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Abstract We seek to quantify the relative contributions of Lorentz forces and aerodynamic
drag on the propagation of solar coronal mass ejections (CMEs). We use Graduated Cylin-
drical Shell (GCS) model fits to a representative set of 38 CMEs observed with the Solar
and Heliospheric Observatory (SOHO) and the Solar and Terrestrial Relations Observa-
tory (STEREO) spacecraft. We find that the Lorentz forces generally peak between 1.65 and
2.45 R� for all CMEs. For fast CMEs, Lorentz forces become negligible in comparison to
aerodynamic drag as early as 3.5 – 4 R�. For slow CMEs, however, they become negligible
only by 12 – 50 R�. For these slow events, our results suggest that some of the magnetic flux
might be expended in CME expansion or heating. In other words, not all of it contributes to
the propagation. Our results are expected to be important in building a physical model for
understanding the Sun–Earth dynamics of CMEs.

Keywords Coronal mass ejections · Initiation · Propagation

1. Introduction

Coronal mass ejections (CMEs) from the Sun are generally acknowledged as the main cause
of disturbances in the near-Earth space environment. Due to the considerable technological
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impacts caused by such disturbances, it has become increasingly important to study and
understand various aspects related to CME impacts on the Earth’s magnetosphere (Gosling
et al., 1991; Bothmer and Daglis, 2007). One of the most basic quantities in this regard
concerns the time it takes for a CME to reach the Earth after it has been detected leaving
the Sun using space-based coronagraphs. This quantity is called the Sun–Earth travel time.
Among the factors that affect the travel time are the CME size, mass, initial velocity and
the ambient solar wind speed (Bosman et al., 2012). An accurate and reliable forecast of
the Sun–Earth travel time is obviously important to a space weather mitigation framework,
as is a good estimate of the expected speed of the CME near the Earth. These quantities
are typically computed from a dynamical model for CME propagation that uses near-Sun
coronagraph observations as input.

The basic outlines of such dynamical CME propagation models have been well estab-
lished for a while. One-dimensional (1D) models that incorporate Lorentz-force driving,
aerodynamic drag, and other effects have been in vogue since 1996 (e.g. Chen, 1996; Ku-
mar and Rust, 1996). So-called drag-based models (DBM), which consider only aerody-
namic drag, have been very popular lately (e.g. Cargill, 2004; Vršnak et al., 2010; Mishra
and Srivastava, 2013; Temmer and Nitta, 2015). More sophisticated three-dimensional (3D)
MHD models such as ENLIL (e.g. Taktakishvili et al., 2009; Lee et al., 2013; Vršnak et al.,
2014; Mays et al., 2015), the global MHD model using the data-driven Eruptive Event Gen-
erator of Gibson-Low (EEGGL) (e.g. Jin et al., 2017), CME and shock propagation models
like the Shock Time of Arrival model (STOA), the Interplanetary Shock Propagation Model
(ISPM) and the Hakamada–Akasofu–Fry version 2 model (e.g. Fry et al., 2003; McKenna-
Lawlor et al., 2006), other hybrid models (Wu et al., 2007) and the Space Weather Modeling
Framework (SWMF; Lugaz et al., 2007; Tóth et al., 2007) are also often used in modeling
CME propagation.

Despite considerable progress, our ability to successfully model the Sun–Earth travel
time and the near-Earth speed of Earth-directed CMEs is still limited (Zhao and Dryer,
2014), even for relatively simple events that do not involve interacting CMEs (e.g. Temmer
et al., 2012). Part of the reason for this is that the models are still largely empirical. For
instance, most drag-based models use the dimensionless drag coefficient CD and/or the pa-
rameter γ (ratio of drag acceleration and square of the difference between the CME and
solar wind speeds) as a fitting parameter. The physical basis of the aerodynamic drag expe-
rienced by CMEs is only starting to be understood (Subramanian, Lara, and Borgazzi, 2012;
Sachdeva et al., 2015). As far as Lorentz forces go, it is also generally thought that they
are dominant only in the initial phases of CME propagation, when they are relatively near
the Sun. However, for a given CME, its not clear where Lorentz forces peak and when they
cease to be important. Some 1D models (e.g. Chen and Kunkel, 2010; Zhang et al., 2001)
assume that the Lorentz force follows the temporal profile of the soft X-ray flare that often
accompanies the CMEs.

In this article we adopt the physical definition for CME aerodynamic drag outlined in
Sachdeva et al. (2015), referred to as Paper 1 from now on, together with a specific model
(Kliem and Török, 2006) for Lorentz forces to address some of these questions: What is
the heliocentric distance range where Lorentz forces dominate? Beyond what heliocentric
distance is a drag-only model justified?

