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Abstract Axially symmetric constant-alpha force-free magnetic fields in toroidal flux ropes
with elliptical cross sections are constructed in order to investigate how their alphas and
magnetic helicities depend on parameters of the flux ropes. Magnetic configurations are
found numerically using a general solution of a constant-alpha force-free field with an ax-
ial symmetry in cylindrical coordinates for a wide range of oblatenesses and aspect ratios.
Resulting alphas and magnetic helicities are approximated by polynomial expansions in pa-
rameters related to oblateness and aspect ratio. These approximations hold for toroidal as
well as cylindrical flux ropes with an accuracy better than or of about 1%. Using these for-
mulae, we calculate relative helicities per unit length of two (probably very oblate) magnetic
clouds and show that they are very sensitive to the assumed magnetic cloud shapes (circular
versus elliptical cross sections).

Keywords Coronal mass ejections · Interplanetary · Helicity · Magnetic · Magnetic fields ·
Interplanetary

1. Introduction

Magnetic flux ropes are common in the solar system. They are present in the solar corona
(e.g. Song et al., 2015), in the solar wind (Shimazu and Marubashi, 2000; Janvier, Démoulin,
and Dasso, 2014b,a), and in planetary magnetospheres (Moldwin and Hughes, 1991). The
largest and most prominent flux ropes were studied first, and they were called magnetic
clouds (Krimigis, Sarris, and Armstrong, 1976; Burlaga et al., 1981; Klein and Burlaga,
1982). Magnetic clouds are large flux ropes ejected from the solar corona and traveling in
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the solar wind. When interacting with the Earth’s magnetosphere, they may cause severe
geomagnetic storms, therefore studying them is important. Magnetic clouds were success-
fully modeled by force-free magnetic configurations (Goldstein, 1983; Marubashi, 1986;
Lepping, Jones, and Burlaga, 1990), namely by an axially symmetric constant-alpha force-
free magnetic field configuration in a cylinder with a circular cross section (Burlaga, 1988),
the so-called Lundquist solution (Lundquist, 1950). Flux ropes have twisted magnetic field
lines and therefore non-zero magnetic helicity, which is a measure of how magnetic field
lines are mutually linked (Berger, 1999). Helicity is an important global quantity (Berger,
1984) that is conserved in ideal magnetohydrodynamics and is approximately conserved
even during fast local non-ideal processes (e.g. a reconnection). Therefore the helicity of
magnetic clouds provides direct information about their solar sources, which makes it im-
portant to correctly determine this from solar wind measurements (Pevtsov and Canfield,
2001; Dasso et al., 2003; Leamon et al., 2004). Dasso et al. (2003) calculated the helicity
of a particular magnetic cloud using models of a straight cylindrical flux rope with a circu-
lar cross section (an ideal cylinder). They concluded that two different force-free models,
which fit the observed magnetic field components comparatively well, yielded similar values
of helicity and that therefore their determination was robust. There are two field models and
one geometry. The question remains how the calculated values of helicity would change in
a more general geometry (flux rope shape). This is the aim of this article. We provide a tool
for calculating the helicity of flux ropes with various shapes and apply it to two magnetic
clouds. We use one field model, but the geometry may vary.

An ideal cylinder is only a crude local geometrical approximation of an interplanetary
flux rope because the rope clearly does not have a circular cross section (Mulligan and Rus-
sell, 2001; Hidalgo et al., 2002; Hu and Sonnerup, 2002; Vandas, Romashets, and Watari,
2005), nor is it straight (Burlaga, Lepping, and Jones, 1990; Hidalgo and Nieves-Chinchilla,
2012; Janvier, Démoulin, and Dasso, 2013). To account for these deviations, we considered
a toroid with an elliptical cross section. In order to calculate its helicity, it is necessary to
determine the constant-alpha force-free field inside it. There are two known analytical solu-
tions for limiting cases, that is, a constant-alpha force-free field (i) in a cylindrical flux rope
with an elliptical cross section (Vandas and Romashets, 2003) (i.e. the major radius is infi-
nite), and (ii) in an ideal toroid (Tsuji, 1991) (i.e. with a circular cross section and therefore
zero oblateness). Cap and Khalil (1989) presented a numerical method to construct an ax-
ially symmetric constant-alpha force-free magnetic field in a toroid with an elliptical cross
section. To our knowledge, this solution has not been used in solar/space physics research
so far. We describe it in the next section, generalize it for an asymmetric cross sections, and
in subsequent sections, we calculate the helicities of such flux ropes. Our aim is not only
to present the results in a graphical form, but to provide simple analytical formulae that
approximate the helicity to the required level of accuracy over a wide range of parameters,
that is, for quick calculations of the relevant alpha and the helicity for a given toroidal or
cylindrical flux rope.

The magnetic field configurations used here may be considered as generalizations of
the Lundquist solution. Even though recent investigations revealed that magnetic fields in
interplanetary flux ropes may significantly differ from a constant-alpha force-free field or a
force-free field in general (Hu et al., 2014; Hu, Qiu, and Krucker, 2015), we consider a linear
force-free field as a suitable zero-order approximation, which proved to be useful in many
investigations (Lepping, Jones, and Burlaga, 1990; Marubashi, 1997; Lepping et al., 2003,
2006; Vandas, Romashets, and Geranios, 2015; Lepping, Wu, and Berdichevsky, 2015).

The article is structured as follows. The construction of an axially symmetric constant-
alpha force-free magnetic field in a toroid with an elliptical cross section is described in Sec-
tion 2. Section 3 presents helicity calculations, relative helicities for cylindrical flux ropes,
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Figure 1 Toroidal flux rope with
an elliptical cross section and
related coordinates, Cartesian (x,
y, z), cylindrical (r , ϕ, z), and
toroidally curved cylindrical (ρ,
ϕ, θ ).

and genuine helicities for toroidal flux ropes. These helicities are interrelated in suitable lim-
its. Using these results, we calculate in Section 4 relative helicities per unit length for two
magnetic clouds, assuming their different shapes (cross sections). Finally, Section 5 briefly
concludes the article.

