vector on the boundary of the volume of interest ∂V .

To better compare the surface terms of the two helicity equations, we reverse the steps in
the derivation of the second term of Equation 2 and obtain

∫

S

dSχBr =
∫

∂V ′
dSχ

(
n̂

′ · B ′) =
∫

V ′
dV ∇χ · B ′. (5)

In the first equality, the surface integral is extended to the whole boundary of the sub-
photospheric volume [∂V ′] by the assumption that ∂V ′ −S is a flux surface [n̂′ ·B ′ = 0] with
n̂

′ denoting the outward-pointing unit vector on ∂V ′. The second equality follows directly
from Gauss’ theorem and an integration by parts. Now, since ∇χ · B ′ = (A′ − A′

p) · B ′ =
−∇ · (A′ × A′

p) in V ′, we derive

∫

S

dSχBr = −
∫

∂V ′
dSn̂

′ · (A′ × A′
p

) = −
∫

S

dSn̂
′ · (A′ × A′

p

)
. (6)

Again, only the photospheric part survives in the surface integral since the remaining bound-
aries are flux surfaces. Moreover, as noted by Finn and Antonsen (1985), Equation 2 is gauge
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invariant if additionally the tangential components of the two vector potentials are contin-
uous across S, a condition that leads to A′ × A′

p = A × Ap on S. Replacing in Equation 6
also that n̂

′ = −n̂ on S, we finally obtain

∫

S

dSχBr =
∫

S

dSn̂ · (A × Ap). (7)

The surface term in the Bobra, van Ballegooijen, and DeLuca (2008) formulation thus cor-
responds to the photospheric part of the Hmix term.

The comparison of the surface terms of the two helicity formulations, given by Equa-
tions 7 and 4, shows that they coincide if the condition n̂ · (A × Ap) = 0 holds on the
coronal part of the boundary of the volume of interest: ∂V − S. The conditions for Equa-
tions 1 and 2 to be equivalent are thus that n̂ · (A × Ap)|∂V −S = 0 on the coronal part of
∂V and n̂

′ · B ′|∂V ′−S = 0 on the sub-photospheric part of ∂V ′, also implying magnetic-flux
balance on S. The first condition is obviously gauge dependent, unless V extents to infinity
(where the vector potentials presumably vanish), or ∂V is a flux surface (so that the tan-
gential components of A vanish there). If additionally the sub-photospheric part of ∂V ′ is
treated as by Bobra, van Ballegooijen, and DeLuca (2008), i.e. it is assumed as generic and
not bounded by a flux surface, with S not flux balanced, then the condition n̂ · (A×Ap) = 0
must be valid there as well, and then Hmix = 0 holds throughout the boundary of V ∪ V ′.

In deriving Equation 2, the gauge-dependent assumption Hmix = 0 is therefore made
implicitly. This should be taken into account when applying this equation to finite volumes,
since it is a gauge-dependent condition that is not valid in general.

In this article we extend the computationally most efficient and robust of the finite-
volume methods in Cartesian coordinates (Valori, Démoulin, and Pariat, 2012; Moraitis
et al., 2014) to the spherical geometry. The equations that we derive are applicable to both
spherical-shell and spherical-wedge geometries. However, we focus on the latter because it
is of more common use. We also compare the results produced by this method with helicity
values computed with an approximate method based on Equation 2, and we determine the
applicability of the latter. In Section 2 we describe the implementation details of the method,
and in Section 3 we perform its validation against semi-analytic force-free magnetic-field
models. In Section 4 we apply it to a set of NLFF fields that are also described there, and
finally in Section 5 we summarize and discuss the results of the article.