The rest of the article is organized as follows. In Section 2 we discuss the forces affecting
the CME propagation. Section 3 provides details of the CME event sample and data obtained
from Graduated Cylindrical Shell (GCS) fittings. The analysis and main results are outlined
in Section 4, followed by discussion and conclusions in Section 5.
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2. Forces Acting on CMEs

Descriptions of CME evolution usually consider an initiation phase comprising the initial
CME eruption, which is followed by the propagation phase. There is an interplay between
Lorentz forces, gravity and solar wind aerodynamic drag in the propagation phase; this pro-
vides the residual acceleration (e.g. Zhang and Dere, 2006; Subramanian and Vourlidas,
2007; Gopalswamy, 2013). Gravitational forces and plasma pressure are generally taken to
be negligible for flux-rope models of CMEs (Forbes, 2000; Isenberg and Forbes, 2007).
Lorentz forces are thought to accelerate CMEs up to a few solar radii in the low corona
(e.g. Vršnak, 2006; Bein et al., 2011; Carley, McAteer, and Gallagher, 2012), beyond which
the solar wind aerodynamic drag takes over. Paper 1 shows that aerodynamic drag accounts
for the observed CME trajectory only beyond 15 – 50 R� for the slow (near-Sun speeds
< 900 km s−1) CMEs; for fast CMEs (near-Sun speed > 900 km s−1), aerodynamic drag
can account for their dynamics from 5 R� onwards. Rollett et al. (2016) also show that their
drag-based model (DBM) is applicable only beyond a heliocentric distance of 21±10 R�.

The forces acting on a CME are often represented in the following form (in cgs units):

F = mcme
d2R

dt2

= FLorentz + Fdrag

=
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where F is the total force, mcme is the CME mass, R is the heliocentric distance of the
leading edge of the CME, and t represents time. FLorentz is the net Lorentz force acting on
the CME in the major radial direction which is given by the term in the curly brackets (see
e.g. Shafranov, 1966; Kliem and Török, 2006). The first term (within the square brakets)
represents the Lorentz self-forces ((1/c)J × B , where J is the current density and B the
magnetic field) acting on the expanding CME current loop (e.g. Chen, 1989) that accelerate
the CME, while the second term is the force due to the external poloidal field, Bext, that
tends to hold down the expanding CME. In the equation, I is the CME current, c is the
speed of light, b is CME minor radius, and li is the internal inductance. The axial current, I ,
is determined by the conservation of total (i.e. flux-rope + external) magnetic flux.

The term in Equation 1 involving CD represents the aerodynamic drag experienced by
the CME as it propagates through the solar wind. The strength of the momentum coupling
between the CME and the solar wind is represented by the dimensionless drag coefficient,
CD. We use a non-constant CD given by Equation 7 of Paper 1. For completeness, we include
the CD definition here:

CD = 0.148 − 4.3 × 104Re−1 + 9.8 × 10−9Re, (2)

where Re is the Reynolds number calculated using the solar wind viscosity expression as
described in Paper 1. The quantity Acme is the cross-sectional area of the CME, nsw is the
solar wind density, and mp is the proton mass. Vcme and Vsw denote the CME and solar wind
velocities, respectively. Depending on how fast or slow a CME is traveling (relative to the
solar wind), the solar wind can either “drag down” the CME or “pick it up”. Paper 1 finds
that fast CMEs (initial velocity ∼ 916 km s−1) are governed primarily by aerodynamic drag
from as early as ∼ 5.5 R�. On the other hand, slower CMEs are governed by solar wind
aerodynamic drag only above 15 – 50 R�.
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In this article we analyze a diverse sample of 38 well observed CMEs. Using measure-
ments with the Graduated Cylindrical Shell (GCS) method for each CME, we determine
the heliocentric distance, h̃0, above which the CME dynamics is dominated by aerodynamic
drag. Using the torus instability (TI) model to describe the Lorentz forces (Kliem and Török,
2006), we address questions such as: Where does the Lorentz force peak? How does the
Lorentz force compare with the aerodynamic drag force at and beyond h̃0?

3. CME Data Sample

3.1. Event Selection

We investigate CMEs observed during the rising phase of Solar Cycle 24 between 2010
and 2013. The primary data we use is from the Large Angle and Spectrometric Coronagaph
(LASCO: Brueckner et al., 1995) onboard the Solar and Heliospheric Observatory mission
(SOHO) and the Sun–Earth Connection Coronal and Heliospheric Investigation (SECCHI:
Howard et al., 2008) coronagraphs and the Heliospheric Imagers (HI) onboard the Solar
Terrestrial Relations Observatory mission (STEREO; Kaiser et al., 2008). In-situ measure-
ments are obtained from the Wind spacecraft,1 which gives the near-Earth parameters for
these CMEs. The 38 CMEs we identify for this work have near-Sun speeds ranging from
50 km s−1 to 2400 km s−1. Of these, 13 events are partial halo (PH) CMEs and 21 are full
halo (FH) CMEs as indicated in the SOHO/LASCO CME Catalog.2 The remaining four
events have angular width < 120◦. All the CMEs in our sample are Earth-directed. The re-
spective separations of the STEREO B and A spacecraft from the Earth vary from 71° and
66° in March 2010 to about 149° and 150° by the end of 2013. Along with the LASCO C2
coronagraph, the three-point view provides a favorable set up for observing Earth-directed
CMEs. We only include CMEs that have continuous observations in LASCO C2, STEREO-
A and -B COR 2, HI1 and HI2. We require that the images from all the instruments must
include the CMEs as clear, bright structures. Events with major distortions and CME–CME
interactions were excluded.

