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Abstract We propose a forecasting approach for solar flares based on data from Solar Cy-
cle 24, taken by the Helioseismic and Magnetic Imager (HMI) on board the Solar Dy-
namics Observatory (SDO) mission. In particular, we use the Space-weather HMI Active
Region Patches (SHARP) product that facilitates cut-out magnetograms of solar active
regions (AR) in the Sun in near-realtime (NRT), taken over a five-year interval (2012 –
2016). Our approach utilizes a set of thirteen predictors, which are not included in the
SHARP metadata, extracted from line-of-sight and vector photospheric magnetograms. We
exploit several machine learning (ML) and conventional statistics techniques to predict
flares of peak magnitude >M1 and >C1 within a 24 h forecast window. The ML meth-
ods used are multi-layer perceptrons (MLP), support vector machines (SVM), and random
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forests (RF). We conclude that random forests could be the prediction technique of choice
for our sample, with the second-best method being multi-layer perceptrons, subject to an
entropy objective function. A Monte Carlo simulation showed that the best-performing
method gives accuracy ACC = 0.93(0.00), true skill statistic TSS = 0.74(0.02), and Hei-
dke skill score HSS = 0.49(0.01) for >M1 flare prediction with probability threshold 15%
and ACC = 0.84(0.00), TSS = 0.60(0.01), and HSS = 0.59(0.01) for >C1 flare prediction
with probability threshold 35%.

Keywords Flares, forecasting · Flares, relation to magnetic field · Active regions,
magnetic fields

1. Introduction

Solar flares are sudden brightenings that occur in the solar atmosphere and release enormous
amounts of energy over the entire electromagnetic spectrum. Flares are quite prominent in
X-rays, UV, and optical lines (Fletcher et al., 2011) and they are often (but not always) ac-
companied by eruptions that eject solar coronal plasma into the interplanetary space (coronal
mass ejections, CMEs). These very intense phenomena – the largest explosions in the solar
system – are associated with regions of enhanced magnetic field, called active regions (AR),
and are associated, in white light, with sunspot groups. Depending on their peak X-ray in-
tensity, as recorded by the National Oceanic and Atmospheric Administration’s (NOAA)
Geostationary Operational Environmental Satellite (GOES) system, flares are categorized
in classes, the strongest and most important being X, M, and C (in decreasing order). Flare
classification is logarithmic, with a base of 10, and is complemented by decimal sub-classes
(M5.0, C3.2 etc.).

The solar flare radiation may be detrimental to infrastructures, instruments and person-
nel in space, therefore flare forecasting is an integral part of contemporary space-weather
forecasting. Forecast mainly employs measurements of the AR magnetic field in the solar
photosphere. Magnetic-field-based predictors represent AR magnetic complexity or the en-
ergy budget available to power flares. Recent developments in instrumentation have led to
a regular production of such measurements, offering the opportunity to produce extensive
databases with properties suitable for solar flare prediction.

On the other hand, machine learning (ML) in recent years has become an increasingly
popular approach for performing computer cognition tasks that were inherently possible
only using human intelligence. Thus, ML is a subfield of artificial intelligence (AI), and it
aims at using past data in order to train computers so that they can apply the accumulated
knowledge to new, previously unseen, data. The acquisition of knowledge is the training
phase, and the application of what was learned to future scenarios is the prediction phase.
Typically, ML is more interested in prediction than conventional statistics. ML can also in-
terface with conventional statistics in a field called statistical learning (Hastie, Tibshirani,
and Friedman, 2009). Learning is either called supervised or unsupervised, depending on
whether it is done with a teacher or not. Supervised learning comprises regression and clas-
sification, while unsupervised learning is also called clustering. In our study, we focus on
classification, where a set of input variables or predictors belongs to one of two classes (bi-
nary classification). ML is more powerful than traditional statistical techniques such as, say,
generalized linear models that include probit, logit, etc. for binary classification, because it
can help model more complex nonlinear relationships. An introduction to ML research can
be found in several textbooks (MacKay, 2003; Hastie, Tibshirani, and Friedman, 2009).
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Several researchers have recently used ML techniques to effectively forecast solar flares.
More often, the techniques used by researchers were neural networks (Wang et al., 2008;
Yu et al., 2009; Colak and Qahwaji, 2009; Ahmed et al., 2013), support vector machines
(Li et al., 2008; Yuan et al., 2010; Bobra and Couvidat, 2015; Boucheron, Al-Ghraibah, and
McAteer, 2015), ordinal logistic regression (Song et al., 2009), decision trees (Yu et al.,
2009), and relevance vector machines (Al-Ghraibah, Boucheron, and McAteer, 2015). Very
recently, random forests have also been used (Barnes et al., 2016; Liu et al., 2017).

We use predictors calculated from near-realtime (NRT) Space-weather HMI Active Re-
gion Patches (SHARP) data combined with state-of-the-art ML and statistical algorithms in
order to effectively forecast flare events for an arbitrarily chosen 24-hour forecast window.
Flare magnitudes of interest are >M1 and >C1. Prediction is binary, meaning that a given
flare class is considered to either happen or not within the next 24 hours after prediction.
Our predictions are effective immediately, therefore with zero latency. Analysis involves a
comprehensive NRT SHARP sample including all calendar days between 2012 and 2016,
at a cadence of 3 hours. Results in this work summarize the findings of the first 18 months
of the “Flare Likelihood And Region Eruption foreCASTing” (FLARECAST) project and,
while based on ongoing work, we took every effort to present robust and unbiased results.

The contribution of the present work is twofold:

• The use of novel magnetogram-based predictors in a multi-parameter solar flare predic-
tion model.

• The use of classic and novel ML techniques, such as multi-layer perceptrons (MLP),
support vector machines (SVM), and especially, for one of the first times,1 random forests
(RF), for the forecasting of >M1 and >C1 flares.

The application code is available at https://doi.org/10.17632/4f6z2gf5d6.1, along with the
benchmark dataset used in this work. The run time for all methods is on the order of few
minutes.

The analysis presented here is part of the EU Horizon 2020 FLARECAST project, aiming
to develop an NRT online forecasting system for solar flares. The study is organized as
follows: Section 2 describes the data selected to train and test the algorithms and presents
the predictors we used, together with background information on the solar physics aspects
of magnetogram-based calculations. Section 3 describes the ML algorithms in terms of their
core principles, along with some additional remarks and comments. Section 4 is devoted
to the forecast experiments and a comparison with similar published results and statistics.
Section 5 presents the main conclusions and future integration of the present work in the
FLARECAST operational system. Four appendices that describe multiple complementary
aspects of this work are also included.

2. Data and Classification Predictors

2.1. Data

The Helioseismic and Magnetic Imager (HMI; Scherrer et al., 2012) on board the Solar
Dynamics Observatory (SDO; Pesnell, Thompson, and Chamberlin, 2012), provides regular

1Liu et al. (2017) also used the random forest algorithm for solar flare prediction based on SDO/HMI data.
Nevertheless, the specific details in that paper regarding the sampling strategy and the feature extraction are
very different from our choices. For example, Liu et al. (2017) only considered flaring ARs (at the level
>B1 class), and the sample size was N = 845, while we consider both flaring and non-flaring ARs with
N = 23,134.

https://doi.org/10.17632/4f6z2gf5d6.1
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Figure 1 Two SHARP frames depicting an AR with very different levels of flaring activity. NOAA
AR 11875 (left) produced 7 C-, 0 M-, and 0 X-class flares within 24 h, while NOAA AR 11923 (right)
produced no flares. The two AR are scaled so as to retain their original relative size and, for comparison, vec-
tors of the seven predictors used are included in the frames. The names of all K = 7 predictors [logR, FSPI,
TLMPIL, DI, WLSG, IsinEn1, IsinEn2] are defined in Section 2.2. High values of the predictors statistically
indicate a powerful AR (left), with low values indicating a quiescent, flare-quiet AR (right).

full-disk solar observations of the three components of the photospheric magnetic field. The
HMI team has created the Space Weather HMI Active Region Patches (SHARPs), which are
cut-outs of solar regions-of-interest along with a set of parameters that might be useful for
solar flare prediction (Bobra et al., 2014). For our analysis, we use the near-realtime (NRT),
cylindrical equal area (CEA) SHARP data to calculate a set of predictors.

To associate SHARPs with flare occurrence, we use the Geostationary Operational En-
vironmental Satellite (GOES) soft X-ray measurements. For each SHARP we search for
flares within the next 24 hours by either matching the NOAA AR numbers with those of the
recorded flares or by comparing the corresponding longitude and latitude ranges, consider-
ing also the differential solar rotation.

The algorithms of Section 3 were tested on a sample of the 2012 – 2016 SHARP dataset.
We considered all days in the period October 1, 2012, to January 13, 2016, and for every
given day, we computed the set of predictors (see Section 2.2) at a cadence of 3 hours,
starting at 00:00 UT. For our analysis, only SHARP cut-outs that correspond to NOAA ARs
were considered. In this way, we obtain a fairly representative sample of the solar activity,
including several flares of interest, with a sufficiently high sampling frequency.

2.2. Predictors

The set of 13 predictors consists of both predictors that have previously been proposed
in the literature and new ones, and comprises a subset of the parameter set developed for
the FLARECAST project. In Figure 1 we show two sample magnetograms to demonstrate
how the predictors reflect the complexity and size of the corresponding active region. The
predictors used for this study are described below.

2.2.1. Magnetic Polarity Inversion Line (TLMPIL)

A magnetic polarity inversion line (MPIL) in the photosphere of an AR separates distinct
patches of positive- and negative-polarity magnetic flux. Several studies have been carried
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out to investigate the relationship between flare occurrence and MPIL characteristics (Schri-
jver, 2007; Falconer et al., 2012). We determined a specific subset of an MPIL that has been
also identified as an MPIL*, with i) a strong gradient in the vertical component of the field
across the MPIL, and ii) a strong horizontal component of the field around the MPIL. MPIL*
has been considered as the single most likely place in an AR where potential magnetic insta-
bilities, such as, say, magnetic flux cancellation and/or magnetic flux rope formation (Fang
et al., 2012) can take place. Such processes seem intimately related to flares. We used the
total length Ltot of MPIL* segments in active regions as an MPIL quantification parameter.

2.2.2. Decay Index (DI)

The decay index is a quantitative measure for the torus magnetic instability in a current-
carrying magnetic flux rope (Kliem and Török, 2006). It has been found that the higher the
value of the decay index in AR magnetic fields, the more likely a solar eruption involving
a major solar flare (Zuccarello, Aulanier, and Gilchrist, 2015). We developed a decay index
parameter derived by the ratio Lhs/hmin, where Lhs is the length of a highly sheared portion
of an MPIL and hmin is the minimum height at which the decay index achieves a purported
critical value of 1.5. This ratio can be used to measure the degree of instability in a flux rope.
Note that if there was more than one MPIL in an AR, then we calculated the ratio Lhs/hmin

for every MPIL and took the peak value for a given time that represents the highest eruptive
potential of the AR.