2. Relative Magnetic Helicity in Spherical Coordinates

Relative magnetic helicity is computed directly from its definition by Finn and Antonsen
(1985), Equation 1. From a given 3D magnetic field [B], we have to estimate the other
three vector fields appearing in Equation 1, namely the potential magnetic field [Bp] and the
corresponding vector potentials [A and Ap] of the two magnetic fields. Note that helicity as
given in Equation 1 is independent of the gauges used in the vector potentials as long as the
normal components of the original and potential fields match along the whole boundary of
the volume, i.e.

n̂ · B|∂V = n̂ · Bp|∂V . (8)

The relative magnetic helicity can then be calculated in two steps, similarly to the Cartesian
case (Valori, Démoulin, and Pariat, 2012; Moraitis et al., 2014), as detailed in this section.
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2.1. Calculation of the Potential Field

The potential field can always be expressed through a scalar potential � as Bp = ∇�. The
potential then satisfies Laplace’s equation ∇2� = 0 in V . In spherical coordinates, this reads

1

r2

∂

∂r

(

r2 ∂�

∂r

)

+ 1

r2 sin θ

∂

∂θ

(

sin θ
∂�

∂θ

)

+ 1

r2 sin θ2

∂2�

∂φ2
= 0. (9)

The requirement of Equation 8, ensuring gauge invariance, leads to the following Neumann
boundary conditions for the scalar potential:

∂�

∂n̂

∣
∣
∣
∣
∂V

= n̂ · B|∂V . (10)

We note that the solution of Laplace’s equation under Neumann boundary conditions exists
(up to an additive constant) only for flux-balanced fields,

∫
∂V

B · dS = 0, a condition that is
never fully satisfied with numerical data.

Laplace’s equation is solved with the use of a FORTRAN routine contained in the MUD-
PACK library (Adams, 1989). The routine uses a multigrid iteration method to obtain the
solution and is therefore efficient, quick, and computationally not demanding. The multi-
grid method requires a uniform computational grid that has dimensions of the special form
m2n + 1, for n some positive integer and m a small prime number, like 2, 3, or 5. In the case
that either of these conditions is not fulfilled by the input magnetic field data, we linearly
interpolate them to an appropriate grid, and we inevitably introduce numerical errors to the
following helicity calculations.

2.2. Calculation of the Vector Potentials

2.2.1. Analytical Derivation

For the calculation of the vector potential of a given 3D magnetic field, we follow the con-
ceptual method initially developed by DeVore (2000), and subsequently adapted to finite
volumes by Valori, Démoulin, and Pariat (2012). We start from the defining relation of the
vector potential [B = ∇ × A] written in spherical coordinates,

(Br,Bθ ,Bφ) =
(

1

r sin θ

∂

∂θ
(sin θAφ) − 1

r sin θ

∂Aθ

∂φ
,

1

r sin θ

∂Ar

∂φ
− 1

r

∂

∂r
(rAφ),

1

r

∂

∂r
(rAθ) − 1

r

∂Ar

∂θ

)

. (11)

We then employ the DeVore gauge (DeVore, 2000) in which the radial component of the
vector potential is identically zero: Ar = 0. This same gauge has also been used by Valori,
Démoulin, and Pariat (2012), Amari et al. (2013), Moraitis et al. (2014), and Yeates and
Hornig (2016).

The θ - and φ-components of Equation 11 can then be immediately integrated with the
results

Aφ(r, θ,φ) = r0

r
Aφ(r0, θ,φ) − 1

r

∫ r

r0

dr ′r ′Bθ

(
r ′, θ,φ

)
(12)
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and

Aθ(r, θ,φ) = r0

r
Aθ(r0, θ,φ) + 1

r

∫ r

r0

dr ′r ′Bφ

(
r ′, θ,φ

)
, (13)

respectively, and r0 is an arbitrary radius inside the volume. These can be written more
compactly as

A(r, θ,φ) = 1

r

(

r0a(θ,φ) + r̂ ×
∫ r

r0

dr ′r ′B
(
r ′, θ,φ

)
)

, (14)

where a(θ,φ) = (Aθ(r0, θ,φ),Aφ(r0, θ,φ)) is a 2D integration vector that represents the
vector potential on the surface r = r0.

Substituting Equation 14 in the radial component of Equation 11, and using the
divergence-freeness of the field, we obtain

∇⊥ × a = 1

r0 sin θ

(
∂

∂θ
(sin θαφ) − ∂αθ

∂φ

)

= Br(r0, θ,φ), (15)

where the symbol “⊥” stands for the direction normal to the radial one. This relation can be
thought of as a restriction on the possible choices for the remaining freedom in the gauge
of A.