3.2. GCS Fitting

Needless to say, precise information as regards the three-dimensional (3D) evolution of
CMEs is central to building a good model. Early efforts in this direction include those of
Chen et al. (1997) and Wood et al. (1997). The advent of SECCHI/STEREO data facilitated
this task greatly. We use the Graduated Cylindrical Shell (GCS: Thernisien, Howard, and
Vourlidas, 2006; Thernisien, Vourlidas, and Howard, 2009; Thernisien, 2011) model to fit
the visible CME structure. Table 1 lists the GCS fitting parameters for all the CMEs. The
serial number of each CME in Table 1 will be used as a reference to the corresponding event
hereafter. The eight events from Paper 1 (marked with an asterisk ∗) have observations up
to the HI2 field of view (FOV), while the remaining events have been fitted up to the HI1
FOV. The second and third columns in Table 1 indicate the CME event date and time of the
first observation in the LASCO C2 FOV. The quantity h0 is the height of the leading edge of
the CME from the GCS fitting technique, at the time of first observation. The CME initial

1http://omniweb.gsfc.nasa.gov/.
2http://cdaw.gsfc.nasa.gov/CME_list/.

http://omniweb.gsfc.nasa.gov/
http://cdaw.gsfc.nasa.gov/CME_list/
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Table 1 Details of all the CMEs in the sample. Near-Earth and observational GCS parameters. The first
column is the serial number of each event with which it is referenced in the article. For each event the
observation date and time when it is first fitted the C2 FOV is shown in the second and third columns. h0 is
the observed GCS height at the first observation and v0 is the derived velocity at h0. nwind and vwind are the
observed proton number density and solar wind speed at 1 AU respectively. GCS parameters at h0 are given
by the Carrington longitude, φ, heliographic latitude, θ , tilt, γ , aspect ratio, κ , and half angle, α. All the fast
CMEs are indicated by a superscript (f) in their serial number. The events from Paper 1 are indicated by a
superscript (∗) by their corresponding serial number.

No. Date Time h0 v0 nwind vwind GCS parameters at h0

φ θ γ κ α

[UT] [R�] [km s−1] [cm−3] [km s−1] [°] [°] [°] [°]