2.2.3. Gradient-Weighted Integral Length of the Neutral Line (WLSG)

The gradient-weighted integral length of the neutral line, WLSG, is defined in Falconer,
Moore, and Gary (2008) as

WLSG =
∫

(∇Bz)dl, (1)

and corresponds to the line integral of the vertical-field (Bz) horizontal gradient over all
neutral line (or MPIL) segments on which the potential horizontal field is greater than 150 G.
This MPIL-related property has been reported to show a useful empirical association with
the occurrence of solar eruptions (flares, CMEs, SPEs; Falconer et al., 2011, 2014) and is
the main predictor used in the Magnetic Forecast (MAG4) forecasting service, developed in
the University of Alabama (http://www.uah.edu/cspar/research/mag4-page).

For these calculations of WLSG, two approximations of the vertical field Bz are used:
Blos (line of sight; uncorrected) and Br , keeping in mind that in the former case, only values
for regions located within 30◦ from the central meridian are considered accurate. For each
magnetogram, an MPIL mask is determined as in the calculation of MPIL characteristics,
described previously. In order to select the strong-horizontal field segments of MPILs, the
potential field extrapolation method developed by Alissandrakis (1981) is used. Finally, the
horizontal gradient of Bz is calculated numerically and integrated over all MPIL segments.
The accuracy of the calculated values was estimated by comparing flare rates derived from
our calculations of WLSG (using Equation 4 along with the values in Table 1 in Falconer
et al., 2011) with the flare rates from the text output of MAG4.

2.2.4. Ising Energy (IsinEn1, IsinEn2)

The Ising energy is a quantity that parameterizes the magnetic complexity of an AR (Ahmed
et al., 2010). For a two-dimensional distribution of positive and negative interacting mag-

http://www.uah.edu/cspar/research/mag4-page
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netic elements, the Ising energy is defined as

EIsing = −
∑
ij

SiSj

d2
, (2)

where Si (Sj ) equals +1 (−1) for positive (negative) pixels and d is the distance between
opposite-polarity pairs. The interacting magnetic elements can be either the individual pix-
els with a minimum flux density value as in Ahmed et al. (2010) or the opposite-polarity
partitions, produced using a flux-partitioning scheme (Barnes, Longcope, and Leka, 2005).
The latter variation has been introduced for the first time in the FLARECAST project with
promising results, and an assessment of its merit as a predictor is underway (Kontogiannis
et al., in preparation). The Ising energy calculation produces four predictors, two for the
line-of-sight magnetic field, and two for the radial magnetic field component.

2.2.5. Fourier Spectral Power Index (FSPI)

The spectral power index, α, corresponds to the power-law exponent in fitting the one-
dimensional power spectral density E(k) extracted from magnetograms by the relation

E(k) ∼ k−α. (3)

This index parameterizes the power contained in magnetic structures of spatial scales l

(= k−1) belonging to the inertial range of magnetohydrodynamic (MHD) turbulence. Em-
pirically, AR with spectral power index higher than 5/3 (Kolmogorov’s exponent for tur-
bulence) are thought to display an overall high productivity of flares (e.g. see Guerra et al.,
2015).

The spectral power index has been historically calculated from the vertical component
of the photospheric magnetic field, as inferred from the line-of-sight component assuming
perfectly radial magnetic fields. First, the magnetogram is processed using the fast Fourier
transform (FFT). A two-dimensional power spectral density (PSD) is then obtained as

E(kx, ky) = ∣∣FFT
[
B(x, y)

]∣∣2
. (4)

In order to express E(kx, ky) from the Fourier kx and ky to the isotropic wavenum-
ber k = (k2

x + k2
y)

1/2, it is necessary to calculate E(k)′ – the integrated PSD over angular
direction in Fourier space. From this last step, the one-dimensional PSD is obtained as
E(k) = 2πkE(k)′. Finally, the power-law fit is performed as a linear fit in a logarithmic
representation of E(k) versus k and α is measured for the assumed turbulent inertial range
of 2 – 20 Mm (i.e. 0.05 – 0.5 Mm−1).

2.2.6. Schrijver’s R Value (logR)

The R-value property quantifies the unsigned photospheric magnetic flux near strong
MPILs. The presence of such MPILs indicates that twisted magnetic structures carrying
electrical currents have emerged into the AR through the solar surface. Therefore, R repre-
sents a proxy for the maximum free magnetic energy that is available for release in a flare.
This property and its usefulness in forecasting was first investigated by Schrijver (2007).

The algorithm for calculating R is relatively simple, computationally inexpensive, and
was originally developed to use line-of-sight magnetograms from the Michelson Doppler
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Imager (MDI) (Scherrer et al., 1995) on board the Solar and Heliospheric Observatory
(SoHO). First, a bitmap is constructed for each polarity in a magnetogram, indicating where
the magnitude of positive and negative magnetic flux densities exceeds the threshold value
of ±150 Mx cm−2. These bitmaps are then dilated by a square kernel of 3×3 pixels, and the
areas where the bitmaps overlap are defined as strong-field MPILs. This combined bitmap
is then convolved with a Gaussian filter with a full-width at half-maximum (FWHM) of
≈15 Mm. This particular value is constrained by how far from MPILs flares are observed
to occur in extreme ultraviolet images of the solar corona. Finally, the convolved bitmap is
multiplied by the absolute flux value of the line-of-sight magnetogram, and R is calculated
as the sum over all pixels. Note that since the R value was implemented by Schrijver (2007)
for MDI magnetograms, the SHARP magnetograms were resampled to the spatial scale of
MDI before the kernel application and subsequent calculations.

3. Machine-learning Algorithms and Conventional Statistics Models

The ML algorithms used in this study are MLPs, SVMs, and RFs. Among the hundreds
of ML algorithms proposed for binary classification (e.g. Fernández-Delgado et al., 2014),
these three categories of algorithms are representative of three important approaches in ML:
i) artificial neural networks (ANN), ii) kernel-based methods, and iii) classification and re-
gression trees. This is the reason why they were used in the present study, in order to fur-
thermore investigate whether the usage of RFs could bring any improvements in flare pre-
diction in comparison to SVMs and MLPs. The RFs belong to the category of ensemble
methods, while the MLPs use unconstrained optimization and SVMs use constrained opti-
mization techniques (e.g. quadratic programming). In general, the working principle of ML
comprises the following steps: i) train the model using a training set, ii) predict using the
trained model and a testing set, and iii) check whether the algorithm predicted well, in what
is called the validation of the overall ML procedure. For further study, we refer to Vapnik
(1998), MacKay (2003), and Hastie, Tibshirani, and Friedman (2009).

3.1. Multi-layer Perceptrons

The MLP is a feed-forward network, thus it is described by the planar graph shown in Fig-
ure 2. It contains an input layer, a hidden layer, and an output layer of neurons. By the term
neuron we denote a basic processing unit where inputs are summed using specific weights
and the result is squashed via an activation function. The hidden layer might expand in a se-
ries of hidden layers. Nevertheless, the simplest MLP networks have just one hidden layer.
In principle, the term hidden describes every layer that is neither the input nor the output
layer, but resides in between, as presented in Figure 2. A sufficient number of hidden nodes
allows the MLP to approximate any continuous nonlinear function of several inputs with a
desired degree of accuracy (Hornik, Stinchcombe, and White, 1989), which is what char-
acterizes the MLPs as universal approximators. It also holds that the greater the number of
hidden nodes, the more complex the nonlinear function that can be approximated by the neu-
ral network with a desired degree of accuracy. The number of hidden nodes typically does
not have to be more than twice the number of input nodes (or predictors). If too many hidden
nodes are used, then the overfitting problem arises, which means that the MLP memorizes
the sample observations and generalizes badly in the prediction phase. Usually, and in this
study, the optimal number of hidden neurons (called size of the MLP) is determined with
a fine-tuning procedure (e.g. cross-validation approach, see Section 4.2) before the training
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Figure 2 Example MLP neural
network with 6 inputs, 12 hidden
nodes, 1 output, and 2 biases.
Bold, darker lines indicate large
positive weights ω.

phase starts. The tuning phase is relatively time consuming, so it need not be executed every
time the training starts. It can be conducted for a single realization of the training set.

An MLP network is a kind of a nonlinear regression (classification) technique, equiv-
alent to a nonlinear mapping from input I to an output O = O(I ;ω,A). The output is a
continuous function of the input and of the weights ω. The network is described by a given
architecture A, which typically defines the number of nodes in every layer (e.g. input, hid-
den, and output). In general, MLP networks can be used to solve regression and classification
problems. The statistical model of an MLP neural network for binary outcome, as described
in the following, is based on MacKay (2003). For a recent survey on neural networks, we
refer to Prieto et al. (2016).

3.1.1. Classification Networks

We consider an MLP with l inputs called Il and bias B1. The network also contains a single
hidden layer with j hidden nodes Hj and bias B2. We have in general i outputs Oi , while
typically a single output is all that is needed (i = 1).

In the case of a classification problem, the propagation of the information from the inputs
I to the output O is described by

α
(1)
j =

L∑
l=1

ω
(1)
j l Il + B

(1)
j ; Hj = f

(
α

(1)
j

)
,

α
(2)
i =

J∑
j=1

ω
(2)
ij Hj + B

(2)
i ; Oi = g

(
α

(2)
i

)
,

(5)

where, for example, f (α) = 1
1+exp(−α)

and g(α) = 1
1+exp(−α)

.
The index l is used for the inputs I1, . . . , IL, the index j is used for the hidden units,

and the index i is used for the outputs (i = 1). The weights ω
(1)
j l , ω

(2)
ij , and biases B

(1)
j and

B
(2)
i define the parameter vector ω to be estimated. The nonlinear logistic function f at

the hidden layer (also known as activation function) helps the neural network approximate
any generic continuous nonlinear function with a desirable degree of accuracy (Hornik,
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Stinchcombe, and White, 1989). Visually, a neural network can be represented as a series of
layers consisting of nodes, where every node is connected to nodes of the subsequent layer
only (feed-forward networks).

In the case of binary classification, the MLP is trained using a dataset of examples D =
{I (n),T (n)} by adjusting ω in order to minimize G(ω), the negative log-likelihood function,

G(ω) = −
(

N∑
n=1

T (n)ln
(
O

(
I (n);ω)) + (

1 − T (n)
)
ln

(
1 − O

(
I (n);ω)))

. (6)

Note that I (n) is the matrix of the predictors and T (n) is the vector of the targets for observa-
tion n = 1, . . . ,N . In Equation 6, T (n) is 0 (1) for the negative (positive) class, respectively,
and O(I (n);ω) is strictly between 0 and 1 (a probability); this is ensured by Equations 5.

