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Abstract In this article, we investigate the possibility of transient growth in the linear per-
turbation of current sheets. The resistive magnetohydrodynamics operator for a background
field consisting of a current sheet is non-normal, meaning that associated eigenvalues and
eigenmodes can be very sensitive to perturbation. In a linear stability analysis of a tearing
current sheet, we show that modes that are damped as t → ∞ can produce transient en-
ergy growth, contributing faster growth rates and higher energy attainment (within a fixed
finite time) than the unstable tearing mode found from normal-mode analysis. We deter-
mine the transient growth for tearing-stable and tearing-unstable regimes and discuss the
consequences of our results for processes in the solar atmosphere, such as flares and coro-
nal heating. Our results have significant potential impact on how fast current sheets can
be disrupted. In particular, transient energy growth due to (asymptotically) damped modes
may lead to accelerated current sheet thinning and, hence, a faster onset of the plasmoid
instability, compared to the rate determined by the tearing mode alone.

Keywords Magnetohydrodynamics · Instabilities · Magnetic reconnection, theory

1. Introduction

The prototypical instability in resistive magnetohydrodynamics (MHD) is the tearing in-
stability. As the name suggests, this instability describes the growth of the “tearing” of a
magnetic field or, to be more precise, the change in the field’s magnetic topology. In two
dimensions, the tearing instability creates a series of magnetic islands, similar to Kelvin’s
cat’s eyes (e.g. Schindler, 2006). In three dimensions, the change in magnetic topology can
be more complicated (e.g. Priest, 2014).

The standard magnetic field configuration for the tearing instability is the current sheet.
The name derives from a thin layer of intense (compared to the surrounding environment)
current density located in a highly sheared magnetic field. Normally, the magnetic field
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points in opposite directions on either side of the current sheet, with the width of the current
sheet (where the change takes place) being much smaller than the typical length scale of the
large-scale system.

Since the seminal work of Furth, Kileen, and Rosenbluth (1963), there have been many
studies of the tearing instability that consider effects such as different geometries or the in-
clusion of extra physics (e.g. Pritchett, Lee, and Drake, 1980; Terasawa, 1983; Tassi, Hastie,
and Porcelli, 2007; Tenerani et al., 2015). In the context of solar physics, magnetic recon-
nection (the change of magnetic topology) is a fundamental physical process, so the tearing
instability is of great interest in this field. Solar eruptions, ranging from flares to jets to
coronal mass ejections (CMEs), are often believed to be triggered by magnetic reconnection
(e.g. MacNeice et al., 2004; MacTaggart and Haynes, 2014; MacTaggart et al., 2015). MHD
simulations have demonstrated that fast eruptive behavior is strongly linked to the tearing of
current sheets.

Although large-scale MHD simulations, such as those cited above, can describe the non-
linear evolution of the tearing instability, they are not so effective when it comes to analyz-
ing the onset of instability. The complex geometries, sensitivity to boundary conditions, and
low (compared to the corona) Lundquist numbers make a detailed analysis of the onset of
instability very challenging. Therefore, studies that focus only on the (linear) onset of the
instability are still very important.

When studying the onset of the tearing instability, the vast majority of studies have fo-
cused on normal-mode analysis (e.g. Chandrasekhar, 1961). That is, solutions are sought
with a time dependence of the form

φ ∼ exp(−iωt), (1)

where φ represents a variable of the system, ω is the frequency, and t is time. If �(ω) > 0,
then φ grows exponentially as t → ∞. Otherwise, if �(ω) < 0, then φ decays exponentially
as t → ∞. The objective of normal-mode analysis is to find the highest value of �(ω)

that corresponds to the fastest growing mode. The onset of the instability can, therefore,
be recast as an eigenvalue problem for eigenvalues ω. For the tearing instability, there is
one eigenvalue such that �(ω) > 0. Hence, there is only one mode that causes exponential
growth in the linearized system, and it is referred to as the tearing mode. It can be shown
analytically (Furth, Kileen, and Rosenbluth, 1963; Schindler, 2006) that the growth rate of
the tearing mode depends on the magnetic Lundquist number S (which we define later)
in the form S−α , where 0 < α < 1. For environments such as the solar corona, where the
magnetic Lundquist number is O(108) and above (e.g. Hood and Hughes, 2011), the tearing
mode growth rate is very slow compared to rapidly occurring phenomena like flares. This
has led researchers to study the nonlinear tearing instability in order to find faster dynamics.
However, it may be the case that a faster onset of the instability can be found in the analysis
of the linearized system by including the energy growth that is ignored by normal-mode
analysis.