2.2.2. DeVore Simple Gauge

A first simple solution to Equation 15, which corresponds to a first family of gauges, is given
by the relations

αφ(θ,φ) = cr0

sin θ

∫ θ

θ0

dθ ′ sin θ ′Br

(
r0, θ

′, φ
)

(16)

and

αθ (θ,φ) = −(1 − c)r0 sin θ

∫ φ

φ0

dφ′Br

(
r0, θ,φ′), (17)

where θ0 and φ0 are arbitrary angles, and c ∈ [0,1] is a constant, typically c = 1/2. The
vector potential in this gauge is given by Equations 14, 16, and 17, and its calculation re-
quires the computation of four 1D integrals. In our implementation here, the integrations
are treated with the simple trapezoidal method, although more sophisticated methods can
be envisioned. In the following we refer to this gauge family as the DeVore simple gauge
(DVS).

2.2.3. DeVore Coulomb Gauge

An alternative family of gauges can be obtained when a, the vector potential on the sur-
face r = r0, satisfies the Coulomb gauge: ∇⊥ · a = 0. This is automatically fulfilled if a is
expressed through a 2D scalar function [u], as given by

a = r̂ × ∇⊥u = 1

r0

(

− 1

sin θ

∂u

∂φ
,
∂u

∂θ

)

. (18)

By substituting Equation 18 in Equation 15, we find that the function u satisfies the 2D
Poisson equation ∇2

⊥u = Br(r0, θ,φ). This equation can be solved easily with the additional
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assumption of the Dirichlet boundary condition, u = 0, along the boundary of the r = r0

plane. The use of this boundary condition allows for a more generic Br -distribution, such
as a non-flux-balanced one, compared to the corresponding Neumann boundary condition,
as follows from the uniqueness condition of the Poisson equation. In our particular imple-
mentation, we solved the Poisson equation with the aid of a FORTRAN routine from the
FISHPACK library (Swarztrauber and Sweet, 1979).

The vector potential in this gauge family is given by Equations 14 and 18, and its cal-
culation requires the computation of two 1D integrals and of a 2D Poisson equation. While
Amari et al. (2013) called this gauge the restricted DeVore gauge, we denote it the De-
Vore Coulomb gauge (DVC), because, when applied to the potential field, this satisfies the
Coulomb gauge in the whole volume (see Section 2.2 in Valori, Démoulin, and Pariat, 2012).

2.2.4. Reference Boundary Choice

In addition to the two gauges for the integration vector (DVS and DVC), there is also the
choice of the location of the reference surface in the vector-potential calculation. We con-
sider here only the two interesting cases, the bottom and the top surfaces of the volume,
similarly to Equations 10 and 11 of Valori, Démoulin, and Pariat (2012), although other
choices exist as well (see Section 2.2.3 of Valori et al., 2016). These cases are denoted by
the letters “b” and “t”, respectively, and they follow the symbol of the gauge. A given vector
potential can thus be in any of the four different gauges: DVSb, DVSt, DVCb, or DVCt.

The vector potential for the potential field can be obtained with the same method by just
replacing B with Bp in the above relations. It can thus also be in four different gauges,
and since in general the gauges of the two vector potentials are independent, there are 16
possible combinations in the calculation of helicity.

3. Validation

3.1. Test Datasets

The performance of the helicity calculation method was checked against the semi-analytical,
force-free field solutions of Low and Lou (1990, hereafter LL fields). We simulated an active
region (AR) with linear dimensions ≈200 – 250 Mm at a solar latitude of ±30◦, which
translates into the angular dimensions ≈15 – 20◦ on the Sun. The particular location of the
synthetic AR is of course irrelevant in the computation of helicity. The precision of our
method is only very marginally affected by the particular values of the domain. Nonetheless,
we wish to work with a synthetic AR domain as close as possible to a realistic case. For
this, we assumed the spherical wedge volume V = {(r, θ,φ) : r ∈ [700 Mm,900 Mm], θ ∈
[50◦,70◦], φ ∈ [10◦,30◦]} with height ≈200 Mm and the AR at the small side of the wedge.
The volume was discretized by a uniform grid of size 129 × 129 × 129 grid points.