3.2. Support Vector Machines

The SVM variant we use is the C-Support Vector Classification (C-SVC) according to the
widely used library LIBSVM (Chang and Lin, 2011; Meyer, Leisch, and Hornik, 2003).

Let us assume a vector of K predictor values at observation i, xi ∈ RK , i = 1, . . . ,N ,
which belongs in one of two classes, and an indicator vector y ∈ RN such that yi ∈ {1,−1}.
Note that the positive class has the label +1 and the negative class has the label −1. Then
the C-SVC solves the optimization problem

minimize
1

2
ωT ω + C

N∑
i=1

ξi,

subject to

yi

(
ωT φ(xi ) + b

) ≥ 1 − ξi, i = 1,2, . . . ,N,

ξi ≥ 0, i = 1,2, . . . ,N,

(7)

where φ(xi ) is an arbitrary unknown function that maps xi into a higher dimensional space,
and C > 0 is the regularization parameter. The optimization in C-SVC model is performed
by changing the decision variables ω, b, and ξ . LIBSVM solves the dual of C-SVC, which
depends on a quantity K(xi ,xj ) = φ(xi )

T φ(xj ), which is called the “kernel” function.
While φ(xi ) is unknown, the kernel function is known and is equal to the inner product
of φ(xi ) with itself, but for different pairs of observations i and j . This is the so-called
kernel trick of the SVMs. As we show below, the kernel is a similarity measure and takes
the maximum value of 1 when dist(xi ,xj ) = 0.

We used the radial basis function (RBF; or Gaussian) kernel, which is defined as
K(x,x ′) = exp(−γ ‖x − x ′‖2). A variant of the C-SVC model has been used for flare pre-
diction in Bobra and Couvidat (2015).

For imbalanced datasets that account for rare events (e.g. in our case the >M1 flares),
some researchers, e.g. Bobra and Couvidat (2015), have used two different values for the
regularization parameter C in Equation 7, thereby penalizing the constraint violations for
the minority class more strongly. These authors have used C1 and C2 with a ratio C2/C1 ∈
{2,15}, where C1 is the coefficient for the majority class (no events) and C2 is the coefficient
for the minority class (events). While we generally use the SVM in the original unweighted
version in Equation 7, in auxiliary runs we also experimented with using different values
for C1 and C2 with a ratio C2/C1 ∈ {2,15,20} to account for the imbalanced nature of the
>M1 flares dataset.
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3.3. Random Forests

The RF is a relatively recent ML method and was introduced by Breiman (2001). The RF
approach is an ensemble of tree predictors, where we let each tree vote for the most pop-
ular class. It has been reported (Fernández-Delgado et al., 2014) that RF offers significant
performance improvement over other classification algorithms. The RF approach relies on
randomness and involves the concept of split purity and the Gini index for variable selection
(Breiman et al., 1984).

According to Hastie, Tibshirani, and Friedman (2009), the goal of the RF algorithm is to
randomly build a set (or ensemble) of trees by repeating the tree-formation process B times
to create B trees. In particular, the algorithm i) chooses a bootstrap sample from the training
data, ii) grows a tree Tb to the bootstrapped sample by consequently applying the following
two substeps: Substep 1 selects m variables randomly out of the M variables, and Substep 2
splits the current node into two children nodes after selecting the best variable (node) from
the m chosen ones. By repeating steps i) and ii) (where ii) consists of Substeps 1 – 2), the
algorithm creates a set (called ensemble) of trees {Tb}B

1 . Then, in the classification case
studied in the present paper, a voting procedure for every tree Tb is followed in order to
obtain the class prediction of the random forest.

This is one of the first times that RF is used for flare forecasting. Other related works are
Liu et al. (2017) and Barnes et al. (2016). Furthermore, three recent applications of RF in
astrophysics have been reported by (Vilalta, Gupta, and Macri, 2013; Schuh, Angryk, and
Martens, 2015; Granett, 2017).

3.4. Implementation of ML Algorithms

3.4.1. Multi-layer Perceptrons

The MLPs were implemented using the R programming language and the nnet package
(Venables and Ripley, 2002). The options used were linout = FALSE, to ensure that sigmoid
activation functions are used at the output node; entropy = TRUE, to ensure that the negative
log-likelihood objective function is minimized during the training phase (and not the default
sum of squares error (SSE) criterion); and size = iNode, where iNode for both >M1 flares
and for >C1 flares was chosen with a tuning procedure.

3.4.2. Support Vector Machines

Support vector machines were implemented using the R programming language and the
e1071 package (Meyer et al., 2015). The option used was probability = TRUE, in order
to obtain probability estimates for every element of the training set as well as probability
estimates for every element of the testing set.

3.4.3. Random Forests

Random forests were implemented using randomForest package (Liaw and Wiener, 2002) in
the R programming language. The options used were importance = TRUE, to create impor-
tance information for every predictor; na.action = na.omit, to exclude records of predictors
with missing values appearing in preliminary versions of the dataset (but lacking from the
final version of the dataset).
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3.5. Conventional Statistics Models

Non-ML (or statistical) methods also considered are i) linear regression (LM), ii) probit
regression (PR), and iii) logit regression (LG). Although multiple linear regression is known
to be redundant for binary outcomes because it can yield probabilistic predictions outside
the interval [0,1], we still included it in the array of tested methods. The reason is that
some practitioners still use it for binary outcomes (calling it linear probability model (LPM),
see Greene, 2002) and there is always interest to consider ordinary least squares (OLS) as
an entry-level method for any regression analysis. An interesting article about the lack of
use of probit and logit in astrophysics modeling is de Souza et al. (2015). The statistical
algorithms were implemented in the statistical programming language R using the lm and
glm functions.

For a description of these well-known methods we refer to (Greene, 2002; Winkelmann
and Boes, 2006).

4. Data Preparation, Results, and Discussion

First, we implement ML predictions on >M1 flares. Second, we use statistical methods for
the prediction of >M1 flares. Third, we predict >C1 flares with ML algorithms. Finally,
we predict >C1 flares with the statistical algorithms. The following subsections describe
these four experiments, presenting at first a single combination of a training/testing set for
every flare class and category of techniques.

Results are presented for the prediction step in terms of i) skill score profiles (SSP) of
ACC, TSS, and HSS as functions of the probability threshold, ii) ROC curves, and iii) RD
plots for all methods: (for the explanation of metrics ACC, TSS, HSS, and ROC curves and
RD diagrams, see Section 4.3). Skill score profiles were created by a code we developed
in R, ROC curves were created using the ROCR package (Sing et al., 2005), and reliability
diagrams were created using the verification package (Laboratory, 2015).

All algorithms were implemented and run using the R programming language 3.3.2
(R Core Team, 2016) and the RStudio 0.99 IDE.

4.1. Data Pre-processing

The data comprise the K = 7 predictors [logR, FSPI, TLMPIL, DI, WLSG, IsinEn1, and Isi-
nEn2] described in Section 2.2 and computed using either the line-of-sight magnetograms,
Blos, of SHARP data or the respective radial component, Br (Bobra et al., 2014). Hence, we
tested K = 2 × 6 + 1 = 13 predictors.2 The sample comprised N = 23,134 observations,
randomly split in half into N1 = 11,567 observations for the training and N2 = 11,567 ob-
servations for the testing set. The random split was performed for 200 replications, and all
six prediction algorithms (i.e. MLP, SVM, RF, LM, probit, and logit) of Section 3 were
trained and performed on identical training and test sets. The metrics ACC, TSS, and HSS
of Section 4.3 were always computed for the testing (out-of-sample) set. We standardized all
predictor variables to have a mean equal to 0 and a standard deviation equal to 1 because sev-
eral ML algorithms involve non-linear optimization (e.g. MLPs). This helps to better train
the ML algorithms and also explains the effect of every predictor variable on the studied
outcome in the case of the statistical models LM, probit, and logit.

2This is because we considered only the Br version for predictor WLSG.
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4.2. Tuning of ML Algorithms

As with any parameterized algorithm (e.g. simulated annealing, evolutionary algorithms,
and other metaheuristics), the performance of ML algorithms depends on a number of cru-
cial parameters that need to be fine-tuned before the application of the ML procedure (e.g.
training, testing, and validation steps). The optimal tuning of ML algorithms is more or less
still an open question in the ML community and always poses a great challenge for any
practitioner. This choice of optimal options for the ML algorithms themselves is similar to
the choice of optimal parameters for other numerical models (e.g. MHD models), where
the analyst also has to explore the optimal parameter space in several crucial parameters
before conducting numerical MHD simulations. The algorithms MLP, SVM, and RF have
their critical hyperparameters (e.g. parameters that are critical for the forecasting perfor-
mance of every algorithm) tuned via a 10-fold cross-validation study exploiting only the
training set at one of its realizations. The set of plausible values for every ML algorithm is
as follows: i) MLP: size (number of hidden neurons) ∈ {4,13,26} and decay (weight decay
parameter) ∈ {10−3,10−2,10−1}, ii) SVM: γ (parameter in the RBF (or Gaussian) kernel)
∈ {10−6,10−5,10−4, . . . ,10−1} and cost (regularization parameter) ∈ {10,100}, and iii) RF:
mtry (number of variables randomly sampled as candidates at each split) ∈ {
√K� = 3} and
ntree (number of trees to grow) ∈ {500}.

We tuned only the MLP and SVM classifiers because the default RF values mtry = 3
and ntree = 500 immediately provided satisfactory results. Tuning of the MLP and SVM
was mostly needed in the >M1 flares case, which was found harder to predict than >C1
flares, but was also performed in the >C1 flares case. Thus, the hyperparameters for MLP
and SVM needed tuning because, for example, the default values γ = 1 and cost = 1 for
SVM provided unsatisfactory results. We used the tune.nnet and tune.svm functions of the
R package e1071 to tune the MLP and SVM, respectively. After the tuning, both MLP and
SVM improved their performance significantly.

For the >M1 flares, the selected values are size = 26 and decay = 0.1 for the MLP and
γ = 0.1 and cost = 10 for the SVM. These values are used throughout the remainder of this
work. For the >C1 flares case, the selected values are size = 4 and decay = 0.1 for the MLP
and γ = 0.001 and cost = 100 for the SVM.

4.3. Comparison Metrics

A wide variety of metrics exist in order to characterize the quality of binary classification.
Of these, no single one is fit for all purposes. There exist two types of metrics, suitable for
either categorical or probabilistic classification. In the former case, a strict class membership
is returned from the model, and in the latter case, a probability of membership is returned. In
this section we concentrate on categorical forecast metrics for binary classification. In what
follows, let ACC denote accuracy, TSS denote true skill statistic, and HSS denote Heidke
skill score. The performance of algorithms is measured using a number of metrics. These
are derived from the so-called contingency table or confusion matrix, a representation of
which is provided in Table 1.