1∗ 2010 Mar. 19 11:39 3.5 162 3.6 380 119 −10 −35 0.28 10

2∗f 2010 Apr. 03 10:24 5.5 916 7.1 470 267 −25 33 0.34 25

3∗ 2010 Apr. 08 03:24 2.9 468 3.60 440 180 17 −18 0.20 22

4∗ 2010 Jun. 16 15:24 5.7 193 3.50 500 336 0.5 −15 0.23 9.5

5∗ 2010 Sep. 11 02:24 4.0 444 4.00 320 260 23 −49 0.41 18

6∗ 2010 Oct. 26 07:39 5.3 215 3.80 350 74 −31 −55 0.25 22

7 2010 Dec. 23 05:54 3.7 147 6.10 321 29 −28 −15 0.40 18

8 2011 Jan. 24 03:54 4.4 276 9.00 320 336 −15 −15 0.30 22

9∗ 2011 Feb. 15 02:24 4.4 832 2.50 440 30 −6 30 0.47 27

10 2011 Mar. 03 05:54 4.9 349 2.25 550 175 −22 8 0.35 21

11∗ 2011 Mar. 25 07:00 4.8 47 3.00 360 207 1 9 0.21 37

12 2011 Apr. 08 23:39 4.7 300 5.00 375 41 6 −6 0.30 35

13 2011 Jun. 14 07:24 3.6 562 3.70 455 202 1 36 0.26 57

14f 2011 Jun. 21 03:54 8.4 1168 8.00 470 129 5 −8 0.45 14

15f 2011 Jul. 09 00:54 4.1 903 7.50 445 264 17 15 0.35 18

16f 2011 Aug. 04 04:24 7.3 1638 2.00 355 324 19 65 0.69 29

17 2011 Sep. 13 23:39 3.8 493 2.13 468 134 19 −38 0.43 41

18f 2011 Oct. 22 10:54 4.0 1276 8.00 300 54 44 16 0.60 45

19 2011 Oct. 26 12:39 7.8 889 3.00 260 302 7 −1 0.46 9

20 2011 Oct. 27 12:39 5.3 882 8.42 411 223 29 16 0.36 16

21f 2012 Jan. 19 15:24 4.6 1823 7.00 310 212 44 90 0.47 58

22f 2012 Jan. 23 03:24 4.0 1910 6.00 416 206 28 58 0.48 41

23f 2012 Jan. 27 17:54 3.5 2397 4.00 420 193 30 69 0.38 41

24f 2012 Mar. 13 17:39 3.9 1837 1.00 533 302 21 −40 0.74 73

25 2012 Apr. 19 15:39 4.1 648 10.00 325 82 −28 0.0 0.27 30

26f 2012 Jun. 14 14:24 6.2 1152 3.23 324 92 −22 −87 0.38 20

27f 2012 Jul. 12 16:54 4.4 1248 3.20 355 88 −10 78 0.45 35

28f 2012 Sep. 28 00:24 6.7 1305 7.00 320 165 17 86 0.42 42

29 2012 Oct. 05 03:39 4.4 461 6.00 320 56 −24 37 0.30 31

30 2012 Oct. 27 17:24 7.3 380 5.00 280 118 8 −36 0.20 40

31 2012 Nov. 09 14:54 3.8 602 13.00 290 285 −18 7 0.48 35

32 2012 Nov. 23 14:39 6.3 492 7.00 370 91 −21 −66 0.52 10

33f 2013 Mar. 15 06:54 4.7 1504 4.50 470 76 −7 −86 0.31 40

34f 2013 Apr. 11 07:39 5.9 1115 3.30 445 77 −1 90 0.14 47

35f 2013 Jun. 28 02:24 6.6 1637 10.00 420 177 −35 −20 0.41 5

36f 2013 Sep. 29 22:24 4.9 1217 11.00 260 360 21 90 0.38 47

37f 2013 Nov. 07 00:24 5.9 975 5.50 381 304 −30 −75 0.34 12

38f 2013 Dec. 07 08:24 6.8 1039 15.00 367 221 32 51 0.36 47
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speed v0 at h0 is calculated by fitting a third-degree polynomial to the height–time observa-
tions. The quantities nwind and vwind are the proton number density and solar wind velocity
at 1 AU as observed in situ by the Wind spacecraft. These observed values are extrapolated
sunward for use in Fdrag for calculating nsw and Vsw in Equation 1. We follow the detailed
description given in Paper 1 to calculate the various parameters, such as Acme, nsw, Vsw, and
CD, required in evaluating Fdrag.

GCS parameters like Carrington longitude, φ, and heliographic latitude, θ , along with
the tilt, γ , provide details of the position of the source region (SR) and the orientation of the
propagating CME. The quantity κ is the aspect ratio and α is half of the angle between the
axes and the legs of the flux rope. Using the GCS fitted height of the leading edge (R), κ ,
and α at each time instant, other geometrical parameters like CME minor radius, b, ratio,
R/b, elliptical cross-sectional width, and CME area, Acme, are calculated (Thernisien, 2011)
to be used in Equation 1. The observed height–time data for each CME in our sample is thus
derived from the GCS fitting of images at each timestamp.

Our sample includes 38 CMEs with an initial velocity range 47 < v0 < 2400 km s−1.
There are 18 CMEs with initial velocities v0 > 900 km s−1. We call these events “fast”
and indicate them by a superscript (f) in Tables 1 and 2. The fastest event is CME 23 on
27 January 2012, with v0 ∼ 2400 km s−1. The remaining 20 CMEs in the sample having
v0 < 900 km s−1 are called “slower” CMEs.

4. Analysis and Results

Our main aim in this article is to determine the heliocentric distance range(s) where the
Lorentz-force terms and the aerodynamic drag terms (Equation 1) are respectively dominant.

4.1. Aerodynamic Drag

We first try to reconcile the observed CME dynamics with a solar wind aerodynamic drag-
only model following the procedure described in Paper 1. In other words, we consider only
the Fdrag term in Equation 1 using observationally derived parameters and compare the
model solutions with the observed height–time data. We find that the drag-only model solu-
tions agree reasonably well with the observed CME profile right from the first data point (h0)
for the fast CMEs (initial velocity > 900 km s−1). Figure 1 shows the height–time plot for
CME 18 (v0 ∼ 1276 km s−1) and CME 36 (v0 ∼ 1217 km s−1), to compare the model results
(red dash-dotted line) and data (diamonds). It is clear that, for both these CMEs, solar wind
drag explains the observed trajectory quite well from 4 and 4.9 R� onwards, respectively.
This result is representative of all the 18 fast CMEs in our sample. However, this is not true
for slower CMEs. Figure 2 shows the results for two representative slower CMEs (CME 8,
v0 ∼ 276 km s−1 and CME 29, v0 ∼ 461 km s−1) with the drag-only model initiated from the
first observation point. The disagreement between the data (diamond symbols) and predicted
solution (red dash-dotted line) is obvious, and indicates that the drag-only model, when ini-
tiated from the first data point, provides a poor explanation for the observed CME dynamics
for slower CMEs. As in Paper 1, we then initiate the drag-only model at progressively later
heights (using observational inputs appropriate to the initiation height). The initiation height
at which the drag solution matches the observations is denoted by h̃0 in Table 2. The model
predicted solution (denoted by a solid blue line) shown in Figure 2 indicates that the drag-
only model initiated above h̃0 (∼ 21 and 31 R� for CME 8 and 29 respectively) provides a
good description of the dynamics of these relatively slower CMEs. We follow this procedure
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Table 2 Parameters for the solar wind drag and Lorentz-force analysis are shown here. The first column
indicates the serial number of the CME from Table 1. h̃0 is the height at which drag force takes over the
CME dynamics and ṽ0 is the corresponding speed at this height. Lorentz-force parameters include the de-
cay index, n, height at which the Lorentz force peaks, hpeak, equilibrium current, Ieq, at heq, equilibrium
field, Bext, also evaluated at R = heq, and Fall%, which gives the amount by which the Lorentz force de-
creases from its maximum value (at hpeak) to its value at h̃0. In the last column, Fdiff denotes the quantity
Fdrag−FLorentz

Fdrag
× 100% at 40 R� for all events (except CME 11, for which it is evaluated at 50 R�).

CME
No.