2. Construction of Toroidal Flux Ropes with Elliptical Cross Sections

Our aim is to determine an axially symmetric linear force-free field confined in a toroidal
flux rope with an elliptical cross section. Such a flux rope is schematically shown in Figure 1,
where we also introduce the coordinate systems we used. The figure shows a part of the xz

plane of a Cartesian system xyz with the origin O. The ellipse in the figure is a cross section
of the flux rope with the xz plane and represents a flux rope boundary. The projection of
the body of the flux rope is schematically shown by the dashed lines. The flux rope and its
magnetic field are assumed to be axially symmetric with respect to the z axis. This means
that the magnetic field does not depend on the azimuthal angle ϕ, which is also shown in the
figure; ϕ is counted around the z axis from the x axis (the displayed elliptical cross section
has ϕ = 0). In this way, the z axis is a rotational axis of the toroid, and the body of the flux
rope can be created by rotation of this ellipse around the z axis. The center of the ellipse
with semi-axes a and b is shown by the bullet and labeled C, the distance OC is the major
radius R0. T is a general point inside the flux rope, and its position (shown by a cross) is
described in two coordinate systems. Its cylindrical coordinates are r , ϕ, and z, where r is
its distance from the z axis, explicitly,

x = r cosϕ, (1)

y = r sinϕ. (2)

Points with constant r form the surface of a cylinder with the radius r and the axis z. We
also use toroidally curved cylindrical coordinates, ρ, θ , and ϕ, which are related to Cartesian
coordinates by

x = (R0 + ρ cos θ) cosϕ, (3)
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Figure 2 Toroidally curved
cylindrical system with
coordinates ρ, ϕ, and θ .
Contours of ρ = const. in the xz

plane are concentric circles, their
common center has the distance
R0 from the origin O. Contours
of θ = const. in the xz plane are
shown by the dashed lines.
A particular ρ = r0 would
represent the surface of an ideal
toroid with the major radius R0,
the minor radius r0, and the
rotational axis z.

y = (R0 + ρ cos θ) sinϕ, (4)

z = ρ sin θ. (5)

This system is shown in Figure 2. The toroidally curved cylindrical coordinates ρ and θ of
the point T are shown in Figure 1: ρ is the CT distance, and CT makes the angle θ with the
x axis.

We consider a linear force-free field B inside the flux rope, so that it satisfies the condi-
tion

∇ × B = αB, (6)

where α is a constant (α �= 0). An arbitrary B satisfying Equation 6 is solenoidal because
∇ · (∇ × B) = 0. Cap and Khalil (1989) reported a solution of Equation 6 in cylindrical
coordinates for an axially symmetric field (i.e., not depending on ϕ). In this case, Equation 6
yields

−∂Bϕ

∂z
= αBr, (7)

∂Br

∂z
− ∂Bz

∂r
= αBϕ, (8)

1

r

∂

∂r
(rBϕ) = αBz. (9)

Br and Bz from the first and third equations are substituted into the second equation, which
results in an equation for Bϕ only,

∂

∂r

[
1

r

∂

∂r
(rBϕ)

]
+ ∂2Bϕ

∂z2
+ α2Bϕ = 0. (10)

This equation is solved by separation of variables. Cap and Khalil (1989) selected two inde-
pendent solutions of Equation 10, namely

Bϕ ∝ cos(kz)J1
(√

α2 − k2r
)
, (11)

Bϕ ∝ cos(kz)Y1

(√
α2 − k2r

)
, (12)

where k is a constant (|k| < |α|), and J1 and Y1 are the Bessel functions of the first order
and the first and second kinds. Because Equation 6 is linear in B , a linear combination of
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the fields described by Equations 11 and 12 with different ks and proportional constants is
also a solution, therefore Cap and Khalil (1989) presented the solution of Equation 6 in the
form

Br =
N∑

n=1

kn sinknz

×
[
anJ1

(√
α2 − k2

nr
)

+ bnY1

(√
α2 − k2

nr
)]

, (13)

Bϕ =
N∑

n=1

α cos knz

×
[
anJ1

(√
α2 − k2

nr
)

+ bnY1

(√
α2 − k2

nr
)]

, (14)

Bz =
N∑

n=1

√
α2 − k2

n cosknz

×
[
anJ0

(√
α2 − k2

nr
)

+ bnY0

(√
α2 − k2

nr
)]

, (15)

where J0 and Y0 are the Bessel functions of the zeroth order and the first and second kinds,
and an, bn, and kn (|kn| < |α|) are coefficients (constants), N is their number. Equation 14 for
Bϕ is the linear combination just mentioned, and the remaining components follow from it
and Equations 7 and 9. We note that the solution defines only fields that are symmetric with
respect to the z = 0 plane, because it holds Br(r,−z) = −Br(r, z), Bϕ(r,−z) = Bϕ(r, z),
and Bz(r,−z) = Bz(r, z).

Cap and Khalil (1989) showed that the field described by Equations 13 – 15 may define
an axially symmetric magnetic field in a toroid with its rotational axis coinciding with the
z axis when the coefficients an, bn, and kn are properly chosen, and they described how to
select them. We adjusted their procedure for our purposes.

The coefficients are determined from conditions at the flux rope boundary, namely (i)
the boundary is a magnetic surface, and (ii) the axial field at the boundary is zero. The
second condition maintains correspondence with the former models because a zero axial
field is usually required at the boundary of a magnetic cloud modeled with a cylindrical
flux rope with a linear force-free field (Burlaga, 1988; Lepping, Jones, and Burlaga, 1990;
Vandas and Romashets, 2003). The axial field of a toroidal flux rope is represented by the
Bϕ component (see Figure 1) because the magnetic axis of the rope is a circle around the z

axis. We therefore require Bϕ = 0 at the flux rope boundary.
Magnetic surfaces are surfaces on which magnetic field lines lie, and they define mag-

netically closed volumes. For axially symmetric linear force-free fields, they are simply
determined (Cap and Khalil, 1989; Romashets, Vandas, and Poedts, 2010) by

rBϕ = const. (16)

When the constant is zero, it follows that Bϕ = 0. This means that the zero constant identifies
our flux rope boundary. It is convenient to express Equation 16 for the boundary in a form
using Bϕ from Equation 14 as

M∑
m=1

emFm(r, α) = 0, (17)
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where r is the radius vector of an arbitrary point on the boundary, M = 2N is the total count
of an and bn,

em =
{

am m = 1, . . . ,N

bm−N m = N + 1, . . . ,2N
(18)

Fm =
{

αr cos(kmz)J1(
√

α2 − k2
mr) m = 1, . . . ,N

αr cos(km−Nz)Y1(

√
α2 − k2

m−Nr) m = N + 1, . . . ,2N
(19)

and r = √
x2 + y2.