The usual parameters of the LL fields were also assumed, n = m = 1, while the source
was placed at a depth of ≈30 Mm below the AR (or l = 0.3 in LL notation), and was rotated
by the angle φ = π/4 with respect to the radial direction. A plot of the LL field, denoted
hereafter as BLL, with some representative field lines is shown in Figure 1. In order to check
the effect of resolution, we also used the same volume, but discretized by 257 × 257 × 257
grid points.

The first step in estimating the helicity of BLL was to calculate its scalar potential �LL,
as described in Section 2. The corresponding potential field was obtained from the relation
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Figure 1 Plot of the 1293-grid LL magnetic field that was used in the tests. Shown are the image of the
radial component of the LL field on the photosphere with the designated gray scale and angular dimensions
20◦ × 20◦ , and a set of representative field lines up to the height of 200 Mm from the solar surface.

Bp,LL = ∇�LL, where the numerical derivatives used are of second order inside V , and on
the boundary are given by Equation 8. The solenoidality of these magnetic fields is verified
below.

3.2. Solenoidality Verification

The divergence-freeness of a magnetic field is quantified in three ways. The first is by the
average fractional flux increase [〈|fi |〉] defined by Wheatland, Sturrock, and Roumeliotis
(2000).

The second verification metric is the flux imbalance ratio [εflux]. This is defined by

εflux = |�+ − �−|
�+ + �− , (19)

where �+ and �− are the positively defined fluxes entering and leaving the volume through
all of its boundaries, respectively. A highly flux-balanced field, indicating also a solenoidal
field, corresponds to the limit εflux = 0, while the opposite holds for εflux = 1.

The third metric that we used relates to the magnetic energies. For each BLL and Bp,LL

at each resolution, we calculated its magnetic energy (in arbitrary units) as E = ∫
B2 dV

(cf. Table 1). By subtracting the magnetic energy of the potential field from the magnetic
energy of the LL field, we obtained the free energy: Ec. Table 1 indicates that the free
energy corresponds to ≈26% of the total energy of the LL field, a value typical for LL
fields, independently of the resolution. The solenoidality can finally be estimated thanks to
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Table 1 Parameters for the input
LL fields, and their
corresponding potential fields.

Grid Field 104 〈|fi |〉 103 εflux E Ec/E 103 Ediv/E

1293 BLL 2.21 1.70 45.3 0.262 1.10

Bp,LL 1.15 1.83 33.4

2573 BLL 2.16 2.15 45.2 0.261 2.51

Bp,LL 2.14 2.23 33.4

the energy ratio Ediv/E, with Ediv a pseudo-energy given by

Ediv =
∣
∣
∣
∣2

∫

V

Bp,LL · (BLL − Bp,LL)dV

∣
∣
∣
∣. (20)

This energy vanishes for perfectly solenoidal fields and quantifies the violation of Thomp-
son’s theorem by non-purely solenoidal fields (Valori et al., 2013). This quantity is more
widely used to estimate non-solenoidality (Pariat et al., 2015; Valori et al., 2016; Pariat
et al., 2017; Polito et al., 2017). Table 1 shows that the low values of Ediv/E are again an in-
dication of the good level of solenoidality and another proof of the validity of the LL field as
a test field, since non-solenoidality was shown to be the strongest source of errors in helicity
estimations (see Valori et al., 2016).

3.3. Vector-Potential Verification

The second main step in the volume-helicity calculation is computing the vector potentials.
It is important to check the quality of the reconstruction of the vector potential, i.e. that the
curl of the computed vector potential indeed corresponds to its source magnetic field. For
this, we used two methods.

First, we directly compared the r-, θ -, and φ-components of the original fields [BLL

and Bp,LL] with their respective vector-potential-reconstructed magnetic fields: ∇ × ALL

and ∇ ×Ap,LL. To compare the components, we computed their linear (Pearson) correlation
coefficients, which are presented in Table 2.