Drag parameters Lorentz force parameters

h̃0 ṽ0 n hpeak Ieq Bext(heq) Fall% Fdiff

[R�] [km s−1] [R�] [1010 A] [10−1 G] [%] [%]

1∗ 21.9 383 2.5 1.75 0.41 0.13 96 18.6

2∗f 5.5 916 1.6 2.35 3.13 0.94 30 43.2

3∗ 19.7 506 1.9 2.05 0.55 0.19 86 16.3

4∗ 15.2 437 2.5 1.75 0.31 0.11 93 −41.3

5∗ 27.7 490 1.6 2.35 1.77 0.33 79 6.6

6∗ 20.1 445 1.7 2.25 0.66 0.22 73 5.9

7 27.1 583 1.6 2.35 2.30 0.65 81 4.2

8 20.8 454 1.6 2.35 1.21 0.38 77 19.7

9∗ 39.7 530 2.1 1.95 1.10 0.29 97 0.2

10 18.2 511 2.5 1.75 0.50 0.15 95 −33.3

11∗ 46.5 456 1.9 2.05 0.71 0.25 94 0.9

12 12.1 373 2.5 1.75 0.47 0.15 91 24.3

13 24.4 767 1.6 2.35 1.72 0.56 80 30.7

14f 8.4 1168 1.6 2.35 6.26 1.71 48 21.6

15f 4.1 903 1.9 2.05 2.66 0.79 29 52.4

16f 7.3 1638 1.6 2.45 5.90 1.39 41 61.3

17 38.8 636 1.7 2.25 1.06 0.29 91 0.3

18f 4.0 1276 2.1 1.95 8.40 2.09 35 80.0

19 30.5 313 2.1 1.95 0.47 0.13 96 2.1

20 39.4 491 2.2 1.95 1.67 0.49 98 0.3

21f 4.6 1823 3.0 1.65 11.60 3.11 66 80.9

22f 4.0 1910 3.0 1.65 10.30 2.74 58 93.7

23f 3.5 2397 3.0 1.65 8.51 2.47 49 94.6

24f 3.9 1837 1.9 2.05 3.92 0.91 25 83.2

25 23.1 684 1.6 2.35 3.68 1.19 71 3.3

26f 6.2 1152 1.6 2.35 2.89 0.84 35 70.5

27f 4.4 1248 1.6 2.35 4.07 1.11 18 64.9

28f 6.7 1305 1.6 2.35 8.53 2.37 39 59.2

29 31.1 790 1.6 2.35 4.05 1.28 79 7.8

30 36.9 570 1.6 2.35 1.56 0.56 84 29.2

31 26.5 597 2.9 1.75 11.07 2.96 98 4.4

32 27.7 668 1.7 2.25 3.41 0.89 86 10.4

33f 4.7 1504 1.8 2.15 4.29 1.32 32 56.0

34f 5.9 1115 1.6 2.35 1.29 0.52 34 83.5

35f 6.6 1637 2.5 1.85 9.55 2.69 26 60.3

36f 4.9 1217 2.1 1.95 7.06 2.04 48 80.7

37f 5.9 975 1.7 2.25 2.50 0.75 60 68.3

38f 6.8 1039 1.9 2.05 6.91 2.04 57 8.9
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Figure 1 The observed height–time data is shown with diamonds. The red dash-dotted line is the drag model
solution when it is initiated from the first observed height, h0. CME 18 refers to the event on 22 October 2011,
with an initial speed ∼ 1276 km s−1, and CME 36 represents an event on 29 September 2013, with an initial
speed ∼ 1217 km s−1. Both these events are fast CMEs.

Figure 2 The observed height–time data is shown with diamonds. The red dash-dotted line is the drag
model solution when it is initiated from the first observed height h0. The blue solid line shows the predicted
height–time trajectory when the drag model is initiated from height h̃0. CME 8 refers to the event on 24 Jan-
uary 2011, with an initial speed ∼ 276 km s−1. CME 29 represents an event on 05 October 2012, with an
initial speed ∼ 461 km s−1. Both CMEs 8 and 29 are slow CMEs.

for each event in our sample. The quantities h̃0 and corresponding velocity ṽ0 are listed for
each event in Table 2. We use the coefficient of determination (often called R squared) to de-
termine how well the predicted model solutions fit the data. Model solutions with R2 > 98%
are considered acceptable. The CME dynamics can be considered to be dominated by solar
wind aerodynamic drag above the height h̃0. The left panel of Figure 3 shows a plot of h̃0

(Table 2) versus the CME initial velocity (v0). We see that, for CMEs with v0 < 900 km s−1,
h̃0 lies between 12 – 50 R�, while for CMEs with v0 > 900 km s−1, h̃0 is the same as the ini-
tial observed height for the event (h0 in Table 1, which ranges from 3.9 – 8.4 R� for the fast
CMEs in our sample). In other words, Figure 3 shows that fast CMEs are drag dominated
from 3.9 – 8.4 R� onwards, while slower CMEs are drag dominated only beyond 12 – 50 R�.
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Figure 3 Plot of initiation height (h̃0) and Fall% versus the CME initial speed. Left panel shows the quantity
h̃0 (from where solar wind drag dominates) as a function of CME initial velocity, v0. The right panel depicts
the percentage fall in the Lorentz force from its peak value to its value at h̃0 (%) as a function of CME initial
velocity, v0. Symbols in blue represent slow CMEs (i.e. v0 < 900 km s−1) and symbols in black represent fast
CMEs (v0 > 900 km s−1). See Table 2 for the values in the figure.