Theoretically, Equation 17 must be satisfied for all points at the boundary. Practically,
from a numerical point of view, we meet the equation for a set of points at the boundary by
selecting unknown parameters an, bn, kn, and α. Cap and Khalil (1989) suggested to select
evenly distributed kn between 0 and α, and we take

kn = α
[
0.01 + 0.95(n − 1)/(N − 1)

]
n = 1, . . . ,N. (20)

The set of points is distributed along the perimeter of a flux-rope cross section. The cross
section of the flux-rope boundary with the xz plane is a closed curve (e.g. an ellipse like
in Figure 1), which can be described parametrically as x = x(θ) and z = z(θ), where θ is
the coordinate of a toroidally curved cylindrical system (see Figure 1). We take a set of M

points rj (j = 1, . . . ,M) of the curve, rj = [x(θj ),0, z(θj )] (we call them sample points;
e.g., two of them, Sj and Sj+1, are shown in Figure 1 by asterisks).

Writing Equation 17 for each sample point, we obtain a set of equations

M∑
m=1

Fjmem = 0 j = 1, . . . ,M, (21)

where Fjm = Fm(rj , α). It is a set of homogeneous linear equations for em. The system of
linear equations has a non-trivial solution if its determinant is zero, i.e.,

det(Fjm) = 0. (22)

This equation is satisfied by a selection of α, the last unknown parameter. Equation 22 is a
transcendent equation for this parameter, and it is solved by a root-finding procedure. For
this root/alpha, Equation 21 is linearly dependent, one is omitted (e.g. for j = M), and e1

can be arbitrarily set (it determines the level of the field magnitude). Then we have the
non-homogeneous system

M∑
m=2

Fjmem = −e1Fj1 j = 1, . . . ,M − 1, (23)

which yields the rest of the em coefficients (i.e. an and bn). The obtained solution is ex-
actly force-free because the condition given by Equation 6 is met for an arbitrary set of
coefficients. However, the number of coefficients and their values determine how well the
boundary of the resulting flux rope approximates the given boundary.
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Figure 3 Cross sections with elliptical shapes of toroidal flux ropes with axially symmetric constant-alpha
magnetic fields. Panels a – d show four flux ropes with different aspect ratios and/or oblateness. Color con-
tours are the magnetic field magnitude distributions, scaled by Bmax, which is the maximum field magnitude
inside a respective flux rope. The color scale is common for all panels. The black lines are cross sections of
toroidal magnetic surfaces on which the magnetic field lines lie, and they are helically wound. The smallest
ovals indicate the location of the magnetic axis. Geometrical centers of the cross sections are marked by
the pluses and have coordinates (0,0) in the plots. The positions of the magnetic field magnitude maximum
(Bmax) are labeled by the crosses ×. The thick lines represent the flux rope boundaries.

2.1. Toroidal Flux Ropes of Circular Cross Sections

We started by constructing flux ropes with circular cross sections (i.e. they are ideal toroids
with minor radii r0 and major radii R0). The parametric description of the cross-section
boundary is x = R0 + r0 cos θ , y = 0, and z = r0 sin θ . The case is symmetric with respect
to the z = 0 plane, so Equations 13 – 15 are relevant, and we may restrict the sample points
to z ≥ 0, i.e. θ between 0◦ and 180◦. We took N = 6 the same as Cap and Khalil (1989).
Alpha (more precisely, its absolute value) is searched for by the bisection method (e.g. Press
et al., 2002) from Equation 22. The bisection method relies on the fact that if a function is
continuous in an interval and has different signs at its endpoints, then there is a root in the
interval. Dividing the interval by half and repeating the sign test, we can limit the root value.
There are more roots of Equation 22, and we take the first because the next roots describe
multipolar flux ropes or more complex configurations. Figure 3a displays a toroidal flux rope
with a circular cross section as a result of the above given procedure (note that the value of
r0 is r0 = a = b in the figure).

An exact analytical solution for toroidal flux ropes with circular cross sections has also
been reported by Tsuji (1991) and described in detail by Vandas and Romashets (2015).
Both prescriptions yield practically the same fields, but the current procedure is much easier
to implement and is much faster for the numerical evaluations (note that only 12 coefficients
are needed for a sufficiently accurate description of the field). Moreover, it holds even for
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Figure 4 Alpha as a function of the aspect ratio for toroidal flux ropes with circular cross sections (thin
solid line), supplemented by the analytic approximation from Equation 24 (thick dashed line). The horizontal
dashed line (near the bottom) indicates the α value for a cylindrical flux rope (given by the Lundquist solution
and denoted by a0 here).

very low aspect ratios (e.g. R0/r0 ≈ 1.1) where the Tsuji solution has numerical problems
because its series converge only slowly.

Figure 4 shows the dependence of alpha on the aspect ratio for such flux ropes. Variants
of this figure can be found in Tsuji (1991) and Vandas and Romashets (2015), but here it
is supplemented by an analytic polynomial approximation, which was obtained by trial and
error to match the curve following from numerical computations. It reads

|α|r0 ≈ a0 + μ1(r0/R0) + μ2(r0/R0)
2 + μ3(r0/R0)

3 (24)

and can be useful if one needs values of α, e.g. for helicity calculations. The constant a0 is the
first root of J0 (a0

.= 2.40483). The constants μ1 = 0.0103, μ2 = 0.0896, and μ3 = 0.1140
were found by the least-squares method (Press et al., 2002). The formula can be used for
R0/r0 ≥ 1.5 with an accuracy better than 0.1%.