In addition, we computed the vector-field comparison metrics given by Schrijver et al.
(2006): the vector correlation [Cvec], the Cauchy–Schwarz metric [CCS], the complement of
the normalized vector error [E′

n], the complement of the mean vector error [E′
m] and the total

energy normalized to that of the input field [ε]. For two arbitrary vector fields, original [X]
and reconstructed [Y ], consisting of N points, these read

Cvec =
∑

i Xi · Yi

(
∑

i |Xi |2∑i |Yi |2)1/2
, (21)

CCS = 1

N

∑

i

Xi · Yi

|Xi ||Yi | , (22)

E′
n = 1 −

∑
i |Xi − Yi |∑

i |Xi | , (23)

E′
m = 1 − 1

N

∑

i

|Xi − Yi |
|Xi | , (24)

ε =
∑

i |Yi |2∑
i |Xi |2 . (25)
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Table 2 Metrics for the reconstruction of the magnetic field from the respective vector potential.

Field Gauge Grid Correlation coefficients
of B vs. ∇ × A

Schrijver metrics

Br Bθ Bφ Cvec CCS E′
n E′

m ε

BLL DVSt 1293 0.9999 1.0000 1.0000 0.9999 1.0000 0.9948 0.9959 0.9980

DVSt 2573 0.9999 1.0000 1.0000 0.9999 1.0000 0.9942 0.9949 0.9986

DVSb 1293 0.9990 1.0000 1.0000 0.9995 0.9986 0.9814 0.9613 1.0025

DVCt 1293 0.9999 1.0000 1.0000 0.9999 0.9999 0.9947 0.9953 0.9980

Bp,LL DVSt 1293 1.0000 1.0000 1.0000 1.0000 0.9998 0.9888 0.9829 0.9977

DVSt 2573 0.9995 1.0000 1.0000 0.9997 0.9962 0.9570 0.9288 0.9990

DVSb 1293 0.9999 1.0000 1.0000 0.9999 0.9978 0.9843 0.9627 1.0008

DVCt 1293 1.0000 1.0000 1.0000 1.0000 0.9997 0.9888 0.9824 0.9977

All metrics indicate the good agreement of the two fields by values close to unity.
In Table 2 we present the values of these parameters for a few example reconstructions

of the LL field, and separately, of the potential field. We performed different tests using the
two different gauges discussed in Section 2.2, DVS and DVC; the two different spatial res-
olutions, 1293 and 2573; and/or the two different reference surfaces: bottom and top. As an
example, consider the first row in Table 2, where the values correspond to the reconstruction
of the LL field of 1293 grid points with a vector potential in the simple DeVore gauge, and
with the top surface as the reference surface for the integration.

Table 2 demonstrates that the correlation coefficients are all very close to one. The value
for the r-component presents the weakest correlation since this component involves the
greatest number of numerical operations. The values for Schrijver’s metrics also indicate
that the reconstruction is excellent in all of the cases. We further note that the reconstruction
in spherical coordinates has comparable accuracy to the corresponding one for the Cartesian
case (Table 8 in Valori et al., 2016).

From the values of Table 2, we can draw a few conclusions. First, the differences for
the two different spatial resolutions are very small for both BLL and Bp,LL, with the lat-
ter exhibiting slightly better metrics in the lower-resolution field. Second, the differences
between the reconstructions performed with the DVS or the DVC gauges are practically
nonexistent for BLL and Bp,LL. We note here that the vector potentials in the DVC gauge
satisfy the Coulomb gauge on the surface r = r0 to a high degree. This can be seen by tak-
ing the 1293-grid potential field as an example, where the absolute fractional flux increase
of its vector potential in the DVCt gauge is 〈|fi |〉 = 1.4 × 10−7, a value comparable to the
best-performing methods of Valori et al. (2016, Figure 7f).

The most important differences in the reconstruction metrics are found, however, be-
tween the top and bottom reference surfaces, mostly in the parameters E′

n and E′
m, which

are the most sensitive ones. We note that using the top boundary yields more precise results.
This is a general characteristic of the helicity-computation methods based on the DeVore
gauge and the properties of the data tested, as has been noted by Moraitis et al. (2014),
Pariat et al. (2015), Valori et al. (2016). In solar-like datasets, the magnetic field at the top
surface is weaker and smoother than the field at the bottom, and, as a result, the integra-
tions involved in the vector-potential computation that start from the top surface are also
smoother.
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Additionally, the values of the metrics for the potential fields [Bp,LL] are, in general,
slightly inferior to the respective values for BLL. This is to be expected since the potential
field is derived from the LL field and thus carries any numerical errors in it.