4.2. Lorentz Forces

If the aerodynamic drag dominates for heliocentric distances R > h̃0 (i.e. it is not necessary
to invoke Lorentz forces to explain their dynamics), it is natural to investigate the behavior
of Lorentz forces for R < h̃0. The first two terms in Equation 1 are a feature of most Lorentz-
force models that deal with CME initiation. All such models predict that the (total) Lorentz
force increases until it peaks at a certain heliocentric distance, beyond which it decreases
and becomes negligible. Some models tailor the injected poloidal flux (or equivalently, the
driving current) so as to achieve this Lorentz-force profile (Chen and Kunkel, 2010). Others,
such as the torus instability model (Kliem and Török, 2006), rely on the fact that the external
Lorentz forces need to decrease (with heliocentric distance) faster than a certain rate in order
to “launch” the CME. This also results in a Lorentz-force profile that increases initially and
achieves a peak before decreasing. Kliem et al. (2014) have also shown the equivalence of
TI and the catastrophe mechanism for CME eruption (Forbes and Isenberg, 1991).

In this description, the equilibrium position of the flux rope, heq, is defined by a balance
between the Lorentz self force and the external force. For the sake of concreteness, we
adopt heq = 1.05 R� in our work. The equilibrium position is also defined by an equilibrium
current, Ieq. The current carried by the flux rope at a given R is defined by (Kliem and Török,
2006):

I = c′
eqIeqheq

c′R

(
1 + (c′

eq + 1
2 )

2c′
eq(2 − n)

[(
R

heq

)2−n

− 1

])
, (3)

where c′(R) = [ln(8R/b)− 2 + li/2] and c′
eq = c′(R = heq) = [ln(8heq/beq)− 2 + li/2]. The

quantity b is the flux-rope minor radius. The external (ambient) magnetic field is ∝ R−n,
and n needs to be greater than a certain critical value for the torus instability to be operative,
causing the flux rope to erupt. The quantity li is the internal inductance of the flux rope,
and we use li = 1/2. The equilibrium current, Ieq, carried by the flux rope is related to the
external field, Bext(heq), at the equilibrium position via

Ieq = Bext(heq)heqc

c′
eq + 1

2

. (4)
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For a given value of n, the value of Ieq (and equivalently Bext(heq)) is determined by
the condition Fdrag(h̃0) = FLorentz(h̃0). It constrains the equilibrium current Ieq and n. For a
given event, n is chosen to be the minimum value that will ensure that |Fdrag| > FLorentz for
R > h̃0.

Table 2 gives the values of the equilibrium current Ieq and Bext(heq) for all CMEs for the
corresponding value of the decay index n. The GCS fits to our observations yield values for
the flux-rope aspect ratio R/b. For heliocentric distances below the first observed point h0

(which is typically around 3 R�), we assume that R/b is the same as the observed value at
the first observed point (h0). In other words, we assume that the flux rope expands in a self-
similar manner from heq to h0; beyond h0, we do not have to rely on any such assumption,
since we have access to the observed values of R/b.

4.3. Lorentz Force versus Aerodynamic Drag

As an example, we show a plot of the Lorentz force versus heliocentric distance for CMEs
18 and 36 in Figure 4 and CMEs 8 and 29 in Figure 5. The red solid line indicates the
points between heq and h0 where we do not have data for R/b (in this region we assume
that R/b is the same as its value at h0) and black diamonds indicate points for which we
have observationally determined values for R/b. Clearly, the Lorentz force on the flux rope
increases from its value at heq to reach a peak at hpeak, after which it decreases. For each
CME, the position at which the Lorentz force peaks (hpeak) is given in Table 2. The peak
is generally between 1.65 and 2.45 R� for the CMEs in our sample. The green circles in
Figures 4 and 5 indicate the absolute value of solar wind drag force with height above h̃0.
The location of h̃0 is indicated by a blue dashed vertical line. The quantity marked Fall%
in Table 2 quantifies the amount by which the Lorentz force at h̃0 has fallen from its peak
value at hpeak. For both the fast CMEs, CME 18 (left panel) and CME 36 (right panel) in
Figure 4, the Lorentz force peaks at 1.95 R� with n = 2.1. The Lorentz force falls by 35%
for CME 18 and by 48% for CME 36 from hpeak up to h̃0; for these fast CMEs, h̃0 happens to
be the same as h0. For the slower CMEs (CME 8 and CME 29, shown in Figure 5), n = 1.6
and the Lorentz force peaks at 2.35 R� for both CMEs. The Lorentz force decreases by as

Figure 4 Comparison of Lorentz and drag forces for fast CMEs. The open diamond symbols represent the
Lorentz-force values derived observationally starting from h0. The red solid line indicates the Lorentz-force
values for heights between heq and h0. The filled green circles represent the absolute value of the solar wind
drag force. The dashed vertical line (blue) indicates the height h̃0 at which the solar wind drag force takes
over. This height is the first observation point for both CMEs 18 and 36. For CME 18 h̃0 ∼ 4 R�, while for
CME 36 h̃0 ∼ 4.9 R� .
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Figure 5 Comparison of Lorentz and drag forces for the slow CMEs (8 and 29). The symbols and line styles
are the same as in Figure 4.

much as 77% from its value at hpeak up to h̃0 = 20.8 R�, beyond which the solar wind drag
takes over for CME 8. Similarly, for CME 29, the Lorentz force decreases by 79% from
hpeak up to h̃0 = 31 R�. This is typical of slower CMEs; for all the slower CMEs in Table 2,
the Lorentz force at h̃0 (which is 12 – 50 R�) has fallen by around 70 – 98 % from its peak
value. The Lorentz force peaks fairly early on (hpeak ≈ 1.65 – 2.45 R�) for slow(er) CMEs,
this means that they become negligible only as far out as 12 – 50 R�.