Table 1 includes true positives (TP; events predicted and observed), true negatives (TN;
events not predicted and not observed), false positives (FP; events predicted but not ob-
served), and false negatives (FN; events not predicted but observed), where N = TP + FP +
FN + TN is the sample size. From these elements, the meaning of ACC is the proportion
correct, namely the number of correct forecasts of both event and non-event, normalized by
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Table 1 2 × 2 contingency table
for binary forecasting. ACTUAL

PREDICT NO YES

NO TN FN

YES FP TP

the total sample size,

ACC = TP + TN

N
. (8)

The TSS (Hanssen and Kuipers, 1965) compares the probability of detection (POD) to the
probability of false detection (POFD),

TSS = POD − POFD = TP

TP + FN
− FP

FP + TN
. (9)

Moreover, the TSS is the maximum vertical distance from the diagonal in the ROC curve,
which relates the POD and POFD for different probability thresholds; see Section 4. The
TSS covers the range from −1 up to +1, while the value of zero indicates lack of skill.
Values below zero are linked to forecasts behaving in a contrary way, namely mixing the
role of the positive class with the role of the negative class. In any negative TSS value, by
exchanging the roles of YES and NO events, we can obtain the corresponding positive TSS
value that would be identical in absolute value terms with the negative TSS value.

The HSS (Heidke, 1926) measures the fractional improvement of the forecast over the
random forecast,

HSS = 2(TP × TN − FP × FN)

(TP + FN)(FN + TN) + (TP + FP)(FP + TN)
, (10)

which ranges from −∞ to 1. Any negative value means that the random forecast is better, a
zero value means that the method has no skill over the random forecast, and an ideal forecast
method provides an HSS value equal to 1.

The TSS and HSS metrics are among the most popular metrics for comparison purposes
in Meteorology and Space Weather and were conceptually compared in Bloomfield et al.
(2012). In a probabilistic forecasting, such as the one for solar flares, they must be assigned
a probability threshold, thus appearing as functions of this threshold.

To summarize, ACC is the most popular classification metric, but in rare events such as
flares >M1, the ACC can be artificially high for the naive model, which will always predict
the majority class (“no event”). Thus, TSS and HSS are more suitable for flare prediction.
Moreover, TSS has the advantage of being invariant to the frequency of events in a sample
(e.g. see Bloomfield et al., 2012). Typically, both TSS and HSS need to be evaluated for a
given probability threshold in order to assess the merit of a given probabilistic forecasting
model, such as those we develop in this study.

Regarding the probabilistic assessment of classifiers, we used the visual approaches of
receiver operating characteristic (ROC) curves and reliability diagrams (RD) (e.g. see Sec-
tion 4). The ROC describes the relationship between the POD and the POFD for different
probability thresholds (e.g. see Figure 3b). The area under the curve (AUC) in the ROC has
an ideal value of one. The RD describes the relationship between the returned probabilities
by the model and the actual observed frequencies of the data. A binning approach is used
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Figure 3 ML method comparison for >M1 GOES flare prediction for (from top to bottom) MLP, SVM,
weighted SVM, and RF. From left to right, we present the corresponding SSP, ROC, and RD.
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to construct the RD, in which probabilities are assigned to intervals of arbitrary length (for
example, we used 20 bins of length 0.05 each). For an example of RD, see Figure 3c. To
algebraically assess the probabilistic performance of classifiers, we also used the Brier score
(BS) (Brier, 1950) and Brier skill score (BSS) (Wilks, 2011), as well as the AUC (Marzban,
2004).

4.4. Results on >M1 Flare Prediction

4.4.1. Prediction of >M1 Flare Events Using Machine Learning

Figure 3 shows the forecast performances of the three tested ML methods, using both binary
scores (SSP [left]; ROC [middle]) and probabilistic ones (RD [right]).

i) Regarding the MLPs, we note a wide plateau with a more or less flat profile for HSS
and less so for TSS. This occurs because the number of hidden neurons (size = 26) is
twice the number of input neurons, causing the MLP to provide probability estimates
clustered around 0 and 1. The ROC curve is reasonably good, with maximum TSS =
0.726. Moreover, the RD shows a systematic overprediction above a forecast probability
of 0.4.

ii) For the SVMs, the SSP plateau noted in case of the MLPs is not present here, with nearly
monotonically decreasing values of TSS and HSS appearing. The ROC curve shows a
maximum TSS = 0.629, while the RD seems slightly better than for MLP, with some
underprediction below a forecast probability of 0.4 and generally large uncertainties.
When we used the weighted version of the SVM, with a ratio of C2/C1 = 20, the ROC
curve improved, providing a maximum TSS = 0.718, but the overall forecasting ability
as measured by the SSP and RD remained worse than the MLP.

iii) With respect to the RFs, the SSP behavior is such that HSS shows a plateau around its
peak value, although smaller than in case of MLPs, while TSS monotonically decreases.
This said, we note that the peak HSS and TSS values are higher in this case (e.g. TSS =
0.780 and HSS = 0.587). The ROC curve is better than that of MLPs and SVMs, with
a maximum TSS = 0.780. The RD, finally, appears clearly better than those of MLPs
and SVMs, presenting some mild underprediction, mainly within error bars, above a
forecast probability of 0.2.

4.4.2. Prediction of >M1 Flare Events Using Statistical Models

Figure 4 shows the forecast performances of the three tested statistical methods for >M1
flare prediction.

For the LM, the SSP is different between TSS and HSS, with TSS peaking more impul-
sively and for lower probabilities and then decreasing nearly monotonically. The ROC curve
also shows a significant performance with maximum TSS = 0.744 that can also be seen in
the RD, which shows a very good behavior, although with error bars, for the entire range of
forecast probabilities.

The PR shows a slightly improved behavior in comparison with LM for the SSP, the ROC
curves, and the RD. The RD seems also more reliable in this case compared to LM, although
differences are mostly within the error bars.

We note a similar behavior for the LG as in the LM and especially PR method, and the
RD in this case appears as good as the PR RD.
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Figure 4 Same as Figure 3, but for statistical methods: linear regression (LM; top), probit regression (PR;
middle), and logit regression (LG; bottom).

4.4.3. Monte Carlo Simulation for >M1 Flares

In Table 2 we provide the average values of the skill scores ACC, TSS, and HSS for
all prediction methods after the 200 replications of the Monte Carlo experiment regard-
ing >M1 flare prediction. Table 2 shows that the maximum HSS = 0.57 is obtained with
the RF method for a probability threshold of 25%. The corresponding RF score values
are ACC = 0.96 ± 0.00, TSS = 0.63 ± 0.02, and HSS = 0.57 ± 0.02. The second-best
method in Table 2 for the same probability threshold is MLP, with ACC = 0.95 ± 0.00,
TSS = 0.56 ± 0.02, and HSS = 0.50 ± 0.02. For the threshold where the maximum TSS is
observed, we obtain the best results for the RF method and a threshold of 10%, with values
ACC = 0.90 ± 0.00, TSS = 0.77 ± 0.01, and HSS = 0.42 ± 0.01. The second-best method
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may be considered the LM at 10% threshold, with ACC = 0.88 ± 0.00, TSS = 0.73 ± 0.01,
and HSS = 0.35 ± 0.01. The difference between RF and LM is statistically significant at the
0.01% level, as shown in Table 4 in row 1. For the range of thresholds 10% to 25%, the RF
method yields increasing values of HSS and decreasing values of TSS. For example, an ap-
pealing forecasting model could be RF with threshold 15% and metrics ACC = 0.93±0.00,
TSS = 0.74 ± 0.02, and HSS = 0.49 ± 0.01 in Table 2, but this would depend on the needs
and requirements of a given decision maker.

4.5. Results on >C1 Flare Prediction

4.5.1. Prediction of >C1 Flare Events Using Machine Learning

We continued our computational experiments by training and performing our algorithms to
the prediction of GOES >C1 flares. Figure 5 shows the forecast performances of the three
tested ML methods for >C1 flare prediction.

For the MLP, we note that since for the >C1 flares the number of hidden nodes selected
is size = 4, plateaus in HSS and TSS are not so eminent, in contrast to the case of >M1
flare prediction. The ROC curve seems satisfactory with maximum TSS = 0.574, and the
RD is quite significant, showing no systematic over- or underprediction.

A purely monotonic decrease of TSS can be seen in the SVM, following an instantaneous
peak. Some plateau in HSS is also noted, followed by a monotonic decrease. The ROC curve
appears less satisfactory than in case of MLPs with maximum TSS = 0.566, and the RD
shows some systematic underprediction for most of the forecast probability range.

For the RFs, we note a relatively similar behavior with MLPs, although with a slightly
more pronounced HSS peak. The ROC curve seems better behaved than in the previous two
methods with maximum TSS = 0.615, and the RD is arguably the best achieved together
with the MLP RD.

4.5.2. Prediction of >C1 Flare Events Using Statistical Models

Figure 6 shows the forecast performances of the three tested statistical methods for >C1
class flare prediction.

For the LM, we note a decrease in the ACC of the method and some more or less similar
behavior of HSS and TSS. The ROC curve seems satisfactory with maximum TSS = 0.562,
while the RD appears to show a systematic overprediction below a forecast probability of 0.4
and a systematic underprediction above a forecast probability of 0.4 (excluding probabilities
> 0.9).

A similar behavior with LM appears for the SSPs in the PR, while the ROC curve seems
slightly better with maximum TSS = 0.566. The RD curve shows some systematic under-
prediction, although generally within the error bars.

Finally, for the LG, we note a similar behavior in the SSP as in the case of LM and PR,
but arguably a better-behaved ROC curve with maximum TSS = 0.567. The RD seems to
be the best behaved, compared to those of LM and PR.