As a final check, we computed the relative helicity as given by Equation 1 using all of
the possible different gauge combinations for the vector potentials of BLL and its potential
fields. The helicity values produced for the 1293-grid fields are all very similar, ranging in
−145.2±0.4 (in arbitrary units), indicating that helicity is indeed independent of the chosen
gauge up to a factor 2 × 10−3.

As a conclusion of this section, we can say that the developed helicity computation
method in spherical coordinates performs extremely well. This is deduced from the high
solenoidality of the constructed potential magnetic fields and also from the level of repro-
duction of the magnetic fields from the respective vector potentials. In addition, the method
is computationally very efficient, as it requires only a few minutes to compute the helicity
for the 2573-grid field on a commercial laptop.

4. Application to Solar Active Region 3D Extrapolated Magnetic Fields

After establishing that our method performs as expected on a semi-analytical magnetic field,
we now apply it to typical magnetic-field data from a reconstructed solar active region. This
will show the performance of our method in a more solar-like case, and it will also provide an
opportunity of comparing our results with more approximate helicity calculations methods.

4.1. NLFF Field Model

We used a set of data-constrained nonlinear force-free field models of NOAA AR 11060
(SOL2010-04-08T02:35:00L110C176). They were constructed in order to topologically
study this specific AR (Savcheva et al., 2016). All computations were performed in spherical
coordinates.

The fields were produced by the flux-rope-insertion method (van Ballegooijen, 2004),
which involves various intermediate steps that we briefly summarize here. First, a global
potential magnetic field is computed from a low-resolution synoptic magnetogram. Then,
a modified potential-field extrapolation is performed starting from a high-resolution mag-
netogram centered on the AR, and with lateral boundary conditions given by the global
field. The relevant calculations are made directly with the vector potential [Ap,MF] to en-
sure solenoidality of the respective magnetic field. This potential field [Bp,MF = ∇ ×Ap,MF]
is then modified with two sources in the photosphere where the inserted flux rope is to be
anchored.

The flux rope is inserted by modifying the initial vector potential with a combination
of axial and poloidal flux. The model is then relaxed toward a force-free state using the
magnetofrictional (MF) method. In the MF code, the vector potential [AMF] is again relaxed
and not the magnetic field [BMF = ∇ × AMF]. During the MF relaxation, n̂ · BMF is held
constant at the photospheric boundary; the other five boundaries are very far away from the
AR core so that the field there is very well approximated by the potential field. The potential
magnetic field and its respective vector potential remain constant and equal to their value at
the initial instant during the MF process, as this is not a temporal evolution. The full details
of the method used to produce the NLFF fields are described by Savcheva et al. (2016) and
references therein.
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A magnetic-field model is considered as stable if, after the relaxation, it has reached a
force-free equilibrium where no residual Lorentz force is present, otherwise it is considered
to be marginally stable or unstable. An unstable model is obtained from a stable model by
adding slightly more axial flux to the stable inserted-flux-rope parameters. The parameters
that we used here are the same as those used by Savcheva et al. (2016).

This marginally unstable NLFF model also leads to an “eruption” resembling a coronal
mass ejection during the MF evolution of the field, as was demonstrated by Savcheva et al.
(2016). The gradual expansion and elevation of the flux rope can also be inferred from
the evolution of the field-line connectivity and of the flux-rope height that are shown in
Figure 2. A data-constrained MHD simulation starting from a similar initial condition and
proving that an unstable model obtained with the flux-rope insertion method is unstable as
well in the MHD sense was performed by Kliem et al. (2013) and demonstrated a good
correspondence with the observations.

We used 38 snapshots of the magnetic-field evolution: three at very early stages at 0,
100, and 1000 iterations, and the remaining from 5000 to 175,000 iterations with a step of
5000 iterations. The magnetic field covered an area of ≈40◦ × 40◦ in the θ – φ plane, and it
extended 805 Mm in the radial direction. The magnetic-field datacubes had the dimensions
of 385 × 385 × 385 grid points. The grid in the φ-direction was uniform with a step size of
0.11◦, while along the r- and θ -directions, it was nonuniform. In the θ -direction, the step
size increased from 0.08◦ to 0.11◦ toward the Equator, while along r , the step size increased
from 1.4 Mm in the photosphere to 3 Mm in the uppermost level. The grid that we used here
was structured in this way.