As mentioned above, eigenvalues describe the behavior of growth or decay as t → ∞. In
normal-mode analysis, all eigenvalues satisfying �(ω) < 0 (exponential decay) are ignored.
However, modes associated with these rejected eigenvalues can produce transient growth,
which, although it decays exponentially as t → ∞, can produce significant energy growth
within a finite time. If this transient growth is large enough, the growth of the linear system
could enter the nonlinear regime much faster than by the growth rate of the tearing mode
alone. Therefore, the transient growth due to the damped modes of the system could lead to
current sheet disruption much faster than by the growth rate of the (unstable) tearing mode.
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There has been much interest in the study of transient growth of the linearized Navier–
Stokes equations for shear flows (e.g. Reddy and Henningson, 1993; Reddy, Schmid, and
Henningson, 1993; Schmid and Henningson, 1994; Hanifi, Schmid, and Henningson, 1996).
Mathematically, transient growth corresponds to the non-normality of the system. A non-
normal system is characterized by the non-orthogonality of eigenmodes. To analyze the
non-normal behavior of such systems, a generalization of the eigenvalue spectrum, known
as the pseudospectrum, can be used (Trefethen and Embree, 2005). Bobra et al. (1994) used
pseudospectra to relate ideal and resistive MHD spectra. They showed that the resistive
MHD eigenmodes, for sheared background fields, are strongly non-orthogonal and, hence,
can exhibit transient growth. The effects of non-normal behavior in MHD have also been
studied in the context of magnetic field generation (e.g. Farrell and Ioannou, 1999a,b; Liv-
ermore and Jackson, 2006). In solar physics, transient energy growth has attracted attention
in solar wind applications (e.g. Camporeale, Burgess, and Passot, 2009; Camporeale, 2010).

The effects of non-normal behavior have not, to our knowledge, been applied to eruptive
behavior in the corona, which is the focus of this article. By considering a sheared back-
ground magnetic field (a current sheet), we study the effects of transient behavior in the
cases when the system is (spectrally) stable and unstable to the tearing instability. We illus-
trate the non-normality of the associated operator using a particular form of the pseudospec-
trum that is simple to calculate once the eigenvalue spectrum has been obtained. The article
is outlined as follows: the initial model equations and boundary conditions are introduced,
the background theory for calculating the optimal energy growth is discussed, the spectra
and energy growth envelopes are displayed for several cases, and the article concludes with
a discussion of potential applications and further work.

2. Model Description

To study the tearing instability, we consider the 2D incompressible MHD equations

ρ

(
∂u

∂t
+ (u · ∇)u

)
= −∇p + μ−1(∇ × B) × B, (2)

∂B

∂t
= ∇ × (u × B) + η∇2B, (3)

∇ · B = ∇ · u = 0, (4)

where B is the magnetic field, u is the velocity, ρ is the (constant) density, p is the plasma
pressure, η is the constant magnetic diffusivity, and μ is the magnetic permeability. Al-
though compressible MHD would be a more suitable model for the solar atmosphere, we
chose to use incompressible MHD for two reasons. The first reason is simplicity – to illus-
trate our procedure, incompressible MHD allows for an obvious measure of the disturbance
energy. The theory that we develop, however, could be extended to compressible MHD and
more complicated models. The second reason is that most of the literature on the tearing in-
stability uses incompressible MHD. Therefore, comparison with previous work can be made
more directly.

Our background (static) equilibrium is

p0 = p0(x), B0 = B0z(x)ez, u0 = 0, (5)
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where the zero subscript corresponds to the equilibrium and

p0(x) + 1

2μ
B2

0z(x) = const. (6)

Before choosing a particular form for B0z(x), let us linearize the MHD equations. Setting
(u,B,p) = (u0,B0,p0) + (u1,B1,p1) results in the linearization

ρ
∂u1

∂t
= −∇p1 + μ−1(∇ × B1) × B0 + μ−1(∇ × B0) × B1, (7)

∂B1

∂t
= ∇ × (u1 × B0) + η∇2B1, (8)

∇ · B1 = ∇ · u1 = 0. (9)

Note that we are assuming η � 1, which is typical in many solar and astrophysical appli-
cations. We therefore ignore the contribution of diffusion on the background equilibrium in
Equation 8, expecting the dynamics of the instability to occur on a much shorter timescale
than the diffusion time.

We now look for solutions of the form

u1 = [
u(x, t),0, uz(x, t)

]T
eikz, B1 = [

b(x, t),0, bz(x, t)
]T

eikz, (10)

where k is the wavenumber of disturbances in the z-direction. Taking the curl of Equation 7,
we eliminate p1. Using the solenoidal constraints in Equation 9, we can eliminate uz and bz.
This leaves

∂

∂t

(
∂2u

∂x2
− k2u

)
= ikB0z

μρ

(
∂2b

∂x2
− k2b

)
− ikB ′′

0z

μρ
b, (11)

∂b

∂t
= ikB0zu + η

(
∂2b

∂x2
− k2b

)
, (12)

where a prime denotes differentiation with respect to x.

2.1. Equilibrium

We chose a classic form for the background magnetic field known as the Harris sheet. The
magnetic field of the Harris sheet is given by

B0z(x) = B0 tanh

(
x

x0

)
, B ′′

0z(x) = −B0

x2
0

2

cosh2(x/x0)
tanh

(
x

x0

)
, (13)

where B0 is the maximum field strength and x0 measures the thickness of the current sheet.
The equilibrium pressure then comes from Equation 6, but is not important for our calcula-
tions.

2.2. Non-dimensionalization

To non-dimensionalize the equations, consider

u = u0u
∗, b = B0b

∗, t = t0t
∗, x = x0x

∗, (14)
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with

t0 = x0

u0
, u0 = B0√

μρ
, (15)

where u0 is the Alfvén speed. The linearized MHD equations become (after dropping the
asterisks)

∂

∂t

(
∂2u

∂x2
− k2u

)
= ikB0z

(
∂2b

∂x2
− k2b

)
− ikB ′′

0zb, (16)

∂b

∂t
= ikB0zu + S−1

(
∂2b

∂x2
− k2b

)
, (17)

where

S = x0u0

η
(18)

is the (non-dimensional) Lundquist number.