2.2. Toroidal Flux Ropes of Elliptical Cross Sections with One Semi-Axis
Aligned with the Rotational Axis

The next step is the construction of a toroidal flux rope with an elliptical cross section. The
symmetry condition with respect to the z = 0 plane, required by Equations 13 – 15, limits
the orientation of semi-axes a and b of the elliptical cross section: one semi-axis must be
radially oriented in the z = 0 plane. When this is the minor semi-axis b (like in Figure 1
or Figures 3b – c), the parametric description is x = R0 + b cos θ , y = 0, and z = a sin θ ,
otherwise (Figure 3d) a and b are swapped in these formulae. The coefficients of the solution
are found in the same way as has been described for cases with circular cross sections, again
with N = 6. The procedure works for moderate oblatenesses a/b � 3.

For higher oblatenesses one needs more coefficients. We can obtain for such cases a set
of coefficients solving Equation 21 when N is low, however. Equation 17 is exactly satisfied
at the sample points, but it does not guarantee that Bϕ is close to zero at other boundary
places, which should mean that these places lie on different magnetic surfaces. In addition,
the exact solution does not mean that all sample points belong to the same magnetic surface,
they may belong to different surfaces, which means that the given boundary is not a closed
magnetic surface. Twelve sample points may be satisfactory for simple symmetric cases,
but this number cannot be increased much for the current procedure, e.g. doubled, because
numerical problems appear. The determinant given by Equation 22 becomes too small or
too large, and there are difficulties to obtain an exact solution of a large set of equations
with limited numerical accuracy (Press et al., 2002). In these cases, we used the Fourier
representation of Equation 17. The functions Fm(r, α) with r = r(θ) are periodic functions
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Figure 5 Profiles of magnetic
field magnitudes along the x axes
of the toroidal flux ropes
displayed in Figures 3a (solid
line), 3b (dashed line), and 3c
(dash-dotted line).

of θ and can be expressed by their Fourier series. Then we can derive from Equation 17 a
series of equations by multiplying Equation 17 by cos lθ or sin lθ and integrating it over θ ,
that is,

M∑
m=1

em

∫ 2π

0
Fm

[
r(θ),α

]
cos lθ dθ = 0 l = 0, . . . ,N − 1, (25)

M∑
m=1

em

∫ 2π

0
Fm

[
r(θ),α

]
sin lθ dθ = 0 l = 1, . . . ,N. (26)

This set of equations is formally the same as Equation 21, but with a different Fjm, which
now is

Fjm =
{∫ 2π

0 Fm[r(θ),α] sin jθ dθ j = 1, . . . ,N,∫ 2π

0 Fm[r(θ),α] cos(j − N − 1)θ dθ j = N + 1, . . . ,2N.
(27)

The coefficients are determined in the same way as described earlier. These modified equa-
tions proved to be more robust than the original equations and enable us to treat flux ropes of
higher oblateness (or with asymmetric cross sections, see below Section 2.3). We used the
modified method for the flux ropes displayed in Figures 3b – d (with N = 6). Calculations
with the modified method are slightly slower than the original calculations (assuming both
methods are applicable) because they involve additional numerical integrations.

It must be noted that the Tsuji solution is not limited to circular cross sections. Only
its coefficients can be evaluated analytically when flux ropes have circular cross sections.
For elliptical cross sections, the coefficients may be determined numerically using sample
points via procedures described above (as Tsuji noted in his work, but did not apply). We
tested this approach and obtained essentially the same results as with the procedure adopted
here. We conclude, however, that the current approach is much easier to implement and the
involved numerical calculations are much faster.

Figure 5 compares magnetic field magnitude profiles of the three toroidal flux ropes
shown in Figures 3a – 3c. The field profiles of the toroidal flux ropes with oblate cross sec-
tions are flatter than the profiles of a flux rope with a circular cross section, as has been
observed for oblate cylindrical flux ropes (Vandas, Romashets, and Watari, 2005). For the
same aspect ratio R0/b, a toroidal flux rope with an oblate cross section has its field maxi-
mum shifted toward the toroid’s hole more than that with a circular cross section. This shift
increases with decreasing aspect ratios, similarly as has been found for toroidal flux ropes
with circular cross sections (Tsuji, 1991).
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Figure 6 Toroidal flux rope with
an elliptical cross section that is
inclined with respect to the
rotational axis z by the angle φ0.

2.3. Toroidal Flux Ropes of Elliptical Cross Sections with One Semi-Axis
Inclined to the Rotational Axis

An example of such a toroidal flux rope is shown in Figure 6. These flux ropes are not
symmetric with respect to the plane z = 0, and Equations 13 – 15 need to be generalized.
There are two other independent solutions of Equation 10, namely

Bϕ ∝ sin(kz)J1

(√
α2 − k2r

)
, (28)

Bϕ ∝ sin(kz)Y1
(√

α2 − k2r
)
. (29)

When these solutions are included into Bϕ , instead of Equations 13 – 15, we obtain

Br =
N∑

n=1

kn

[
(an sinknz − cn cos knz)J1

(
r

√
α2 − k2

n

)

+ (bn sinknz − dn cos knz)Y1

(
r

√
α2 − k2

n

)]
, (30)

Bϕ =
N∑

n=1

α
[
(an cos knz + cn sinknz)J1

(
r

√
α2 − k2

n

)

+ (bn cos knz + dn sinknz)Y1

(
r

√
α2 − k2

n

)]
, (31)

Bz =
N∑

n=1

√
α2 − k2

n

[
(an cos knz + cn sinknz)J0

(
r

√
α2 − k2

n

)

+ (bn cos knz + dn sinknz)Y0

(
r

√
α2 − k2

n

)]
(32)

where cn and dn are additional coefficients. When they are zero, the field reduces to the
former field determined by Equations 13 – 15.