4.2. Results

In this section we compute the instantaneous value of helicity during the relaxation of the
magnetic field with the MF method, using the method of this article, and also the approxi-
mate method based on Equation 2. The method of this article is denoted as the exact method
since it makes no assumptions, it treats all boundaries appropriately, and it performs very
well with the LL field, as we showed in the previous section.

4.2.1. Exact Method

To compute the magnetic helicity with the method of this article, we started from the mag-
netic field [BMF], which is defined on a nonuniform grid, and we interpolated it to a uniform
grid on the same volume. This is not a necessary step in general, but the current implemen-
tation of the method is more accurate with a uniform grid. A simple trilinear interpolation is
sufficient to obtain similar levels of accuracy as in the LL case, as we show below.

From the interpolated magnetic field [BDV] we computed the vector fields, Bp,DV, ADV,
and Ap,DV, using the method described in Section 2. Note that the potential field was com-
puted at each snapshot in order to take into account possible changes of n̂ · BDV caused by
the interpolation from BMF. The helicity computation that uses the method of this article is
thus based on the relation

H =
∫

V

dV (ADV + Ap,DV) · (BDV − Bp,DV). (26)

The evolution of the magnetic helicity as computed with the exact method is shown in Fig-
ure 3. The helicity that we obtained is an increasing function of iteration number, after the
first few snapshots of the flux-rope insertion, and it seems to saturate at a value a little above
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Figure 2 Evolution of the flux-rope morphology with iteration number. For the snapshots at 25,000 (top),
90,000 (middle), and 155,000 (bottom) iterations, the plots show a number of characteristic field lines over-
plotted on the horizontal cut of the current density at z = 10 Mm (left), and the vertical cut of the current
density along the blue line of the left plot (right). Spatial scales are in units of Mm.
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Figure 3 Evolution of relative
magnetic helicity [H ] during the
MF relaxation as computed with
the method of this article,
Equation 26. Computations are
made with three different gauge
combinations for the vector
potentials of the original and
potential magnetic fields, shown
in that order in the label.

≈1.76 × 1042 Mx2. The increasing helicity evolution pattern is in contrast to the respective
free-energy pattern, which decreases, as shown in Figure 8 of Savcheva et al. (2016), and it
also contradicts the general trend between free energy and helicity (Tziotziou et al., 2014).
Nevertheless, it is in line with the removal of negative helicity as the flux rope expands and
subsequently erupts during the MF evolution.

The level of gauge invariance is quite high, as can be deduced from the values of helicity
computed with three different combinations of the DVSt and DVCt gauges for the vector
potentials of the original and of the potential magnetic fields. The three different helicity
curves of Figure 3 practically coincide, exhibiting differences �0.2%.

The computed potential magnetic field is sufficiently solenoidal, as the average (over all
snapshots) values for the metrics 〈|fi |〉 = 3.0 × 10−4 and εflux = 3.5 × 10−4 indicate. The
average values of the reconstruction metrics for the vector potential ADV (as in Table 2)
for this case are all >0.99, except for E′

n = 0.97, E′
m = 0.97, and ε = 0.97. Similarly,

for Ap,DV, they are >0.98, except for E′
n = 0.93, E′

m = 0.90, and ε = 1.03. The vector-
potential reconstructions are thus slightly inferior to those of the LL case, but they are still
very good. Combined with the fact that the computed helicity is also gauge independent to
a high degree, as Figure 3 shows, this leads to the conclusion that this can be considered as
the actual AR helicity, and it further justifies the characterization of the method as exact.