2.3. Boundary Conditions

We require that b → 0 and u → 0 as x → ±∞. However, since numerical simulations typ-
ically range between finite values, we approximate the boundary conditions as b = u = 0
at x = ±d for some d > 0. This approach makes comparisons to simulations of tearing in-
stabilities more feasible. Moreover, since the tearing instability develops in a thin boundary
layer near x = 0, a value of d much higher than the width of the boundary layer will result
in a good approximation. In the Appendix, we perform one of our subsequent calculations
in the half-plane (x, z) ∈ [0,∞) × (−∞,∞). Comparing this to the corresponding result
from the closed domain reveals that the exact form of the boundary conditions is not of vital
importance for the results of this article.

3. Background Theory

In this section we discuss the background theory for determining the optimal energy growth
and how non-normal contributions are included. Our aim is to solve the full initial value
problem, rather than just the eigenvalue problem. However, in order to determine the ef-
fects of different modes on energy growth, we recast the initial value problem in terms of
a selection of eigenvalues and (corresponding) eigenmodes. By considering the kinetic and
magnetic energies, we define a (physically) suitable norm for the system and use this to
determine the optimal energy growth.

3.1. Operator Equations

In anticipation of the numerical approach that we describe later, we write the linearized
MHD equations as a matrix–vector system. Equations 16 and 17 can be written in the form

∂

∂t
Mv = Lv, (19)
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with

M =
(
D2 − k2 0

0 I

)
, L =

(
0 LI

ikBz LR

)
, v =

(
u

b

)
, (20)

and

LI = ikBz

(
D2 − k2

) − ikB ′′
z , LR = S−1

(
D2 − k2

)
, D = ∂

∂x
, (21)

where I represents the identity operator. If we consider solutions of the form

v = ṽ exp(−iωt), ω ∈C, (22)

we can transform the initial value problem of Equation 19 into the generalized eigenvalue
problem

−iωMṽ = L̃v. (23)

Making the assumption of Equation 22 restricts us to examining growth or decay in the limit
t → ∞ only. In normal-mode analysis, we would solve Equation 23 for the eigenvalue with
the highest value of �(ω) > 0. This approach, however, misses the possibility of transient
growth due to eigenmodes with corresponding eigenvalues satisfying �(ω) < 0, i.e. damped
modes.

In our calculations of transient growth, we made use of the eigenvalue spectrum calcu-
lated from Equation 23 and the corresponding eigenmodes. In practice, however, we only
need to consider a finite number of eigenmodes since not all eigenfunctions will contribute
non-normal behavior. Therefore, we restrict ourselves to the space S

N spanned by the first
N least damped eigenmodes of M−1L:

S
N = span{̃v1, . . . , ṽN }. (24)

We expand the vector functions v ∈ S
N in terms of the basis {̃v1, . . . , ṽN }:

v =
N∑

n=1

κn(t )̃vn. (25)

Note that the expansion coefficients κn are functions of t since we are solving the full initial
value problem of Equation 19 and not the restricted problem of Equation 23. We can restate
Equation 19 in the simple form

dκ

dt
= −i	κ, 	 ∈ C

N×N, κ ∈C
N, (26)

with

κ = [κ1 . . . , κN ]T, 	 = diag[ω1 . . . ,ωN ]. (27)

The operator 	 represents the linear evolution operator, M−1L, projected onto the space SN .

3.2. Energy Norm

In order to complete the transformation of the vector functions v to coefficients κ , we must
consider the scalar product and its associated norm. To measure the disturbance energy, we
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consider the combination of the (nondimensional) disturbance kinetic and magnetic energies

EV = 1

2

∫
V

(|u|2 + |b|2)dV. (28)

From Equation 9 we have

Du + ikuz = 0, Db + ikbz = 0. (29)

Therefore, by virtue of Parseval’s equivalence (e.g. Tichmarsh, 1948), we can write

EV =
∫

k

1

2k2

∫ d

−d

(|Du|2 + k2|u|2 + |Db|2 + k2|b|2)dx dk. (30)

Following previous works (e.g. Reddy and Henningson, 1993), we take the energy density
E as

E = 1

2k2

∫ d

−d

(|Du|2 + k2|u|2 + |Db|2 + k2|b|2)dx. (31)

Since Equation 31 provides a sensible measure of the energy for a given k, we define the
energy norm as

‖v‖2
E = 1

2k2

∫ d

−d

(|Du|2 + k2|u|2 + |Db|2 + k2|b|2)dx. (32)

For any v1, v2 ∈ S
N , the inner product associated with the above energy norm can be written

as

(v1,v2)E = 1

2k2

∫ d

−d

vH
2 Qv1 dx, (33)

where

Q =
(

k2 −D2 0
0 k2 −D2

)
, (34)

and the superscript H represents the complex-conjugate transpose. The integrands in Equa-
tions 32 and 33 can be related via integration by parts. Equation 33 can be written as

(v1,v2)E = 1

2k2

∫ d

−d

vH
2 Qv1 dx = κH Qκ, (35)

where the matrix Q has components

Qij = (̃vi , ṽj )E = 1

2k2

∫ d

−d

ṽH
j Qṽi dx. (36)

The matrix Q is both Hermitian and positive definite. We can, therefore, factor Q according
to Q = FHF (e.g. Trefethen and Bau, 1997), leading to

(v1,v2)E = κH
2 Qκ1 (37)

= κH
2 FH Fκ1 (38)

= (Fκ1,Fκ2)2. (39)
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The associated vector norm satisfies

‖v‖E = ‖Fκ‖2, v ∈ S
N . (40)

This relationship between the energy norm and the L2 norm is useful for the practical cal-
culation of the optimal energy growth that we discuss shortly.