To find coefficients for a toroidal flux rope with a given shape of its cross section (which
can be an inclined ellipse or an asymmetric shape), we proceeded in the same way as has
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Figure 7 Cross section of a
toroidal flux rope with an
elliptical shape and the major
semi-axis inclined to the
(rotational) axis z by φ0 = 30◦ .
The format is the same as in the
panels of Figure 3.

been described in previous sections. Now we have M = 4N in Equation 21, where em stands
for all an, bn, cn, and dn. The functions Fjm are determined from Equation 31. Because the
number of coefficients is relatively large even for N = 6, the modified (Fourier) method was
used to determine the coefficients. Sample points must cover the full range of θ , from 0◦

to 360◦.
Figure 7 shows a toroidal flux rope with its elliptical cross section inclined from the

vertical direction. It was obtained by the modified method with N = 6. The inclination
angle is denoted by φ0 and it is the angle between the major semi-axis and the z axis (see
Figure 6). In this nomenclature, the flux ropes in Figures 3b and 3c have φ0 = 0◦, while it is
φ0 = 90◦ for Figure 3d. A general case has the parameterization x = R0 + b cosφ0 cos θ −
a sinφ0 sin θ , y = 0, and z = b sinφ0 cos θ + a cosφ0 sin θ .

3. Helicity of Flux Ropes with Elliptical Cross Sections

The helicity of a magnetically closed body is defined by

H =
∫

V

A · B dV, (33)

where the integration is over the body volume V , and A is the magnetic vector potential of
the field B , ∇ × A = B . When the field is a constant-alpha field, we may set A = B/α.

Vandas and Romashets (2015) calculated helicities of toroidal magnetic flux ropes with
linear force-free fields and circular cross sections. The helicity depends on the magnetic
field strength and the size of the flux rope. In order to compare helicities of different flux
ropes, a dimensionless quantity h was introduced,

h = H

(B2
max/α)V

, (34)

which we may call a specific helicity. It was shown than in the limit of high aspect ratios,

h → hL ≡ 2J 2
1 (a0), (35)
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where the value hL is the (relative) specific helicity (see the next section) of a cylindrical
flux rope with a circular cross section and the Lundquist field. We expect a similar behavior
for toroidal flux ropes with elliptical cross sections, therefore we start with calculations of
relative helicity for cylindrical flux ropes with elliptical cross sections, for which the field is
known analytically.

3.1. Relative Helicity of a Cylindrical Flux Rope with an Elliptical Cross Section

Cylindrical flux ropes are not closed and their helicity is infinite. We can calculate this
quantity for a part of the rope (a finite cylinder) and divide it by its length (height) to obtain
a helicity per unit length. However, this new quantity is not gauge-invariant because the
boundary of a cylindrical part of the flux rope is not a magnetic surface. Berger and Field
(1984) have introduced another quantity, the relative helicity, which is calculated according
to

Hr =
∫

V

(
A · B − Aref · B ref

)
dV, (36)

where the integration is over the volume V of the selected part of the flux rope, and A

and Aref are the magnetic vector potentials of the respective magnetic fields. The relative
helicity is defined as a difference between the helicity proper and the helicity of a reference
field B ref. Berger and Field (1984) have shown that it is gauge-invariant when the reference
field satisfies

n · B ref = n · B (37)

(the normal components Bn of the original and reference field are the same at the boundary)
and

n × Aref = n × A (38)

at the whole boundary of the volume V , n is a unit normal vector to the boundary.
So the relative helicity is gauge-invariant, but it depends on the reference field. We

pursue the specification of the reference field given by Dasso et al. (2003), but modify it
for flux ropes with elliptical cross sections. Dasso et al. (2003) calculated the relative he-
licity per unit length for cylindrical flux ropes with a circular cross section and the field
B = [0,Bϕ(r),Bz(r)] (in cylindrical coordinates). They used a cylindrical part of the flux
rope with the length L for the volume V and set the reference field to Bref = [0,0,Bz(r)]
(in cylindrical coordinates).

The solution of a linear force-free magnetic field inside a cylindrical flux rope with an
elliptical cross section is given by Vandas and Romashets (2003). It is expressed in elliptical
cylindrical coordinates u, v, and z,

x = c coshu cosv, (39)

y = c sinhu sinv, (40)

which are firmly related to the elliptical flux-rope cross section via the parameter c =√
a2 − b2, where a and b are the major and minor semi-axes of the elliptical cross section,

respectively. Figure 8 elucidates the elliptical cylindrical coordinate system and how the flux
rope is situated in it. Every u = const. in the elliptical cylindrical system is a surface of an
elliptical cylinder, and the boundary of our cylindrical flux rope is determined by u = u0
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Figure 8 Elliptical cylindrical
system u, v, and z (the z-axis is
perpendicular to the displayed
plane xy), its relation to the
Cartesian system, and the
position of an elliptical cross
section of an oblate cylindrical
flux rope. The boundary of the
cross section is stressed by the
thick line and it is an ellipse with
u = u0 and semi-axes a and b.
The foci of this ellipse are shown
as two bullets at the x-axis with
x = ±c.

with coshu0 = a/c. So our flux rope is defined by coordinates u ∈ 〈0, u0〉, v ∈ 〈0,2π), and
z ∈ (−∞,∞).

Symbolically, we write for the field

B = [
Bu(u, v),Bv(u, v),Bz(u, v)

]
(41)

(all vector components in this paragraph are given in elliptical cylindrical coordinates), and
its vector potential

A = B/α = [
Au(u, v),Av(u, v),Az(u, v)

]
. (42)

Similarly to Dasso et al. (2003), the reference field is set to

B ref = [
0,0,Bz(u, v)

]
. (43)

It satisfies the condition given by Equation 37 at the cylinder surface: it is Bn = Bz at the
top and at the bottom for both fields, and Bn = 0 at the side because the side is a magnetic
surface. We take

Aref = [
Au(u, v),Av(u, v),0

]
. (44)

It holds ∇ × Aref = B ref. The condition given by Equation 38 is satisfied at the top and at
the bottom where n = (0,0,±1). At the side with n = (1,0,0) we obtain

n × (
Aref − A

) = (0,Bz/α,0) = 0 (45)

because the axial field is zero at the (lateral) boundary of the flux rope (it is the property of
the field solution, see Vandas and Romashets, 2003). The relative helicity per unit length is