4.2.2. Approximate Method

The second method that we used to compute helicity follows the reasoning of Bobra, van
Ballegooijen, and DeLuca (2008), that is, it employs the definition of Equation 2. Further-
more, we used two different sets of vector fields in the computations. The first is the direct
outcome of the MF code. The relation that we used in this case is

HR =
∫

V

dV (AMF · BMF − Ap,MF · Bp,MF) +
∫

S

dSχMFBMF,r , (27)

where all MF-related quantities are explicitly stated. The scalar quantity χMF at a point P
of the photospheric plane S is given by the line integral χMF(P) = ∫ P

O dl · (AMF − Ap,MF),
where O is a reference point on the same plane. We also note that the vector fields involved
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Figure 4 Evolution of relative
magnetic helicity as computed
with the method of this article
[H ] using Equation 26, and with
the approximate ones HR using
Equation 27 and H ′

R
using

Equation 28.

in Equation 27 are the original, uninterpolated ones, and that the potential field and its re-
spective vector potential do not change during the relaxation. The MF code evolves AMF,
but on the (coronal) boundary the condition AMF ×Ap,MF = 0 is maintained valid at all times
so that Equation 27 is as accurate as possible.

The second set of vector fields that we used in this approximate method is the set from
the exact method. We used again the same relation, namely

H ′
R =

∫

V

dV (ADV · BDV − Ap,DV · Bp,DV) +
∫

S

dSχDVBDV,r , (28)

with χDV(P) = ∫ P
O dl · (ADV − Ap,DV). The evolution of helicity obtained with these two

approximate methods is plotted in Figure 4, along with the result of the exact method in the
DVSt–DVSt gauge combination.

We note that the pattern of the HR-method is very similar to that of the exact method.
The helicity values are on average 15% higher than those of the exact method, however.
This difference is due to the limitations of the formulation of Equation 2 with respect to
the finite-volume geometry used, as was pointed out in the Introduction. We see therefore
that our helicity computation method improves, by the above designated percent, on the
approximate method of Equation 2.

For the H ′
R-method, we note that the general pattern of helicity evolution is similar to

the other two methods. However, the helicity values obtained are (on average) higher by
55% than the exact ones, and by 35% than those of the HR-method. This large difference
is expected since the vector potentials of Equation 28 are in the DeVore gauge and they do
not assume the condition Hmix = 0 that Equation 2 implies, since ADV × Ap,DV �= 0 on the
boundary. According also to the discussion in the Introduction, the relation of Equation 2
depends on the gauges chosen for the vector potentials, unless the bounding surface is a
flux surface. The use of Equation 2 with vector potentials that do not respect its validity
conditions can thus lead to differences in helicity on the order of 30 – 40%, at least in the
case examined here.

We conclude that helicity calculations based on Equation 2 are problematic when using
finite volumes (regardless of the coordinate system). The conditions of validity of Equation 2
are rarely true in practice, and so its use with finite-volume data should be avoided. Situa-
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tions where it is safer to use this relation include, for example, the infinite-plane geometry
originally used by Berger and Field (1984).

5. Discussion

A method for computing relative magnetic helicity in spherical geometry was presented
in this article. The necessity for such a method stems from the fact that magnetic helicity
is an important quantity with many applications in the solar context, and that the natural
coordinate system for the Sun is the spherical one. The method developed treats the generic
problem of computing helicity in a spherical volume, and it is thus superior to previous
methods that either employed simplified conditions on the boundary for the magnetic fields
and/or the vector potentials, or used approximations in the computations.

Testing of the developed method with semi-analytic NLFF field models showed that it
works very well and has an accuracy that is similar to corresponding calculations in the
Cartesian case. More specifically, the potential magnetic field produced by the method is
highly divergence free, and the computed vector potentials also reproduce the respective
magnetic fields to a high degree.

Additionally, from the application on a data-driven NLFF field model of a solar AR,
we already see an improvement in the helicity values compared to approximate methods
used in the past. The specific approximate method that we examined here has an important
limitation. It assumes a certain choice for the gauge of the vector potentials, which is hard to
enforce in finite volumes. As a result, the helicity values obtained with the different gauge
choices can be quite different from each other and also from the method developed in this
article.

In all cases where the magnetic field is represented in spherical geometry and it is known
in the whole volume, such as in MHD simulations or NLFF field reconstructions, the method
presented here is expected to give the most accurate estimation of the structure’s magnetic
helicity, and it does this with minimal computational effort and resources.
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