For all the CMEs in our sample, the right panel of Figure 3 shows the percentage by
which the Lorentz force has fallen at h̃0 (relative to its peak value) as a function of the CME
initial speed. Slower CMEs are denoted by blue circles and fast ones by black circles. The
Fall% is clearly larger for the slower CMEs. Since the fast CMEs are drag dominated from
relatively early on (left panel of Figure 3), the Fall% is relatively lower.

Reiterating the results summarized in Table 2. Column 1 indicates the CME serial number
corresponding to the events listed in Table 1. Column 2 lists the height h̃0 above which the
solar wind drag dominates the CME dynamics. For slow CMEs, this height lies in the range
12 – 50 R�, while for faster events it is the same as h0 in Table 1. ṽ0 is the CME speed at
height h̃0. The values of n in column 4 represent the decay index for each CME and lie
between 1.6 and 3. We note that the fastest CMEs typically have the highest values for n.
The quantity hpeak quoted in column 5 gives the position where the Lorentz force peaks;
it ranges between 1.65 and 2.45 R�. The equilibrium current, Ieq, in column 6 is in units
of 1010 A. The Ieq estimates are in agreement with the average axial current calculated by
Subramanian and Vourlidas (2007). The quantity Bext(heq) in column 7 is the equilibrium
magnetic field at heq = 1.05 R� in units of G. Fall% in column 8 describes the amount by
which the Lorentz force at h̃0 has decreased relative to its peak value. For slow CMEs, the
percentage fall is between 70 – 98%, while for faster CMEs, it is between 20 – 60 %. The last
column indicates the quantity Fdiff = ((Fdrag − FLorentz)/Fdrag) × 100% evaluated at 40 R�
(except for CME 11, where it is evaluated at 50 R�).

5. Discussion and Conclusions

5.1. Discussion

Our main aim in this paper is to quantify the relative contributions of Lorentz forces and
solar wind aerodynamic drag on CMEs as a function of heliocentric distance. Since these
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are the two main forces thought to be responsible for CME dynamics, it is essential to know
their relative importance to build reliable models for CME Earth arrival time and speed. It
is well known that aerodynamic drag dominates CME dynamics only beyond distances as
large as 15 – 50 R� for all but the fastest CMEs (Paper 1). This trend has also been con-
firmed by independent studies using an empirical fitting parameter for aerodynamic drag
(e.g. Temmer and Nitta, 2015). One would assume that Lorentz forces are dominant below
these heliocentric distances (and negligible above it), but this has not been explicitly con-
firmed so far. To the best of our knowledge, this is the first systematic study in this regard
using a diverse CME sample.

We use a sample of 38 CMEs that are well observed by the SECCHI coronagraphs and
the heliospheric imagers onboard STEREO and the LASCO coronagraphs onboard SOHO.
We use detailed geometrical parameters from GCS fitting to the CMEs. Our prototypical
models for aerodynamic drag and Lorentz forces are shown in Equation 1. The model for
aerodynamic drag follows the physical definition outlined in Paper 1, and the model for
Lorentz forces follows the TI model of Kliem and Török (2006). Using only the aerody-
namic drag term, we compute the heliocentric distance h̃0 beyond which solar wind drag
can be considered to be the only force influencing the CME dynamics. This calculation
makes use of several observational inputs for each CME: the ambient solar wind density
and velocity, GCS fitted height, velocity and area for each CME. Subsequently, we use only
the Lorentz-force term. Using observational data for the aspect ratio of the CME flux rope,
we determine the heliocentric distance hpeak at which the Lorentz force attains its peak value.
We also determine the percentage by which the Lorentz force decreases from its peak value
at hpeak up to h̃0 (beyond which aerodynamic drag becomes the dominant force). Table 2
summarizes all our results.

Some of the trends revealed by our results are depicted graphically in Figures 3, 6, and 7.
Blue circles indicate slow CMEs, while the black circles represent fast events. As discussed
earlier, Figure 3 shows that aerodynamic drag dominates the dynamics of fast CMEs from a
few solar radii onwards, whereas it is dominant for slow CMEs only beyond 12 – 50 R�.

Figure 6a shows the first observed height, h0, of each CME as a function of its initial
speed v0. There does not seem to be a definite distinction between fast and slow CMEs in this
regard. It is possible, however, that the limited time cadence of the LASCO C2 coronagraphs
affects the values of h0 for fast CMEs. We note that the first observed height for about 60%
of the CMEs lies between 2.9 and 5.0 R�.

As depicted in Figures 4 and 5, the Lorentz-force profile shows a steep increase from heq

until it peaks at hpeak, beyond which it decreases. Figure 6b is a scatterplot of the position
of the Lorenz force peak (hpeak; see Table 2) as a function of the CME initial speed, v0.
The value of hpeak is between 1.65 and 2.45 R� for all CMEs, with no noticeable trend
distinguishing slow and fast ones.