3.3. Optimal Growth

The formal solution of the initial value problem 19 can be written as

v = exp
(
M−1Lt

)
v0, v0 = v(0). (41)

Using Equation 25, we can transform the above result into

κ = exp(−i	t)κ0, κ0 = κ(0). (42)

The optimal transient growth of the disturbance energy is given by the norm of the matrix
exponential

G(t) ≡ G(t, S, k) = max
v0 �=0

‖v(t)‖2
E

‖v0‖2
E

(43)

= max
κ0 �=0

‖Fκ(t)‖2
2

‖Fκ0‖2
2

(44)

= max
κ0 �=0

‖F exp(−i	t)κ0‖2
2

‖Fκ0‖2
2

(45)

= max
κ0 �=0

‖F exp(−i	t)F−1Fκ0‖2
2

‖Fκ0‖2
2

(46)

= ‖F exp(−i	t)F−1‖2
2. (47)

Equation 47 follows from Equation 46 via the definition of an induced norm.
The curve traced out by G(t) vs. t represents the maximum possible energy amplification,

which for each instant of time is optimized over all possible initial conditions with unit
energy norm (Schmid and Henningson, 1994). The initial disturbance that optimizes the
amplification factor can be different for different times. Therefore, G(t) should be thought
of as the envelope of the energy growth of individual initial conditions with unit energy
norm. Henceforth, we refer to G(t) as the optimal energy envelope.

4. Numerical Procedure

In this section we briefly outline the main numerical procedures for the required calcula-
tions. Until now, we have presented the theory in terms of the underlying operators. Since a
practical solution requires a (finite) discretization of the problem, we henceforth refer to ma-
trices rather than operators and eigenvectors rather than eigenmodes. When referring back
to an equation containing operators, it will be implicit that we are now considering the dis-
cretized version of that equation and, hence, are strictly dealing with finite matrices rather
than operators.
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4.1. Discretization for the Eigenvalue Problem

We follow previous works on non-normal stability by expanding the variables in terms of
Chebyshev polynomials. These functions are defined in the interval [−1,1]. It is trivial to
convert from the problem domain [−d, d] into the Chebyshev domain via y = x/d , with
y ∈ [−1,1]. A function can be approximated on the Chebyshev interval as

f (y) =
N∑

n=0

anTn(y), (48)

where

Tn(y) = cos
[
n cos−1(y)

]
(49)

and the an are constants. The unknown variables u and b in Equation 19 are expanded in
the form of Equation 48. Derivatives are also expressed in terms of Chebyshev polynomials
and make use of standard recurrence relations (e.g. Abramowitz and Stegun, 1964). In order
to use these recurrence relations, the expanded equations are then required to be satisfied at
the Gauss–Lobatto collocation points,

yj = cos

(
πj

N

)
. (50)

If we consider the eigenvalue problem of Equation 23, the expansion in terms of Cheby-
shev polynomials produces a matrix–vector system where the matrices (for the generalized
eigenvalue problem) contain spectral differentiation matrices and the vector contains the
expansion coefficients an.

Boundary conditions are included in rows of one of the matrices of the discretized gen-
eralized eigenvalue problem. The corresponding rows in the other matrix are chosen to be
a complex multiple of these rows. By choosing a large complex multiple, spurious modes
associated with the boundary conditions can be mapped to a part on the complex plane
far from the region of interest (far below the eigenvalues near �(ω) = 0). To illustrate this
approach, consider the discrete form of Equation 23

−iωMx = Lx, (51)

where M and L are finite matrices and x represents an eigenvector. We can write

M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

T0(1) T1(1) . . .

T ′′
0 (y1) − k2T0(y1) T ′′

1 (y1) − k2T1(y1) . . .

...
...

...

T ′′
0 (yN−1) − k2T0(yN−1) T ′′

1 (yN−1) − k2T1(yN−1) . . .

T0(−1) T1(−1) . . .

...
...

. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (52)

where we indicate the layout of the top-left section of the matrix (see the definition of M in
Equation 20). Boundary conditions have been included in the 1st and N th rows. The same
rows in L are chosen as a complex multiple of the corresponding rows in M (Reddy, Schmid,
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and Henningson, 1993). In this article, we multiply the rows by −8000i. For brevity, we do
not display the full matrix of the discretized problem.

Once the system is fully discretized, the generalized eigenvalue problem can be solved
by standard methods. In this article, we perform the calculations in MATLAB.