4.5.3. Monte Carlo Simulation for >C1 Flares

In Table 3 we provide the average values of the skill scores ACC, TSS, and HSS for all
prediction methods after the 200 replications of the Monte Carlo experiment regarding
>C1 flares prediction. Table 3 shows that the maximum HSS = 0.60 is obtained with
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Figure 5 Same as Figure 3, but for >C1 flare prediction.

the RF method for a probability threshold of 40%. The corresponding skill score values
are ACC = 0.85 ± 0.00, TSS = 0.59 ± 0.01, and HSS = 0.60 ± 0.01. The second-best
method in Table 3 for the same probability threshold is obtained with the LG method, with
ACC = 0.83 ± 0.00, TSS = 0.54 ± 0.01, and HSS = 0.56 ± 0.01. Considering again the
probability threshold where the maximum TSS is observed, we obtain the optimal results for
the RF method and threshold 30% with values ACC = 0.82 ± 0.00, TSS = 0.61 ± 0.01, and
HSS = 0.57±0.01. The second-best method may be considered the MLP (or the LG in a tie)
at a 30% threshold with ACC = 0.81 ± 0.00, TSS = 0.57 ± 0.01, and HSS = 0.53 ± 0.01.
For a range of probability thresholds (30% – 40%), the method RF yields increasing values
of HSS and decreasing values of TSS. As a result, it is again not clear which the best-
fit value of the threshold probability is if we choose to simultaneously optimize both TSS
and HSS. For example, an appealing RF forecasting model is with a threshold 35% and
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Figure 6 Same as Figure 4, but for >C1 flare prediction.

skill scores ACC = 0.84 ± 0.00, TSS = 0.60 ± 0.01 and HSS = 0.59 ± 0.01 in Table 3.
These results are generally above those reported for >C1 class flare predictability, namely
TSS ∈ [0.50,0.55] and HSS ∈ [0.40,0.45] (Al-Ghraibah, Boucheron, and McAteer, 2015;
Boucheron, Al-Ghraibah, and McAteer, 2015). In brief, our data samples, both training and
testing, are comprehensive and generally unbiased.

4.6. Assessment of Prediction Methods and Predictor Strength

Following the presentation of results in Tables 2 and 3, we can see that both for >M1 and
>C1 flare prediction, RF delivers the best skill score metrics for a wide range of probability
thresholds. The second-best method is MLP, together with LG. In this setting, we performed
some additional evaluation that confirms these results.
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We present analytical results in Appendix A for the predictor strength. It seems that logR

and WLSG rank in first place for both >C1 and >M1 flare prediction, closely followed by
the Ising energy and the TLMPIL.

In order to investigate the robustness of our results, we present additional results in Ap-
pendix C, where we make predictions once a day (at 00:00 UT). The mean evolution (over
200 Monte Carlo iterations) of ACC, TSS, and HSS with respect to the probability thresh-
old is presented. Likewise, the BS, AUC, and BSS are presented. The main finding is that
issuing forecasts once a day keeps similar average skill scores as are achieved for issuing
forecasts eight times a day, but the associated uncertainties (e.g. standard deviations) are
higher in the case of daily predictions.

A final word for the comparison of ML algorithms versus conventional statistics models
for this specific dataset and positive/negative class definitions is provided in Appendix D.
There, we have included an auxiliary meta-analysis of the results in Tables 2 and 3 in order
to clearly show whether the ML category of prediction algorithms performs better than the
conventional statistics models in the >M1 and >C1 flare prediction cases. A multicriteria
analysis using the weighted-sum (WS) method (Greco, Figueira, and Ehrgott, 2016) seems
appropriate in order to aggregate the performance metrics ACC, TSS, and HSS of all classi-
fiers as a function of the probability threshold (e.g. using equal weights for the aggregation).
In this way, a composite index (CI) as a measure of overall utility is computed for every
algorithm and probability threshold combination. There exist 21 × 6 = 126 such alterna-
tives when we use a 5% probability threshold grid, such as the grid in Tables 2 and 3. The
ranking, in non-increasing order, of the CI reveals the overall merit of every probabilistic
classifier and also allows us to draw conclusions for groups of classifiers, such as the group
of ML methods (comprising RF, SVM, and MLP) and the group of conventional statistics
methods (comprising LM, PR, and LG). Appendix D presents this multicriteria WS analy-
sis, revealing that overall, in >C1 flare prediction ML outperforms conventional statistics
methods by 71% versus 29% in the synthesis of the top 100(1/6) = 16.6% performing
methods (top 21 methods out of a total of 126). Likewise, in the >M1 flare prediction case,
ML outperforms conventional statistics methods by 62% versus 38% in the synthesis of the
top 100(1/6) = 16.6% performing methods. This shows that >C1 flare prediction is more
advantageous for ML versus statistical methods, in comparison to the >M1 flare case. This
is due to the low performance of the SVM in >M1 flare prediction, which in turn is due to
the way in which we have implemented, for simplicity, the SVM for a highly unbalanced
sample in >M1 flare prediction,3 using a single C constant and not two different C1,C2

constants during the SVM training with Equation 7.
In auxiliary runs (available upon request), we also noted that when the sample size was

very low, using ML algorithms posed no advantage over conventional statistics models. In
order to have proper training, the ML algorithms need N > 2,000 for K = 13, especially
for the >M1 flare prediction.

4.7. Statistical Tests for Random Forest Versus MLP and Calculation of AUC and
Brier Skill Scores

In Section 4.7.1 we present results of a t -test between the two best-performing methods
according to maximizer thresholds for either TSS or HSS for >M1 class and >C1 class
flare cases. Section 4.7.2 presents additional calculations reporting on BS, BSS, and AUC,
which we used to assess the classification in the prediction.

3Even by using the SVM weighted variant and recomputing the WS ranking using this variant (e.g. see
Figure 3 and Table 5), the qualitative results of the ranking still hold.
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Table 4 Unpaired t -tests to
compare the means of TSS and
HSS metrics (out-of-sample) for
the best and the second-best
methods in >M1 and >C1 flare
forecasting.

No. Metric Threshold (%) Best Second-best p-value

>M1 class flare prediction

1 TSS 10 RF LM <10−4

2 HSS 10 RF LM <10−4

3 TSS 25 RF MLP <10−4

4 HSS 25 RF MLP <10−4

>C1 class flare prediction

5 TSS 30 RF MLP <10−4

6 HSS 30 RF MLP <10−4

7 TSS 40 RF LG <10−4

8 HSS 40 RF LG <10−4

4.7.1. Unpaired t-Tests to Compare Two Means for TSS and HSS of Random Forest
versus MLP

A t -test compares the means of two groups. Here, we used the t -test to compare the mean
TSS (HSS, respectively) of the RF method versus those of the MLP method (or in gen-
eral the second-best performing method). Means were considered with respect to the Monte
Carlo simulations performed on the 200 replications of the previous section. The TSS (HSS,
respectively) values considered are those for specific probability thresholds maximizing ei-
ther TSS or HSS. Table 4 presents the t -test results regarding the best and the second-best
methods with respect to either TSS or HSS for these specific probability thresholds.

We find that RF is always (i.e. 8/8 of times) statistically better than the second-best
method (which is the MLP 4/8 of times), with respect to both TSS and HSS.

4.7.2. Calculation of AUC and Brier Skill Scores

Tables 5 and 6 present the calculated mean values of BS, AUC, and BSS for the >M1 and
>C1 flare prediction cases, respectively.

For the >M1 flare case (Table 5), results show that on average, the best BS and BSS
results are achieved with the RF method (BS = 0.0266; BSS = 0.4163). The best AUC
results are achieved with the RF method (AUC = 0.9556), but also for the PR (AUC =
0.9392) and LG (AUC = 0.9391) methods.

For the >C1 flare case (Table 6), results show that on average, the best BS and BSS
results are achieved with the RF method (BS = 0.1074; BSS = 0.4426). The best AUC
results are also achieved with the RF method (AUC = 0.8927), with other methods (except
SVM) following closely. The SVM probably needs better fine-tuning, given its sensitivity
on γ and cost (see Section 4.2).

4.8. Related Published Work and Comparison to Our Results

Ahmed et al. (2013) presented prediction results for >C1 class flares using cross-validation
with 60% training and 40% testing subsets, with ten iterations in operational and segmented
mode. Since our analysis focuses in operational mode, the gold standard for near-real-time
operational systems such as FLARECAST, we present here their results on the operational
mode for the period April 1996 – December 2010: POD = 0.455 & POFD = 0.010 thus
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Table 5 Mean values for BS, BSS, and AUC for all tested models on the prediction of >M1 flares. Means
are obtained after 200 Monte Carlo replications. Parentheses below the values denote standard deviations.
Lower values indicate a better performance for BS, and higher values indicate a better performance for AUC
and BSS.

MLP LM PR LG RF SVM SVMweighted

BS

0.0324 0.0331 0.0305 0.0302 0.0266 0.0327 0.0357

(0.0013) (0.0008) (0.0008) (0.0008) (0.0008) (0.0012) (0.0011)

AUC

0.9301 0.9278 0.9392 0.9391 0.9556 0.8320 0.9175

(0.0067) (0.0043) (0.0033) (0.0033) (0.0035) (0.0168) (0.0059)

BSS

0.2903 0.2745 0.3323 0.3375 0.4163 0.2829 0.2181

(0.0267) (0.0117) (0.0128) (0.0134) (0.0126) (0.0159) (0.0154)

Table 6 Same as Table 5, but for
the prediction of >C1 flares. MLP LM PR LG RF SVM

BS

0.1167 0.1292 0.1201 0.1191 0.1074 0.1226

(0.0014) (0.0012) (0.0012) (0.0012) (0.0012) (0.0015)

AUC

0.8731 0.8638 0.8665 0.8669 0.8927 0.8466

(0.0029) (0.0029) (0.0027) (0.0027) (0.0026) (0.0033)

BSS

0.3940 0.3293 0.3767 0.3818 0.4426 0.3636

(0.0069) (0.0052) (0.0055) (0.0058) (0.0056) (0.0063)

TSS = POD − POFD = 0.445 and HSS = 0.539. Hence, Ahmed et al. reported (using a
variant of a neural network, and threshold 50%) results for flares >C1: TSS = 0.445 and
HSS = 0.539.

Li et al. (2008) presented results using an SVM coupled with k-nearest neighbor (KNN)
for flare prediction >M1 in a way that, unfortunately, cannot be used to recover TSS and
HSS values. Instead, they reported Equal = TN + TP, High = FP, Low = FN. The accu-
racy achieved is only ACC = 57.02% for SVM and ACC = 63.91% for SVM-KNN for the
testing year 2002.

Song et al. (2009) presented results using an ordinal logistic regression model classifying
the C-, M-, and X-class flares with response values 1, 2, and 3, respectively. The B-class flare
(or no flares) category received class 0 (baseline). Their sample contained 34 X-class flares,
68 M-class flares, 65 C-class flares, and 63 B-class or no-flare cases. A clear drawback
of this sample is that it was not taken using a random number generator but seems to be
hand-picked aiming at studying the considered 230 events during the period 1998 – 2005.
As a result, the sample is biased in that the occurrence rates of the various flare classes are
not representative of an actual solar cycle. Perhaps not surprisingly, these authors presented
high TSS and HSS values that, given the sample, might be taken with a conservative outlook.
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From the results of Model 4 in that study (i.e. Table 8 of Song et al., 2009), we are able to
infer that for C-class flares, Song et al. computed values TSS = 0.65 and HSS = 0.623 (C1 –
C9 flares). Moreover, we maintain an impression that these numbers are obtained in-sample
for the dataset with 230 events in Song et al. (2009).