Hl
r = Hr

L
= 1

α

∫ u0

0

∫ 2π

0
B · Bhuhv dv du = 2

α

∫ u0

0

∫ 2π

0

(
B2

u + B2
v

)
h2

u dv du, (46)

where Bz was replaced by Bu and Bv in the last integrand, using integration per partes and
the facts that the flux rope has a linear force-free field and zero axial field at its boundary.
The integration is over the volume (see Equation 36), which reduces to an integration over a
cross section multiplied by L (because there is no dependence on z). The Lamé coefficients

are hu = hv = c
√

cosh2 u − cos2 v.
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Figure 9 Dependence of alpha
on the oblateness of cross
sections for cylindrical flux ropes
(solid line). The thick dashed line
is an analytic approximation. The
dashed horizontal line indicates
the alpha of a cylindrical flux
rope with the Lundquist solution
(which has a circular cross
section).

In the limiting case of a circular cross section, that is, when c → 0, elliptical cylindrical
coordinates tend to cylindrical ones, u is replaced by r , v by ϕ, and the field approaches the
Lundquist field, Br = 0, Bϕ = B0J1(αr), and Bz = B0J0(αr); B0 is a constant. We obtain
for the relative helicity per unit length

Hl
r → 4π

α

∫ r0

0
B2

ϕr dr = 2B2
0πr3

0

a0
J 2

1 (a0) sign(α), (47)

where r0 is the flux rope radius (r0 = a = b = a0/|α|), and sign is the signum function
[cf. Dasso et al. (2003), Equations 2 and 5; Vandas and Romashets (2015), Equation 39].

Figure 9 shows the change in alpha with oblateness of cylindrical flux ropes. It decreases
from the value given by the Lundquist solution |α|b = |α|r0 = a0. An analytic polynomial
approximation was found by trial and error and is given by the relationship

|α|b ≈ a0 + γ1ε + γ2ε
2 1 ≤ a/b ≤ 7 (48)

with γ1 = −1.234 and γ2 = 0.407, which were determined by the least-squares method. The
symbol ε = (a − b)/a stands for oblateness. The approximation matches the numerically
determined dependence very well (the difference is smaller than 0.1%).

We numerically calculated the relative helicity Hl
r for a set of oblatenesses using Equa-

tion 46 with formulae for Bu and Bv taken from Vandas and Romashets (2003). Our aim was
to find an analytic approximation for it, similarly as we did for α in Figure 9. We worked
with the specific helicity, namely its modification related to the relative helicity. In accord
with Equation 34, we define the relative specific helicity

hr = Hl
rL

(B2
max/α)V

= Hl
r

(B2
max/α)πab

. (49)

For a cylindrical flux rope with a circular cross section, this quantity tends to

hr → hL, (50)

which follows from the relation given by Equation 47 and the limits Bmax → B0, a → r0,
b → r0, and |α| → a0/r0.

Figure 10 shows the relative specific helicity as a function of oblateness for cylindrical
flux ropes with elliptical cross sections. We approximate it by a polynomial in oblateness.
From Figure 10a we see that the relative specific helicity and its derivative are hL and zero,
respectively, at ε = 0. So we set

hr ≈ hL

(
1 + δ2ε

2 + δ3ε
3 + δ4ε

4
)

1 ≤ a/b ≤ 7, (51)
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Figure 10 Dependence of
relative specific helicities for
cylindrical flux ropes with
elliptical cross sections on
oblateness is shown by the solid
line. The thick dashed lines are
their analytic approximation. The
profiles are shown for two
horizontal axis representations,
a/b and ε = (a − b)/a.

where the constants δ2 = −0.315, δ3 = 0.543, and δ4 = −0.950 were found by the least-
squares method. The approximation fits very well (the difference between the numerically
determined and approximated values is smaller than 0.3%).

3.2. Helicity of Toroidal Flux Ropes with Elliptical Cross Sections

We used the toroidally curved cylindrical coordinates ρ, ϕ, and θ , given by Equations 3 – 5
to calculate the helicity. The helicity of a toroidal flux rope with an axially symmetric linear
force-free field is

H = 2π

α

∫ 2π

0

∫ ρb(θ)

0
B2ρ(R0 + ρ cos θ)dρ dθ, (52)

where ρb(θ) determines the boundary of the cross section. For instance, it is ρb(θ) =
1/

√
cos2 θ/b2 + sin2 θ/a2 for an elliptical cross section with its major semi-axis a paral-

lel to the z axis (like in Figures 3b and 3c). In the subsequent text we analyze the results
for this specific orientation (as far as it is not explicitly stated otherwise) because it is more
relevant to flux ropes in the solar wind. These are expected to be oblate in the direction of
their propagation (e.g. due to aerodynamic drag).

We numerically calculated helicities for toroidal flux ropes of various aspect ratios and
oblatenesses using Equation 52 with magnetic fields resulting from the procedure described
in Section 2. As a byproduct, we obtained values of α for these cases. They are shown by
asterisks in Figure 11. There is a dependence on two parameters, the aspect ratio and oblate-
ness, therefore the results are presented in two panels. The thick line in the top panel shows
alphas for toroidal flux ropes with circular cross sections (a/b = 1), taken from Figure 4,
while the thick line in the bottom panel are alphas for cylindrical flux ropes with elliptical
cross sections (R0/b → ∞), taken from Figure 9. These lines represent limiting cases of
our two parameters, and we have analytical approximations for them. We combined these
approximations to obtain an analytical equation of α for the other parameter values.