4.2. Optimal Quantities

4.2.1. Energy Growth

To calculate the optimal energy growth, we make use of singular value decomposition
(SVD). Writing A = F exp(−i	t)F−1, we can decompose this matrix as

AV = �U, (53)

where U and V are unitary matrices and � is a matrix containing the singular values, ordered
by size. It can be shown that ‖A‖2 = σ1, where σ1 is the highest singular value of A (e.g.
Trefethen and Bau, 1997). Via Equation 47, we use this property to determine the optimal
energy growth. Again, we use MATLAB to calculate the SVD.

4.2.2. Optimal Disturbances

In order to determine the initial disturbance that will create the maximum possible amplifi-
cation at a given time t0, we can make further use of the SVD. Let A = F exp(−i	t0)F

−1.
If σ1 is the highest singular value of A, then, as described above,

σ1 = ∥∥F exp(−i	t0)F
−1

∥∥
2
= ∥∥ exp(−i	t0)

∥∥
E
. (54)

If we perform a decomposition, as before, and now focus only on the column vectors of U

and V corresponding to σ1, we obtain

Av1 = σ1u1. (55)

The effect of A on an input vector v1 results in an output vector u1 stretched by a factor
of σ1. That is, v1 represents an initial condition that will be amplified by a factor σ1 due to
the mapping F exp(−i	t0)F

−1, where t0 is the time when the amplification is reached (e.g.
Schmid and Henningson, 1994). On the subspace S

N , the optimal initial disturbance can be
expressed as

κ1 = F−1v1. (56)

5. Spectra and Perturbed Matrices

In this section we present some of the results from solving the generalized eigenvalue prob-
lem of Equation 23. To be more precise, we solve the discretized version of Equation 23
subject to the numerical scheme outlined in the previous section. Throughout the rest of the
article, unless specified otherwise, we set d = 10. Let us consider S = 1000 and examine
the spectra for the cases k = 0.5 and k = 1.2. Figure 1 displays these two spectra.

For the tearing problem set up in this article, it can be shown analytically that the equi-
librium can only become tearing-unstable for 0 < k < 1. The spectrum in Figure 1a is for
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Figure 1 Spectra for the
discrete generalized eigenvalue
problem, Equation 23, for
S = 1000 and (a) k = 0.5 and
(b) k = 1.2. In (a), the unique
eigenvalue corresponding to the
tearing mode is highlighted.

k = 0.5 and the system is, therefore, linearly unstable to the tearing instability. As can be
seen from this spectrum, there is only one unstable eigenvalue, labelled as corresponding
to the tearing mode. This eigenvalue is ≈0.0131, which is equivalent to the value obtained
from a finite-difference solution of the same problem (Hood, private communication). The
layout of the spectrum is qualitatively similar to other tearing-unstable spectra that have been
calculated for similar boundary conditions and background equilibria (e.g. Goedbloed, Kep-
pens, and Poedts, 2010). There is a distinct branching structure that is found in the spectra
of many non-normal matrices (Reddy, Schmid, and Henningson, 1993).

In the spectrum for k = 1.2, in Figure 1b, there are no eigenvalues with �(ω) > 0. There
is still, however, a branching structure similar to the previous spectrum. The branch points
of the spectra indicate the non-normal behavior of this resistive MHD problem. This means
that eigenvectors with eigenvalues satisfying �(ω) < 0 can contribute transient growth to the
amplification of energy. In order to reveal this non-normal behavior, consider the following
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Figure 2 Same spectra as in
Figure 1, but now with
eigenvalues of the perturbed
matrices included and shown in
red.

description. Let A be a matrix from which the eigenvalues of the problem are found, and
let E be a matrix such that ‖E‖2 ≤ 1. Consider, also, a small parameter ε � 1. A complex
number, z, is in the pseudospectrum of A, σε(A), if z is in the spectrum of A+ εE (a similar
statement can be made for finite operators). For a normal matrix, points z ∈ σε can differ
from corresponding points in the spectrum of A by O(ε), i.e. by the size of the perturbation
(e.g. Trefethen and Embree, 2005).

For a non-normal matrix, however, the difference can be much larger. Instead of the
eigenvalues of A + εE differing from those of A by, at most, O(ε), they can differ by O(1).
This behavior is particularly present at the branch points of spectra.

If A represents the unperturbed matrix of the spectra displayed in Figure 1, Figure 2
displays the spectra of A + εE (for k = 0.5,1.2) where ε = O(10−6) and the entries of
E are random and taken from a normal distribution. The eigenvalues of A + εE, for six
different random matrices E, are shown in red.
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The pseudospectrum of A would be the subset of the complex plane given by

σε =
⋃

‖E‖2≤1

σ(A + εE). (57)

As demonstrated in Figure 2, however, only a few matrices E are required to reveal the
non-normal character of the matrix A.

There are several equivalent definitions of pseudospectra (Trefethen and Embree, 2005).
The definition we have presented here gives the simplest and most practical demonstration
of non-normal behavior. For our current purposes, this version of the pseudospectrum will
suffice.