Yu et al. (2009) used a sliding window approach to account for the evolution of three
magnetic flare predictors with importance index above 10 (for the definition of the flare
importance index, see Yu et al., 2009). The time period was 1996 to 2004, with a cadence
of 96 minutes. The authors used the C4.5 decision tree algorithm and the learning vector
quantization (LVQ) neural network, both implemented in WEKA (Witten et al., 2016; Hall
et al., 2009). The authors used a 10-fold cross-validation approach with 90% training and
10% testing sets from the original sample. The sliding window size was 45 observations.
Their results showed that the sliding window versions of the C4.5 and LVQ neural network
algorithms improved the results obtained with the same algorithms for a sliding window size
equal to 0. Since the authors presented only the TP rate and the TN rate results, we are not
able to recover their HSS value. Their recovered TSS is TSS = 0.651 for the C4.5 algorithm
with a sliding window of 45 observations and TSS = 0.667 for the LVQ, also with a sliding
window of 45 observations.

Yuan et al. (2010) used the same dataset as in Song et al. (2009) and proposed a cascading
approach, using first an ordinal logistic regression model to produce probabilities for GOES
flare classes B, C, M, and X (associated with response levels 0, 1, 2, and 3, respectively),
and second, feeding the probability values to an SVM in order to obtain the final class mem-
bership. Their results, according to Yuan et al. (2010), improved the prediction especially
for X-class flares (response level = 3 in the ordinal logistic regression), but were still not
exceptionally high. For example, for level = 1, therefore for C-class flares, we were able
to recover the following TSS values for the used methods: logistic regression: TSS = 0.22,
SVM: TSS = 0.08, logistic regression + SVM: TSS = 0.09. These rather fair results, as
can be seen from the contingency tables presented in Yuan et al. (2010), may be due to the
selection of a probability threshold value at 50% for levels 0, 1, and 3 in the ordinal logistic
regression model and at 25% for the level 3 (X-class) flares in the same model. Choosing a
threshold equal to 50% maximizes ACC but not TSS/HSS, as can be seen both here and in
Bloomfield et al. (2012).

Colak and Qahwaji (2009) developed an online solar flare forecasting system called
ASAP. Their prediction algorithm is a combination of two neural networks with the sum-
of-squared error (SSE) objective function, where the first neural network predicts whether
a flare of all types (C, M, or X) will occur, and if the prediction is yes, the second neural
network predicts whether a C-, M-, or X-class flare will occur. The ASAP system was de-
veloped in C++ and has been validated with data from 1999 to 2002 (around the peak of
Solar Cycle 23). The predictors were the sunspot area and characteristics from the McIntosh
classification of sunspots (Zpc scheme). They obtained HSS = 49.3% (C-class flares) and
HSS = 47% (M-class flares) for a forecast window of 24 h.

Wang et al. (2008) developed an MLP neural network using three input variables for
the prediction of solar flares of class >M1. The predictors were the maximum horizontal
gradient |gradh(Bz)|, the length L of the neutral line, and the number of singular points η.
A limitation of the study is that only flaring active regions (at GOES C1 and above) were
sampled and considered. The forecast window was 48 h. The authors presented prediction
results for the period 1996 – 2002 (training set: April 1996 to December 2001, testing set:
January 2002 to December 2002). The results were presented as plots of the X-ray flux
associated with the predicted/observed flares for the test year 2002, therefore a comparison
with the authors’ skill scores is not possible. This work reported ACC = 69% for the test
year.
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Bobra and Couvidat (2015) applied an SVM to a sample of 5,000 non-flaring and 303
flaring (at the GOES >M1 level) AR. Those N = 5,303 AR with N = 5,000 negative
examples and P = 303 positive examples (ratio N/P = 16.5), were sampled from the
≈1.5 million patches of the SHARP product (Bobra et al., 2014) between 2010 and 2014.
The authors selected 285 M-class flares and 18 X-class flares observed between 2010 May
and 2014 May. By comparison, our study relies on a representative sample of flaring/non-
flaring AR in the period 2012 – 2016 and for flares >M1, with a ratio N/P = 19.9
(P = 1,108 and N = 22,026). By inspecting Table 3 of Bobra and Couvidat (2015), we
see that the authors report the results as ACC = 0.924 ± 0.007, TSS = 0.761 ± 0.039, and
HSS2 = 0.517 ± 0.035, while our results are ACC = 0.93 ± 0.00, TSS = 0.74 ± 0.02, and
HSS = 0.49 ± 0.01 (their definition of HSS2 is the same as the HSS definition in Sec-
tion 4.3). Thus, our results with random forests are competitive with those of Bobra and
Couvidat (2015). We note that we used a 50/50 rule for splitting training/testing sets, while
Bobra and Couvidat (2015) use a 70/30 rule. Moreover, N/P in Bobra and Couvidat (2015)
is 16.5, while in our case, N/P is 19.9. Finally, we used no fine-tuning in the parameters
of the random forest, while Bobra and Couvidat (2015) carefully tuned the C, γ and C1/C2

of their Equations 2, 5, and 6, respectively. Regardless, Bobra and Couvidat (2015) still
represent the state-of-the art in solar flare forecasting so far.

Boucheron, Al-Ghraibah, and McAteer (2015) applied support vector regression (SVR)
to 38 predictors characterizing the magnetic field of solar AR in order to predict i) the flare
size and ii) the time-to-flare using SVR modeling. The forecast window they used varied
between 2 and 24 hours with a step of 2 hours (12 cases of forecast windows). By using the
size regression with appropriate thresholds (different to the usual probability thresholds, for
example, in Bloomfield et al., 2012), the authors achieved prediction results for >C1 flares
with TSS = 0.55 and HSS = 0.46, while reporting that using the same data, Al-Ghraibah,
Boucheron, and McAteer (2015) achieved TSS ≈ 0.50 and HSS ≈ 0.40, respectively, for
the prediction of >C1 class flares.

Al-Ghraibah, Boucheron, and McAteer (2015) applied relevance vector machines
(RVM), a technique that is a generalization of SVM, to a set of 38 magnetic properties
characterizing 2124 AR in a total of 122,060 images across different time points for all AR.
They predicted >C1 flares using either the full set of properties or suitable subsets thereof.
The magnetic properties are of three types: i) snapshots in space and time, ii) evolution
in time, and iii) structures of multiple size scales. Al-Ghraibah, Boucheron, and McAteer
(2015) reported results (e.g. see their Table 5 and Figure 6) in the range TSS ≈ 0.51 and
HSS ≈ 0.39, which is a baseline result for the literature when no temporal information is
included in the predictor set (i.e. static images are used).

5. Conclusions

We presented a new approach for the efficient prediction of >M1 and >C1 solar flares: clas-
sic and modern machine-learning (ML) methods, such as multi-layer perceptrons (MLP),
support vector machines (SVM), and random forests (RF) were used in order to build the
prediction models. The predictor variables were based on the SDO/HMI SHARP data prod-
uct, available since 2012.

The sample was representative of the solar activity during a five-year period of Solar
Cycle 24 (2012 – 2016), with all calendar days within this period included in the sample.
The cadence of properties, or predictors, within the chosen days was 3 hours.
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We showed that the RF method could be our prediction method of choice, both for the
prediction of >M1 flares (with a relative frequency of 4.8%, or 1,108 events) and for the
prediction of >C1 flares (with a relative frequency of 26.1%, or 6,029 events). In terms of
categorical skill scores, a probability threshold of 15% for >M1 flares gives rise to mean
(after 200 replications) RF skill scores on the order TSS = 0.74 ± 0.02 and HSS = 0.49 ±
0.01, while a probability threshold of 35% for >C1 flares gives rise to mean TSS = 0.60 ±
0.01 and HSS = 0.59 ± 0.01. The respective accuracy values are ACC = 0.93 and ACC =
0.84. In terms of probabilistic skill scores, the ranking of the ML techniques with respect to
their BSS against climatology is RF (0.42), MLP (0.29), and SVM (0.28) for >M1 flares
and RF (0.44), MLP (0.39), and SVM (0.36) for >C1 flares.

We further indicate that for >M1 flare prediction, SVM and MLP need additional tun-
ing of their hyperparameters (Section 4.2) in order to produce comparable results with RF.
Moreover, several statistical methods (linear regression, probit, and logit) produced accept-
able forecast results when compared with the ML methods. By increasing the number of
hidden nodes, the MLP networks provide flatter skill score profiles (i.e. ACC, TSS, and
HSS as a function of the threshold probability), but the peak values of the corresponding
curves are lower than those achieved by MLP networks with fewer hidden nodes. Regarding
the >C1 flares, all forecast methods work acceptably, although the best method is, again,
RF. A Monte Carlo experiment showed that results are robust with respect to different real-
izations of the training/testing pair, with different random seeds. Monte Carlo modeling also
decreases the amplitudes of the applicable standard deviations of the skill scores. Typically
standard deviations are larger for the >M1 flare case than for that of >C1 flares. This is to
be attributed to the different occurrence frequency of flares in the two cases.

The RF is a relatively new approach to solar flare prediction. Nonetheless, it may be
preferable over other widely used ML algorithms, at least for the datasets exploited so far,
giving competitive results without much tuning of the RF hyperparameters. This generates
hope for future meaningful developments in the formidable solar flare prediction problem, at
the same time aligning with excellent performance for RF reported in several classification
benchmarks (Fernández-Delgado et al., 2014). This important statement made, it appears
that even with the application of RF, solar flare prediction in the foreseeable future will
likely continue to be probabilistic (i.e. 0.0 – 1.0, continuous), rather than binary (i.e. 0 or 1).

In terms of the predictors importance, Schrijver’s R is found to be among the most sta-
tistically significant predictors, together with WLSG. The Ising energy and the TLMPIL
are also considered as important, ranking slightly below the previous two predictors. This
stems from the importance calculations according to the Fisher score and RF importance
for the >C1 and >M1 flare cases in Appendix A. This result is also in line with the com-
mon knowledge that flares occur mostly when strong and highly sheared MPILs are formed.
Other MPIL-highlighting predictors, such as the effective connected magnetic field strength,
Beff (Georgoulis and Rust, 2007), remain to be tested, in conjunction with R and WLSG, as
their cadence was lower than 3 h at the time this study was performed.

An interesting finding for the RF technique (Appendix B) is obtained by the predictors’
ranking information according to their importance, as measured by the Fisher score. Namely,
when we create prediction models with a varying number of the most important predictors
included, the RF prediction performance (in terms of TSS and HSS) continues to improve
monotonically with the number of included parameters. Conversely, the MLP and SVM
algorithms achieve only slight improvements in prediction results (again in terms of TSS
and HSS) by adding more than, say, the six most important predictors. This interesting
finding may further improve forecasting when more viable predictors become available.