We start with Equation 48. It yields values for R0/b → ∞, and the value is a0 in the
limiting case of a/b → 1. This value yields Equation 24 for R0/b → ∞, but this equation
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Figure 11 Dependence of alpha
on the aspect ratio (top panel)
and oblateness of cross sections
(bottom panel) for toroidal flux
ropes. Results of numerical
calculations are shown by
asterisks and the thick lines, the
thin lines are analytic
approximations for selected
cases. The dashed horizontal
lines mark the value a0.

also determines values for other R0/b when a/b = 1. We therefore replace a0 in Equation 48
by the right-hand side of Equation 24 and obtain

|α|b ?≈ a0 + μ1ζ
−1 + μ2ζ

−2 + μ3ζ
−3 + γ1ε + γ2ε

2, (53)

where we introduced for simplicity a new notation, ζ = R0/b for the aspect ratio. We put
the question mark in the equation because we then tested whether its form is suitable. A
comparison between Equation 53 and real values from Figure 11 (asterisks) reveals that
Equation 53 is only a very rough approximation. The reason may be that we have summands
that are not coupled in parameters. We make a refinement in the form

|α|b ≈ a0 + (1 + κ1ε)
(
μ1ζ

−1 + μ2ζ
−2 + μ3ζ

−3
) + γ1ε + γ2ε

2, (54)

where the middle summand is coupled by a linear correction in ε. The coefficient κ1 is found
by the least-squares method. For the intervals of parameters 1 ≤ a/b ≤ 7 and R0/b ≥ 1.5,
this is κ1 = 0.540, and corresponding approximations of α are shown in two examples by
thin lines in Figure 11: for a/b = 3 (top panel) and for R0/b = 2 (bottom panel). We see
a very good coincidence with relating asterisks. The accuracy of the approximation in the
given intervals is better than 0.1%.

Figure 12 shows numerically calculated values of the specific helicity, and its format is
similar to that of Figure 11 for alphas. Similar as for the alphas, we constructed an analytical
approximation. For the limit R0/b → ∞ (cylindrical flux rope) we have Equation 51. Nu-
merically calculated values for this limit from Equation 49 are drawn by the thick line in the
bottom panel. For the other limit a/b → 1 (circular cross sections) there is an approximate
analytic formula for helicity [Vandas and Romashets (2015), Equation 42]. When used, we
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Figure 12 Dependence of the
specific helicity on the aspect
ratio (top panel) and oblateness
of cross sections (bottom panel)
for toroidal flux ropes. Results of
numerical calculations are shown
by asterisks and the thick solid
line (which corresponds to hr ,
Equation 49 and is shown in the
bottom panel). The thin lines are
analytic approximations for
selected cases. The thicker solid
line in the top panel is the
analytic approximation and
corresponds to hc , Equation 55,
while the dashed line is the
analytic approximation by
Vandas and Romashets (2015).

obtain the dashed curve in the top panel of Figure 12. The top asterisks are the related nu-
merically calculated values, and we see that this approximation is rough. Moreover, we need
Bmax for the calculation of the specific helicity, but this quantity is not known analytically, it
must be determined numerically. Therefore we turn to a polynomial approximation, through
which a better approximation can be achieved, and set

hc ≈ hL + ν1ζ
−1 + ν2ζ

−2, (55)

where the constants ν1 = −0.0035 and ν2 = −0.2206 are found by the least-squares method.
The subscript c refers to a circular cross section. This approximation is shown by the thicker
solid line in the top panel of Figure 12. The relevant asterisks match very well. Continuing
with the approximation of h in a similar way as we did for the alpha, hL in Equation 55 is
replaced by hr , Equation 51, and the constants ν1 and ν2 are supplemented by corrections
for ε. A suitable form was found by trial and error, and it is

h ≈ hr + (
ν1 + λ1ε + λ2ε

2 + λ3ε
3
)
ζ−1 + (

ν2 + λ4ε + λ5ε
2
)
ζ−2, (56)

where λ1 = 0.361, λ2 = −1.218, λ3 = 0.682, λ4 = −0.811, and λ5 = 1.005 were deter-
mined by the least-squares method for values shown as asterisks in Figure 12 for R0/b ≥ 2.
Two examples of the approximation are shown by the thin solid lines in Figure 12: for
a/b = 3 (top panel) and for R0/b = 2 (bottom panel). The approximation given by Equa-
tion 56 is valid for 1 ≤ a/b ≤ 6 and R0/b ≥ 2 with the difference from numerically deter-
mined values being �1%.

This section solely studied toroidal flux ropes, where the major semi-axes of the cross
sections were perpendicular to the xy plane (as shown in Figure 3c), that is, with the in-
clination φ0 = 0◦. Figure 13 shows the change in values of alpha and specific helicity with
inclination for selected aspect ratios and oblatenesses, to briefly demonstrate how the val-
ues differ. The alpha values remain nearly the same and the specific helicity varies only
by several percent as a maximum. The differences clearly diminish with decreasing oblate-
ness because they have to disappear for a/b = 1. Only values in the interval 〈0,90◦〉 are
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Figure 13 Dependence of alpha (left panel) and the specific helicity h (right panel) on the inclination φ0 of
elliptical cross sections of toroidal flux ropes for several cases of aspect ratios and oblatenesses, distinguished
by labels.

plotted because they repeat in the whole interval 〈0,360◦〉 owing to symmetry: it holds
h(φ0) = h(180◦ − φ0) = h(φ0 − 180◦), and it obviously holds in the same way for α(φ0).

4. Comparison of the Helicities of Magnetic Clouds Fitted by Two Models

The relative helicity per unit length derived from a model usually serves as a basis for es-
timating the total helicity in a magnetic cloud, which is then related to the magnetic he-
licity of a solar source. As an example of using the above obtained formulae, we calculate
relative helicity per unit length of two magnetic clouds. Vandas, Romashets, and Watari
(2005) analyzed two magnetic clouds with very flat magnetic field magnitude profiles. They
concluded that these profiles might be a manifestation of the clouds’ oblateness, and pro-
vided fits of magnetic field observations by two constant-alpha force-free cylindrical models,
with a circular cross section (Lundquist, 1950; Burlaga, 1988) and with an elliptical cross
section (Vandas and Romashets, 2003). It is commonly accepted that magnetic clouds are
oblate, based on analyses of observations like the one we described above, on determina-
tions of stand-off distances of bow shocks driven by magnetic clouds (Russell and Mulligan,
2002), on the Grad–Shafranov reconstruction technique (Hu and Sonnerup, 2002), on simple
kinematic considerations (Riley and Crooker, 2004), and on magnetohydrodynamic simula-
tions (Cargill et al., 1995; Vandas et al., 1995; Riley et al., 2004; Vandas, Romashets, and
Geranios, 2010). Observations and fits of the two cited magnetic clouds are shown in Fig-
ures 14 – 15. Orientations of the flux rope axes (cylinders) are the same in panels a and b,
as is the value of r0 = b. The only difference is in the oblateness, which is a/b = 1 in (a)
and a/b = 5 in (b). All fits are nearly central crossings, so Bmax can be directly estimated
from the displayed profiles. The magnetic flux ropes are right-handed, that is, their helicity
is positive.