Looking at the eigenvalues of the perturbed matrix, there are two main features that
emerge. The first is that for large parts of the spectra, the eigenvalues of A + εE differ from
the eigenvalues A by O(ε), indicating normal behavior. The second feature is that near the
branch points of the spectra, the difference is now much larger. For both spectra displayed,
a perturbation of O(10−6) produces a difference of O(10−1) between the eigenvalues of the
matrices A and A + εE at the branch locations. This jump of five orders of magnitude is a
clear signal of non-normality and, hence, the possibility of significant transient growth. Esti-
mating the pseudospectrum of Equation 57 with just a few random matrices E is the recom-
mended approach for determining if the system in question is non-normal since it is easily
determined from the spectrum that we use for determining the optimal transient growth.
Plotting the pseudospectrum estimate, as done in Figure 2, also reveals what eigenvectors
will produce non-normal effects and then should, therefore, be included in the subspace S

N .

6. Optimal Energy Growth

6.1. Spectrally Stable k

As stated previously, the onset of the tearing instability, for the present setup, occurs only
for 0 < k < 1 in normal-mode analysis. However, as demonstrated in the previous sec-
tion, the system is non-normal and allows for the possibility of transient growth, even for
k > 1. To get an overview of the optimal energy growth for spectrally stable k, we calculate
maxt≥0 G(t) for different k. For the calculation of G(t), we only consider contributions from
eigenvalues with −1.4 < �(ω) < 0. This means that for different values of k, different num-
bers of eigenvalues (and therefore eigenvectors) are used in the calculations. However, this
range captures most of the effects of the non-normality, as suggested by the pseudospectra,
and does not disguise the main results. The values of maxt≥0 G(t) for a range of k > 1 and
for the cases S = 100 and S = 1000 are displayed in Table 1.

Table 1 Maxima of G(t) in time
for k > 1 and magnetic Lundquist
numbers S = 100, 1000.

k maxG(t, S = 100) maxG(t, S = 1000)

1.1 1.6 8.48

1.2 1.51 10.86

1.3 1.41 11.79

1.4 1.35 11.42

1.5 1.29 11.57
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Figure 3 Example of an optimal
energy envelope G(t) for
S = 1000 and k = 1.1.

Table 2 S vs. κ(F ) for k = 1.1.
S 10 50 100 500 1000 5000

κ(F ) 20 690 1.6 × 104 2 × 108 3 × 108 3.8 × 108

For S = 100, the optimal energy growth is small and does not even double in size for the
values of k displayed. This result is important as the magnetic Lundquist number for many
simulations can be of O(100). Therefore, any transient growth would not be noticed. Moving
up to S = 1000, the optimal energy growth can increase by an order of magnitude. In the
solar corona, where S ≈ O(108) and higher, it is therefore possible that transient growth for
spectrally stable k could become large enough to excite the nonlinear phase of the tearing
instability. An example of a G(t) envelope for k = 1.1, S = 1000 is shown in Figure 3.

In light of the results of Table 1, we may ask how the transient energy growth can increase
with increasing S. One way to answer this question is to consider a simple upper bound for
the energy growth. For an initial value problem, suppose that ωI is the imaginary part of the
least damped eigenvalue of 	. It then follows that

exp(ωIt) ≤ ∥∥exp(−i	t)
∥∥

E
(58)

≤ ‖F‖2

∥∥F−1
∥∥

2
exp(ωIt) (59)

≤ κ(F ) exp(ωIt), (60)

where κ(F ) = ‖F‖2‖F−1‖2 is the standard notation for the condition number of the matrix
F (not to be confused with κ from Equation 25). If κ(F ) = 1 in Equation 60, we have equal-
ity and the energy bound is determined by the least damped eigenvalue alone. If, however,
κ(F ) � 1, then there is the potential for substantially larger energy growth at early times,
even though it may be that ωI < 0. For the tearing-stable case studied above, ωI ≈ 0 and
so the energy bound is given by κ(F ). Table 2 shows how the condition number varies for
some values of S when k = 1.1.

Clearly, using κ(F ) as an upper bound for the energy is too loose for practical consid-
erations. However, the purpose of displaying these results is to convey the following: as S

increases and, hence, the diffusion term in the induction equation is multiplied by a smaller
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Figure 4 Optimal energy
growth curves G(t) for S = 1000
and k = 0.2. Key: �(ω) > −0.6
(solid), �(ω) > 0 (dash).

coefficient S−1, it may reasonably be expected that the energy bound tends to an ideal MHD
limit, where the onset of instability is governed entirely by eigenvalues. However, the op-
posite is true, allowing for (non-normal) transient effects to play a significant role. As S

increases, the eigenvectors (related to F via the inner product in Equation 39) become more
ill-conditioned, as discussed in Bobra et al. (1994).

Stricter bounds (both upper and lower) for the energy growth can be determined using
pseudospectral theory (Trefethen and Embree, 2005). However, such considerations go be-
yond the scope of the present article and will be considered in future work.

6.2. Spectrally Unstable k

For 0 < k < 1, a normal-mode analysis would produce the eigenvalue with the highest pos-
itive value of �(ω), which would represent the growth rate of the linearly unstable system.
For the tearing instability, the growth rate behaves as S−α for 0 < α < 1, which, for coronal
values, is very slow. For a discussion of the various values of α, determined by eigenvalue
analysis in different regimes, we refer to Tenerani et al. (2016).