For future FLARECAST-supported research, we plan to enlarge our analysis sample by
reducing the property cadence from 3 h to 1 h or even less (the limit is the inherent cadence
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of SDO/HMI SHARP data, namely 12 min). Another direction of future research is to in-
vestigate the robustness of our results for samples created with a higher cadence of 12 h
(24 h) coupled with a forecast window of 12 h (24 h). Furthermore, we plan to exploit the
substantial time-series aspect of our data using recurrent neural networks, possibly trained
with evolutionary algorithms. The present work, along with a series of similar concluded or
still ongoing studies, is considered for possible integration in the final FLARECAST online
system and forecasting tool, to be deployed by early 2018.
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Appendix A: Importance of Predictors for Flare Prediction

We computed the Fisher score (Bobra and Couvidat, 2015; Chang and Lin, 2008; Chen and
Lin, 2006) and the Gini importance (Breiman, 2001) for every predictor in the case of >M1
and >C1 flares. The obtained values for the importance of several predictors are presented
in Figures 7 and 8 for >C1 and >M1 flare prediction, respectively. The Fisher score, F , is
defined for the j th predictor as

F(j) = (x̄
(+)
j − x̄j )

2 + (x̄
(−)
j − x̄j )

2

1
n+−1

∑n+
k=1(x

(+)
k,j − x̄

(+)
j )2 + 1

n−−1

∑n−
k=1(x

(−)
k,j − x̄

(−)
j )2

. (A.1)

In Equation A.1, x̄j , x̄
(+)
j , and x̄

(−)
j are the mean values for the j th predictor over the entire

sample, the positive class, and the negative class, respectively. Furthermore, n+ (n−) are the
number of positive (negative) class observations. In addition, x

(+)
k,j (x

(−)
k,j ) are the values for

the kth observation of the j th predictor belonging in the positive (negative) class. The higher
the value of F(j), the more important the j th predictor.

The Gini importance is returned with the randomForest function of the randomForest
package in R. The higher the Gini importance of the j th predictor, the more important this
predictor.

Table 7 Abbreviations for predictors used in the main text (Symbol1) and in Figures 7 and 8 (Symbol2).

Abbreviations for predictors

Symbol1 Symbol2 Description

logR r_value_logr Schrijver’s R value

FSPI alpha_exp_fft Fourier spectral power index

TLMPIL mpil Magnetic polarity inversion line

DI decay_index Decay index

WLSG wlsg Gradient-weighted integral length of the neutral line

IsinEn1 ising_energy Ising energy original

IsinEn2 ising_energy_part Ising energy partitioned

http://medoc.ias.u-psud.fr/
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Figure 7 Importance of several predictors while predicting >C1 flares.

We note that the correlation between the two quantities (Fisher score and Gini impor-
tance) is r = 0.7441 for >C1 flares and r = 0.7535 for >M1 flares, respectively. This
shows that the two methods qualitatively agree on describing which predictors are the most
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Figure 8 Importance of several predictors while predicting >M1 flares.

important regarding flare prediction, in both classes of flare prediction. Figure 7 also shows
that for >C1 flares, the top three ranked predictors for both Fisher score and Gini impor-
tance are the two versions of Schrijver’s R and WLSG. For the >M1 flares, from Figure 8
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the top four ranked predictors for either Fisher score or Gini importance are the two versions
of Schrijver’s R, WLSG, and TLMPILBr. In Appendix A the terminology for every predictor
is explained in Table 7.

Appendix B: Prediction Models Resulting from Ranking the Predictors

We employed a backward elimination procedure, eliminating gradually predictors according
to their Fisher score rank, starting form the model with all K = 13 predictors included. In
every step, we eliminated the least important predictor from the set of currently included
predictors. In this way, we obtained prediction results for models with 2, 3, . . . , 11, 12
predictors included for the ML methods, RF, SVM, and MLP and the conventional statistics
methods LM, PR, and LG. The results of this iterative procedure for flares >C1 and >M1
are presented in Figures 9 and 10.

Figure 9 shows that there is a cut-off for the number of parameters included in the RF
equal to the 6 most important ones (according to the Fisher score in Equation A.1) above
which the RF is advantageous over the other two ML algorithms. For low-dimensional pre-
diction models (e.g. fewer than 6 included parameters) there is no special advantage in using
RF, and MLP or SVM seem a better choice then. This finding shows that of the highly cor-
related set of predictors, the MLP and SVM perform well using only a handful of them
(fewer than 6), but the RF continues to improve its performance in higher-dimension set-
tings, when the prediction model includes all 12 most important predictors. There is interest
in investigating the performance of RF when the number of (correlated) predictors would be
twice or three times that of the present study (24 – 36 predictors). Would the upward trend in
Figure 9a continue to hold when the number of included parameters increased to 24 or 36?
We note that RF is the only ML algorithm in the present study that belongs in the category
of “ensemble” methods. Moreover, in Figure 9, the performance of the three conventional
statistics methods LM, PR, and LG is presented. Clearly, the LM presents the worst fore-
casting ability, and we also note that the other two methods, PR and LG, score similar values
for the TSS and HSS in general. It is also noteworthy that the profiles of PR and LG are very
flat as a function of the number of included predictors, even flatter than the profiles from
SVM and MLP.

Likewise, Figure 10 shows that for low-dimensional settings, RF is worse than MLP. The
cut-off seems again to be six included parameters. Above this value, the RF provides better
out-of-sample TSS and HSS than MLP. There seems to be a problematic region between
three and six parameters included for the SVM, where adding more parameters to the SVM
degrades its performance. With more than six parameters, the SVM performance improves
again. Similarly to the >C1-class flares case, we again note in Figure 10 rather flat profiles
for the TSS and HSS for the conventional statistics methods, with PR and LG showing better
behavior than LM.

One general conclusion is that for very few predictors K < 6, all methods work the same,
so for parsimony, the conventional statistics methods could be preferred. This is also true
for very small samples N < 2,000 (results available upon request). Conversely, when K > 6
and N ≥ 10,000, the ML methods and especially the RF are better.

We note that in Appendix B, the MLP always has four hidden nodes and the SVM has γ

and cost parameters analogously to the full K = 13 SVM model for >C1 and >M1 flares
cases.
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Figure 9 Out-of-sample skill scores (TSS and HSS) for the three ML prediction methods and the three
statistics methods during the ranking procedure for >C1 flares. The thick continuous lines depict the averages
of the skill scores over 30 randomized runs.
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Figure 10 Same as in Figure 9, but for >M1 flares.
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Appendix C: Validation Results when Predictions Are Issued Only Once
a Day (at Midnight)

We present here forecasting results in the following scenario:

i) The training is performed as in the main scenario.
ii) The testing is performed only for the observations in the testing set of the main scenario,

which correspond to a time of 00:00 UT. To achieve this, we filter for the observations
in the previous testing set with midnightStatus = TRUE.

This method of training-testing is called the “hybrid method”, where training is done with
a cadence of 3 h and a forecast window of 24 h, and testing is done with a cadence of 24 h
and a forecast window of 24 h. The hybrid method is preferable over using a training phase
with a cadence of 24 h, which would result in undertrained models because of the limited
sample size during training.

Tables 8 and 9 are analogous to Tables 5 and 6 of the main scenario, but for midnight-
only (so once a day) predictions. For completeness, we recall that Table 8 is for >M1 flare
prediction and Table 9 is for >C1 flare prediction.

By comparing Table 8 to Table 5, we see that BS and AUC do not change much on
average when we move from the baseline scenario to the midnight prediction scenario. Nev-
ertheless, the associated uncertainty increases in the case of midnight-only predictions, since
the size of the testing set is smaller (only one, rather than eight, predictions per day). More

Table 8 Same as Table 5, but for
predictions issued only at
midnight.

MLP LM PR LG RF SVM

BS

0.0320 0.0328 0.0305 0.0305 0.0262 0.0333

(0.0031) (0.0025) (0.0025) (0.0025) (0.0022) (0.0032)

AUC

0.9342 0.9245 0.9419 0.9412 0.9558 0.8361

(0.0131) (0.0111) (0.0087) (0.0089) (0.0081) (0.0339)

BSS

0.2311 0.2122 0.2681 0.2686 0.3722 0.2007

(0.0671) (0.0316) (0.0391) (0.0421) (0.0397) (0.0538)

Table 9 Same as Table 6, but for
predictions issued only at
midnight.

MLP LM PR LG RF SVM

BS

0.1142 0.1273 0.1181 0.1169 0.1023 0.1187

(0.0041) (0.0034) (0.0037) (0.0038) (0.0037) (0.0041)

AUC

0.8771 0.8673 0.8696 0.8696 0.9004 0.8620

(0.0078) (0.0079) (0.0079) (0.0079) (0.0074) (0.0086)

BSS

0.3970 0.3281 0.3767 0.3826 0.4597 0.3735

(0.0190) (0.0143) (0.0163) (0.0169) (0.0169) (0.0172)
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significant differences are observed for BSS since the associated climatology is also differ-
ent. Nevertheless, the finding that RF is the best overall method continues to hold.

Similar conclusions can be drawn for the >C1 flare prediction case, that is, through Ta-
bles 9 and 6. Here, noticeably, not even the BSS changes significantly, since the underlying
climatology seems similar in both cases. This is because in contrast to >M1 class flares
with a mean frequency of ≈5%, >C1 class flares show a mean frequency of ≈25%.

Finally, Tables 10 and 11 present the skill scores ACC, TSS, and HSS for the midnight
prediction scenario analogously to Tables 2 and 3 for the baseline scenario. For complete-
ness, we note that Table 10 pertains to >M1 flare prediction and Table 11 to >C1 flare pre-
diction. We see that on average, the issuing of midnight-only predictions does not change the
ACC, TSS, and HSS much with respect to the probability threshold. For example, on >M1
flare midnight-only predictions, the RF provides ACC = 0.93 ± 0.01, TSS = 0.73 ± 0.04,
and HSS = 0.47 ± 0.03 for a probability threshold of 15%. Furthermore, for >C1 flare
midnight-only predictions, the RF yields ACC = 0.85 ± 0.01, TSS = 0.63 ± 0.02, and
HSS = 0.61 ± 0.02 for a probability threshold of 35%.