Figure 14a shows magnetic field measurements of the magnetic cloud in October 1995
(Lepping et al., 2006) fitted by a cylindrical flux rope with a circular cross section, i.e.
by the Lundquist solution. Its radius is r0 = 0.13 AU and therefore α = 18 AU−1. It is
Bmax = 24 nT. The relative helicity per unit length can be calculated from the formula given
by Equation 47. B0 of the model (Lepping, Jones, and Burlaga, 1990) coincides with Bmax.
We obtain Hl

r = 0.89 nT2 AU3. For a flux rope with an elliptical cross section, Figure 14b,
we have b = r0 = 0.13 AU, a/b = 5, Bmax = 21 nT, α is determined from Equation 48,
α = 13 AU−1. The relative helicity per unit length is determined from Equation 49 with hr
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Figure 14 Magnetic field observations (hourly averages from OMNIWeb, solid lines) of the magnetic cloud
from October 18 – 20, 1995. B is the magnetic field magnitude, the components Bx , By , and Bz are in
GSE system. Estimated magnetic cloud boundaries are drawn by the dashed vertical lines. Observations are
supplemented by model profiles drawn by the thick lines. Models were (a) a circular cylinder and (b) an
elliptical cylinder.

given by Equation 51. It is Hl
r = 3.4 nT2 AU3, that is 3.8× higher than for the cloud fitted

by the flux rope with the circular cross section.
A similar situation is seen for the second flux rope, which is shown in Figure 15, the

magnetic cloud in January 1997 (Lepping et al., 2006). In this case, we have for the fit by
a flux rope with a circular cross section r0 = 0.10 AU, α = 24 AU−1, and Bmax = 17 nT, so
Hl

r = 0.20 nT2 AU3. The values for a flux rope with an elliptical cross section are b = r0 =
0.10 AU, a/b = 5, Bmax = 15 nT, and α = 17 AU−1, so Hl

r = 0.78 nT2 AU3, that is, again
three to four times higher than for the circular cloud.

As discussed in Vandas, Romashets, and Watari (2005), the value of oblateness is rela-
tively uncertain from fits. When we lower it to a/b = 3, the difference in relative helicity is
about 2.5 ×. For a/b = 2 there is still a 2 × difference. The shape of a cloud substantially
affects the estimation of the relative helicity per unit length. Figures 14 and 15 show that the
fits of magnetic field components by both models (with circular and oblate cross sections)
are comparatively good, but the models yield very different helicities.

What is a reason for this helicity difference? Figure 16 displays a slightly different rep-
resentation of our results of the previous sections, namely the ratio of the helicity H of the
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Figure 15 Magnetic field observations (hourly averages from OMNIWeb, solid lines) of the magnetic cloud
on January 10 – 11, 1997, supplemented by model fits (thick lines). The format is the same as in Figure 14.

Figure 16 Dependence of the
helicity ratio on the oblateness of
flux rope cross sections for three
aspect ratios R0/b. HL is the
relative helicity of the Lundquist
cylindrical flux rope. More
details are given in the text.

toroidal flux rope to the relative helicity HL of the cylindrical flux rope with the Lundquist
field under the assumptions that both flux ropes have the same Bmax and the same volume in
the sense that they have the same length and the same cross-sectional area. In our notation,
this is

H

HL

= h

hL

a0

αb

√
1 − ε. (57)
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Figure 16 shows curves for three cases of aspect ratio. The relevant case for our magnetic
clouds is shown by the solid line. It starts at 1.0 and HL corresponds to the value of the
helicity from the first fits of magnetic clouds. We see that the helicity decreases when the
oblateness increases. At a/b = 5 it has about a half of the value for the circular shape.
Despite this, the cross-sectional area of the flux ropes from the second fits is much larger
than for the circular cross sections, and this fact outweighs the H/HL decrease. So this is a
much larger volume, which increases the helicity for the second fits. Figure 16 also shows
that the helicity decreases with decreasing aspect ratio, but this variation is weak.

5. Summary and Final Remarks

We constructed axially symmetric constant-alpha force-free magnetic fields in toroidal flux
ropes with elliptical cross sections for a wide range of oblatenesses and aspect ratios. We
examined values of alphas and magnetic helicities of these configurations. Because the mag-
netic helicity depends on the magnetic field strength and the size of the flux rope, we intro-
duced a new quantity, a specific helicity, for a comparison between different flux ropes.
The alphas decrease when the oblateness or aspect ratio increase. The specific helicity also
decreases with the oblateness increase, but increases with the aspect ratio increase. We pre-
sented simple analytic formulae for approximate (� 1%) calculations of the alphas and mag-
netic helicities. Using these formulae, we calculated the relative helicities per unit length of
two magnetic clouds with a probably very high oblateness. The results show that the relative
helicities depend very strongly on the assumed magnetic cloud shapes. The assumption of a
circular cross section may underestimate the helicity of magnetic clouds by several times in
comparison with a case when an elliptical cross section is assumed.

The formulae presented in the article can serve two purposes. The equations for the mag-
netic field components can be used in fitting procedures of magnetic cloud observations by
a toroidal flux rope with a circular or oblate cross section. The equation for helicity quickly
yields this quantity for a particular fit by a cylindrical or toroidal flux rope. We demonstrated
its usage for circular and oblate cylindrical flux ropes. Its application for curved flux ropes
is a topic of future research.
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