Since normal-mode analysis ignores any energy growth that decays as t → 0, the possi-
bility of faster energy growth due to transient effects is often neglected. To demonstrate the
possible effect of transients on the growth rate, Figure 4 displays the optimal energy growth
envelopes for two cases: the optimal energy growth due to the tearing mode alone, and the
optimal energy growth due to the combination of the tearing mode and spectrally stable
eigenvectors. This example is calculated for S = 1000 and k = 0.2, and when transient ef-
fects are included, we consider eigenvectors with corresponding eigenvalues with imaginary
parts bounded below by �(ω) = −0.6.

The dashed curve represents the optimal energy growth using only the tearing mode.
This envelope could be produced if we performed a normal-mode analysis. Comparing this
curve to the case where other eigenvectors are included in the calculation reveals very in-
teresting behavior. By t ≈ 20, G(t) from the solid curve increases to ≈30 (note that the
Figure displays logG(t)), compared to that of the dashed curve, which only increases to
≈1. Including the effects of transient growth has resulted in an optimal energy growth that
proceeds much more rapidly, at short times, compared to the contribution from the linearly
unstable mode alone. By t ≈ 40, the solid curve begins to plateau and the growth rate is now
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slower than that of the dashed curve. This is due to the initial transients decaying and having
weaker effect on the energy growth. From t ≈ 60 and beyond, both curves become parallel.
This behavior is to be expected as the contribution from the unstable mode dominates as
t → ∞. It is clear from Figure 4 that including the effects of the transients can increase the
optimal energy growth substantially.

As mentioned before, the curves of G(t) are envelopes of the optimal energy growth and
so, in practice, they may not be reached if the initial perturbation is not optimal. However,
Figure 4 reveals that even if the optimal energy growth is not attained, the gap between the
envelopes for growth with and without transient effects can be large. Hence, even a non-
optimal perturbation can produce fast energy growth that could amplify the energy to an
order of magnitude (or more) greater than that predicted by normal-mode analysis, within a
given time.

6.3. Optimal Disturbances

The optimal energy envelopes described in the last section represent, at every point in time,
the energy amplification optimized over all initial conditions with unit energy norm. As
described in Section 4.2.2, we can determine the optimal perturbation from the same analysis
used to calculate G(t). That is, for a given time, we can determine the initial perturbation
that produces the optimal energy amplification at that time. To illustrate this, Figure 5 shows
the optimal initial values for the x-component of the velocity at times t = 30, 40 for the case
S = 1000, k = 0.2.

The other components of u and b at t = 0 can also be found. For brevity, we omit dis-
playing them here. The purpose of calculating the optimal initial conditions is described in
the following section.

7. Discussion

7.1. Summary

In this article, we have demonstrated that the linear onset of the tearing instability can exhibit
large transient energy growth due to the non-normality of the associated resistive MHD op-
erator. This energy amplification is found by solving the full initial value problem rather than
just the eigenvalue problem of normal-mode analysis. The latter theory is only concerned
with the asymptotic growth of the linear system and ignores transient effects. From our illus-
trative examples we have shown that transient energy growth can be amplified much faster
than that determined purely from normal-mode analysis. This behavior has been demon-
strated for both tearing-stable and tearing-unstable values of the wavenumber.

To determine the optimal energy growth, we have made use of the eigenvalues and eigen-
vectors of the system. By plotting pseudospectra, we revealed that a subset of eigenvectors
contributes to transient energy growth. The eigenvectors of this subset have eigenvalues ω

with �(ω) < 0, which are ignored by normal-mode analysis.
The optimal energy envelopes that we calculated increase in amplitude with the magnetic

Lundquist number S. These curves represent the possible energy amplification that can be
achieved if the initial condition is optimal. However, even if the initial condition is not
optimal, there is still the possibility for energy growth that is much faster than the growth
rate determined from normal-mode analysis. This means that transient energy growth could,
potentially, trigger the nonlinear phase of the tearing instability much sooner than previously
expected. If this is the case, the implications for the tearing instability in solar physics would
be substantial.
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Figure 5 Optimal initial ux for
(a) t = 30, (b) t = 40.

7.2. Solar Applications

7.2.1. Coronal Phenomena

In the solar corona, two important phenomena that are often linked to current sheets and their
dissipation are coronal heating and solar eruptions. For the first of these, the “nanoflare”
theory suggests that the corona is heated by many “small” heating events (or flares) spread
throughout the coronal magnetic field (Parker, 1988). The tearing of current sheets, which
develop from the complex deformation of magnetic fields, is one possible way that the mag-
netic field can release its energy as heat. Recent models of the nonlinear development of the
MHD kink instability have revealed the development of many small-scale current features
that could act as nanoflares (e.g. Hood et al., 2016). Our results support the idea of coronal
heating via tearing instabilities as perturbations could excite large transient growth, which,
in turn, could potentially readily generate nanoflares.



148 Page 18 of 20 D. MacTaggart, P. Stewart

For the second phenomenon, current sheets are believed to play an important role at the
onset, and subsequent nonlinear development, of solar eruptions. Such current sheets would
be manifest in the flares associated with the initiation of CMEs, jets, and surges. Simulations
of CME-type eruptions often reveal a combination of reconnection above and below the
CME, referred to as the breakout theory of CMEs. In particular, simulations, both 2D and
3D, demonstrate that tearing reconnection above and below the CME heralds the onset of an
eruption (e.g. MacNeice et al., 2004; MacTaggart and Haynes, 2014). The onset of jets and
surges has also been linked to the tearing of current sheets (e.g. MacTaggart et al., 2015).
The onset of jets and eruptions is an important topic, not only for theoretical interest, but for
space weather applications. Therefore, understanding all aspects (normal and non-normal)
of the onset of the tearing instability is vital.