Appendix D: Concluding Remarks on ML Versus Statistical Methods for
Flare Forecasting

In order to assess the overall forecasting ability of ML versus statistical approaches in our
dataset and problem definition, we employed the weighted-sum (WS) multicriteria ranking
approach (Greco, Figueira, and Ehrgott, 2016), using a composite index (CI) defined in
Equation D.1:

CI = 1

3

(
ACC − ACCmin

ACCmax − ACCmin
+ TSS − TSSmin

TSSmax − TSSmin
+ HSS − HSSmin

HSSmax − HSSmin

)
. (D.1)

The CI value was computed for 6 × 21 = 126 probabilistic classifiers using the set of
methods {MLP, LM, PR, LG, RF, SVM} and a probability threshold grid of 5%. Then, the
126 probabilistic classifiers were ranked in non-increasing values of the CI index. A normal-
ization was made for ACC, TSS, and HSS, so that each metric over the set of alternatives
took values in the range [0,1]. The normalization is useful because the range of values
for ACC is different from the range of values for TSS and HSS. Moreover, ACCmin is the
minimum of ACC over all 126 alternative models. Likewise, ACCmax is the maximum ACC
obtained over all 126 alternative models. Similar facts hold for TSSmin, TSSmax, HSSmin, and
HSSmax. Analytically, Table 12 presents the results of the multicriteria ranking approach for
all methods we used with various probability thresholds, especially for the >C1 flare fore-
casting case. Table 13 conveys a similar ranking of all methods developed in this paper, but
for the >M1 flare prediction.

Figure 11 summarizes the results shown in Tables 12 and 13, so that the differences be-
tween ML and statistical methods are highlighted (e.g. see Figures 11b and 11d). Similarly,
conclusions for the merit of all methods developed in this paper can be drawn in Figures 11a
and 11c. The top 100τ percentile methods are those ranked in the corresponding positions
of Tables 12 and 13. For example, the top 16.6%(1/6) methods are those ranked in posi-
tions 1 – 21. For low values of τ , we obtain the best methods designated as the top 100τ%
methods. From Figure 11 we see that both for >C1 and >M1 flares, the RF has the greatest
frequency in the top 16.6% percentile of methods, with a frequency of 33.3%. This means
that in Tables 12 and 13, in positions 1 – 21, the RF method appears seven times in each
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Table 12 Ranking of all models with ML and statistical methods with the multicriteria WS method with
respect to the three criteria ACC, TSS, and HSS and using a weight vector equal to w = [1/3,1/3,1/3] for
>C1 flare forecasting. The methods are ranked in decreasing order of CI for varying levels of probability
thresholds used, with a grid of 5% for the probability thresholds. The six best positions of the ranking are
covered by the RF method for various probability thresholds.

rank model CI rank model CI rank model CI

PANEL A >C1 flares

1 RF-val35 0.983 22 PR-val30 0.919 43 MLP-val60 0.856
2 RF-val40 0.983 23 LG-val45 0.914 44 SVM-val55 0.849
3 RF-val45 0.971 24 LM-val40 0.907 45 SVM-val15 0.843
4 RF-val30 0.970 25 MLP-val50 0.907 46 LG-val20 0.842
5 RF-val50 0.953 26 PR-val45 0.907 47 PR-val55 0.840
6 RF-val25 0.938 27 MLP-val25 0.906 48 LM-val25 0.835
7 LG-val35 0.935 28 SVM-val40 0.906 49 PR-val20 0.828
8 MLP-val35 0.934 29 LM-val30 0.898 50 SVM-val60 0.824
9 PR-val35 0.933 30 RF-val60 0.898 51 MLP-val65 0.821

10 MLP-val40 0.932 31 LG-val25 0.892 52 MLP-val15 0.821
11 SVM-val25 0.932 32 LG-val50 0.889 53 LG-val60 0.818
12 LG-val40 0.930 33 SVM-val45 0.887 54 RF-val15 0.810
13 RF-val55 0.929 34 PR-val25 0.886 55 RF-val70 0.809
14 SVM-val30 0.928 35 RF-val20 0.886 56 LM-val50 0.803
15 MLP-val30 0.925 36 MLP-val55 0.885 57 SVM-val65 0.789
16 PR-val40 0.925 37 PR-val50 0.877 58 PR-val60 0.787
17 LM-val35 0.923 38 MLP-val20 0.875 59 MLP-val70 0.778
18 MLP-val45 0.923 39 LM-val45 0.869 60 LG-val65 0.768
19 LG-val30 0.921 40 SVM-val50 0.867 61 SVM-val70 0.751
20 SVM-val35 0.920 41 LG-val55 0.861 62 LG-val15 0.748
21 SVM-val20 0.920 42 RF-val65 0.859 63 RF-val75 0.747

PANEL B >C1 flares

64 PR-val65 0.738 85 LG-val80 0.593 106 PR-val95 0.420
65 LM-val55 0.735 86 LM-val15 0.592 107 LG-val95 0.417
66 MLP-val75 0.727 87 RF-val85 0.587 108 RF-val95 0.410
67 PR-val15 0.724 88 PR-val80 0.566 109 LM-val90 0.405
68 MLP-val10 0.720 89 SVM-val90 0.552 110 MLP-val95 0.400
69 LM-val20 0.718 90 LM-val70 0.537 111 LM-val95 0.387
70 LG-val70 0.715 91 LG-val85 0.533 112 LM-val5 0.372
71 SVM-val75 0.709 92 PR-val85 0.515 113 LM-val100 0.370
72 RF-val10 0.699 93 MLP-val90 0.510 114 SVM-val10 0.363
73 PR-val70 0.682 94 RF-val5 0.506 115 LM-val0 0.291
74 RF-val80 0.671 95 MLP-val5 0.501 116 SVM-val5 0.142
75 SVM-val80 0.667 96 RF-val90 0.500 117 RF-val0 0.131
76 MLP-val80 0.666 97 LM-val75 0.494 118 MLP-val0 0.000
77 LM-val60 0.664 98 LM-val10 0.488 119 MLP-val100 0.000
78 LG-val75 0.657 99 LG-val90 0.484 120 PR-val0 0.000
79 PR-val75 0.622 100 SVM-val95 0.484 121 PR-val100 0.000
80 LG-val10 0.621 101 PR-val90 0.476 122 LG-val0 0.000
81 SVM-val85 0.613 102 LM-val80 0.461 123 LG-val100 0.000
82 MLP-val85 0.596 103 LG-val5 0.441 124 RF-val100 0.000
83 PR-val10 0.594 104 LM-val85 0.431 125 SVM-val0 0.000
84 LM-val65 0.593 105 PR-val5 0.427 126 SVM-val100 0.000
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Table 13 Same as Table 12, but for >M1 flare forecasting.

rank model CI rank model CI rank model CI

PANEL A >M1 flares

1 RF-val20 0.938 22 PR-val25 0.839 43 SVM-val25 0.774

2 RF-val25 0.932 23 MLP-val5 0.836 44 MLP-val55 0.773

3 RF-val15 0.927 24 MLP-val35 0.836 45 LG-val40 0.770

4 RF-val30 0.912 25 SVM-val10 0.834 46 SVM-val30 0.756

5 RF-val10 0.890 26 LG-val30 0.827 47 MLP-val60 0.754

6 RF-val35 0.883 27 LM-val20 0.823 48 LM-val30 0.749

7 MLP-val15 0.870 28 LM-val10 0.822 49 PR-val40 0.749

8 MLP-val20 0.867 29 MLP-val40 0.820 50 LG-val45 0.743

9 MLP-val10 0.866 30 PR-val30 0.817 51 SVM-val35 0.741

10 MLP-val25 0.859 31 SVM-val15 0.816 52 RF-val55 0.736

11 PR-val15 0.856 32 RF-val45 0.815 53 MLP-val65 0.735

12 PR-val20 0.856 33 RF-val5 0.809 54 SVM-val40 0.725

13 LG-val15 0.854 34 MLP-val45 0.805 55 PR-val45 0.713

14 LG-val20 0.851 35 LG-val35 0.799 56 MLP-val70 0.713

15 RF-val40 0.851 36 LG-val5 0.796 57 LG-val50 0.709

16 MLP-val30 0.849 37 SVM-val20 0.792 58 SVM-val45 0.709

17 LM-val15 0.849 38 MLP-val50 0.790 59 LM-val5 0.699

18 SVM-val5 0.848 39 PR-val5 0.786 60 LM-val35 0.694

19 PR-val10 0.845 40 LM-val25 0.786 61 RF-val60 0.693

20 LG-val10 0.843 41 PR-val35 0.782 62 SVM-val50 0.692

21 LG-val25 0.840 42 RF-val50 0.778 63 MLP-val75 0.689

PANEL B >M1 flares

64 PR-val50 0.679 85 LM-val50 0.571 106 LM-val80 0.424

65 SVM-val55 0.679 86 SVM-val85 0.550 107 LG-val90 0.413

66 LG-val55 0.676 87 PR-val70 0.546 108 PR-val90 0.410

67 MLP-val80 0.663 88 LM-val55 0.546 109 LM-val85 0.404

68 SVM-val60 0.662 89 RF-val75 0.543 110 RF-val90 0.392

69 PR-val55 0.648 90 LG-val75 0.539 111 LM-val90 0.381

70 LM-val40 0.646 91 MLP-val95 0.539 112 PR-val95 0.378

71 RF-val65 0.645 92 LM-val60 0.521 113 LG-val95 0.372

72 SVM-val65 0.644 93 PR-val75 0.516 114 LM-val95 0.364

73 LG-val60 0.644 94 SVM-val90 0.512 115 LM-val100 0.352

74 MLP-val85 0.633 95 LG-val80 0.506 116 RF-val95 0.334

75 SVM-val70 0.625 96 RF-val80 0.492 117 LM-val0 0.251

76 PR-val60 0.612 97 LM-val65 0.489 118 MLP-val0 0.108

77 LG-val65 0.607 98 PR-val80 0.483 119 MLP-val100 0.000

78 SVM-val75 0.604 99 LG-val85 0.466 120 PR-val0 0.000

79 LM-val45 0.603 100 LM-val70 0.461 121 PR-val100 0.000

80 MLP-val90 0.594 101 SVM-val95 0.450 122 LG-val0 0.000

81 RF-val70 0.593 102 PR-val85 0.444 123 LG-val100 0.000

82 SVM-val80 0.579 103 RF-val85 0.442 124 RF-val100 0.000

83 PR-val65 0.576 104 LM-val75 0.441 125 SVM-val0 0.000

84 LG-val70 0.572 105 RF-val0 0.433 126 SVM-val100 0.000
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Figure 11 Descriptive statistics on the frequency with which every forecasting method for any probabil-
ity threshold presents itself in the top 100τ% percentile of the CI distribution. Panels (a) and (c) describe
frequencies for all methods, and panels (b) and (d) group the results by category of methods (e.g. ML vs.
statistical methods). For example, for >C1 flares in panel (a), the top 16.6% methods are dominated by RF
with a frequency of 7/21 = 33%. Likewise, for >M1 flares in panel (c), the top 16.6% methods are again
dominated by RF with a frequency of 7/21 = 33%.

table. We also see in Figure 11b that for >C1 flares, the top 16.6% methods are of type ML
with a frequency 71% (versus 29% for statistical methods). Similarly, in Figure 11d, ML
dominates in the top 16.6% methods with a frequency of 62% (versus 38% for statistical
methods).
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