7.2.2. Quasi-Singular Current Sheets and the Plasmoid Instability

Recent work by Pucci and Velli (2014) has highlighted that the aspect ratio of current sheets
has a threshold value after which equilibrium cannot be reached and the current sheet must
reconnect. Various simulations have revealed that a fast tearing instability can develop for
large S and have growth rates proportional to S1/4 (Lourerio, Schekochihin, and Cowley,
2007; Lapenta, 2008). Hence, in the limit as S → ∞, there would be, in the words of Pucci
and Velli (2014), an “infinitely unstable mode”, which is impossible in ideal MHD. By a
simple and clever scaling argument, they showed that once the current sheet aspect ratio is
O(S1/3), a laminar current sheet cannot be supported and fast tearing must proceed.

Although we agree with the main conclusion of Pucci and Velli (2014), we would suggest
an alternative path to reaching their result. Their analysis is based entirely on eigenvalues
and eigenvectors and so ignores the contribution of any transient growth. As the possible
energy amplification of transient growth increases with S, a much faster onset of the tearing
instability could be found that is due to transient growth. Such transient growth depends on
the initial perturbation. Hence, the result of Pucci and Velli (2014) can be thought of as a
lower bound, when there are no effects of transient growth. As soon as there are perturba-
tions that can induce transient growth, energy amplification will grow faster, thus exciting
the tearing instability faster, as shown in the example in Figure 4.

Further recent work by Comisso et al. (2016) attempts to describe a general theory of the
plasmoid instability, formulated by means of a principle of least time. In their analysis, they
find that the scaling relationships for the final aspect ratio, the transition time to rapid onset,
the growth rate, and the number of plasmoids depend on the size of the initial disturbance
amplitude, the rate of current sheet evolution, and the Lundquist number. We agree that the
initial conditions are important for the onset of the instability, however, we would suggest
that the theory of Comisso et al. (2016) could be extended to include transient effects like
those described in this article. Using scalings for the tearing mode alone will not give a
complete description of the transient phase of the instability.

7.3. Future Work

This work can proceed in two main directions. The first is to include extra physics (e.g. two
fluid effects) to study how this would effect transient growth. The second, and perhaps most
important, is to use optimal initial perturbations as initial conditions in nonlinear resistive
MHD simulations. This task will determine if transient growth can lead to a fast nonlinear
phase of the tearing instability or if nonlinear terms saturate the transient growth. It will
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be particularly interesting to determine if the nonlinear tearing instability can be excited by
perturbations with k > 1, i.e. spectrally stable perturbations.

Although we have suggested that our results can extend those of previous studies (such
as Pucci and Velli, 2014 and Comisso et al., 2016), there remains much further work to
understand how the damped part of the eigenvalue spectrum perturbs the current sheet and
drives reconnection, particularly at very high values of S.

Disclosure of Potential Conflicts of Interest The authors declare that they have no conflicts of interest.

Appendix

Throughout this article, we have performed calculations with boundary conditions u = b = 0
at x = ±d . This has been done so that our results can be easily compared to other works
and to nonlinear simulations, which typically use such boundary conditions. Since the tear-
ing instability develops in a boundary layer near x = 0, the precise nature of the boundary
conditions should not play a strong role in the onset of the instability. To illustrate this, we
solve the discrete form of Equation 23, with S = 1000 and k = 0.5, in the half-plane and
compare the resulting spectrum to that in Figure 1a.

Anticipating a symmetric solution in b and an antisymmetric solution in u about x = 0,
we set the boundary conditions at x = 0 to be

u = db

dx
= 0. (61)

As x → ∞, we set

u = b = 0. (62)

In order to represent this boundary numerically, we consider a large domain denoted by
0 ≤ x ≤ xmax. In order to expand the variables using Chebyshev polynomials, we need to
map our coordinates to the domain −1 ≤ y ≤ 1. This is achieved through

x = a
1 + y

b − y
, (63)

where

a = xmaxxi

xmax − 2xi

and b = 1 + 2a

xmax
. (64)

This mapping clusters the grid points near the boundary layer at x = 0 and places half
of the grid points in the region 0 ≤ x ≤ xi (Hanifi, Schmid, and Henningson, 1996). In
this example, we take xmax = 100 and xi = 15. The resulting spectrum is displayed in Fig-
ure 6.

By inspection, the comparison with Figure 1a yields few differences. The eigenvalue
corresponding to the tearing mode now has a value ≈0.0111, which is still similar to that
calculated for the other boundary conditions. Two isolated eigenvalues near �(ω) = 0 in
Figure 1a are now pushed nearer the main branches in Figure 6. Apart from these minor
differences, the spectra calculated from different boundary conditions are very similar. This
result suggests that the exact form of boundary conditions, assuming they do not interfere
dynamically with the boundary layer at x = 0, will not radically change the behavior of the
onset of the tearing instability.
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Figure 6 Spectrum of the
discrete eigenvalue problem with
half-plane boundary conditions
for S = 1000, k = 0.5.
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