As shown in the right panel of Figure 3, the percentage decrease, Fall%, of the Lorentz
force at h̃0 (relative to its value at hpeak) is considerably higher for slow CMEs than it is for
fast ones. Figure 6c shows a different way of visualising this data - the quantity Fall% is
plotted as a function of h̃0. It shows that the percentage decrease is larger for CMEs with
larger h̃0 (the slow ones) than it is for those with relatively smaller values of h̃0 (the fast
ones).

The drag-only model accounts well for the CME trajectory when initiated at h̃0 (or be-
yond). This implies that other forces (such as Lorentz forces) are not important beyond
this height. We find this to be true for 36 of the 38 CMEs in our sample. CMEs 4 and 10
(which are slow) are the only exceptions. However, we find that the difference between the
drag force and the Lorentz force beyond h̃0 is much more pronounced for fast CMEs than
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Figure 6 Summary of some of the results in Table 2. Blue circles represent quantities for slow CMEs and
black circles represent fast CMEs. Panels a and b plot the quantities h0 and hpeak respectively as a function
of CME initial velocity, v0. Panel c shows the percentage decrease, Fall%, in Lorentz force (between its peak
and h̃0) as a function of h̃0 for both slow (blue circles) and fast (black circles) CMEs.

Figure 7 Plot of the relative difference between the two forces and variation of the drag force magnitude at
h̃0 versus CME initial velocity, v0. Panel a shows the percentage difference between drag and Lorentz forces
as a function of CME initial velocity, v0. Fdiff is calculated at 40 R� for all CMEs except CME 11, for which
it is evaluated at 50 R� . Panel b shows the absolute value of drag force at h̃0 for all CMEs with respect to
the CME initial velocity, v0. Details are described in the text. The blue circles represent slow CMEs and the
black ones represent fast CMEs.

for slow ones (e.g. Figures 4 and 5). In order to quantify this, we compute the quantity
Fdiff = 100 × (Fdrag − FLorentz)/Fdrag for all the CMEs in our list. This quantity is plotted in
Figure 7a as a function of the CME initial velocity, v0; as before, blue circles represent slow
CMEs, while black ones represent fast ones. We show the relative percentage difference for
all events at 40 R� except for CME 11. Since h̃0 ∼ 46 R� for CME 11, Fdiff is evaluated
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at 50 R� for this event. The drag force is 50 – 90% larger at 40 R� than the Lorentz force
for most of the fast events. This justifies the success of the drag-only model for fast events.
On the other hand, this number ranges from 0.2% and 30% for the slower events. Evidently,
for some of the slower CMEs, the computed Lorentz force is only slightly smaller than the
drag force, even well beyond h̃0. For the slow CMEs 4 and 10, the Lorentz force is in fact
larger than the solar wind drag force in magnitude. Figure 7b shows a plot of the absolute
magnitude of the solar wind drag force (in units of 1017 dyn) for all CMEs at h̃0 versus the
CME initial velocity, v0. Since a drag-only model describes the data well for all the events
in our list, it follows that the Lorentz force we compute for some of the slower CMEs is an
overestimate. Our Lorentz-force computations assume that the total magnetic flux is frozen
in. The time evolution of the enclosed current, I , follows from this assumption. However,
this assumption might not be accurate – some of the magnetic energy might be expended
in CME expansion and/or heating of the CME plasma. Our results suggest that such effects
might be especially important for slower CMEs.

5.2. Conclusions

Our main conclusions are:

• Our analysis shows that a model that includes only the solar wind aerodynamic drag
accurately describes the trajectory of fast CMEs from very early on. The converse is
true for slower CMEs. The distance h̃0 beyond which the solar wind aerodynamic drag
dominates over the Lorentz force can be as small as 3.5 – 4 R� for fast (> 900 km s−1)
CMEs, and as large as 12 – 50 R� for slower ones (47 – 890 km s−1).

• The distance hpeak at which the Lorentz force peaks is between 1.65 and 2.45 R� for all
CMEs.

• At h̃0, the Lorentz force has typically fallen by 20 – 60 % (relative to its peak value) for
fast CMEs. For slower CMEs, the decrease ranges between 70 – 98%.

• Well beyond h̃0, the drag force exceeds the Lorentz driving force by a significant amount
for fast CMEs (50% – 90%). However, for some slow CMEs the dominance of the drag
force is not as pronounced, suggesting that part of the CME magnetic flux may be dissi-
pated in aiding its expansion or heating.

In calculating the Lorentz force, the initial equilibrium position for the CME flux rope
is taken to be heq = 1.05 R� for all events. The overlying field is taken to decrease as
Bex ∝ R−n. The quantity n needs to be greater than a critical value ncr (ncr = 3/2−1/(4c′

eq))
for the torus instability to be operative, ensuring CME eruption. For each CME, we choose
a value of n that is > ncr. We demand that the Lorentz force equals the aerodynamic drag
force at h̃0. The value for n is chosen such that the Lorentz force remains lower than the
aerodynamic drag force beyond h̃0. For the CMEs in our sample, the critical decay index ncr

ranges from 1.29 to 1.39.
For a fixed value of n, we note that an increase in heq by 14 % increases the peak force

position value by ∼ 15%. It decreases the Fall % of the Lorentz force at h̃0 (relative to its
peak value) by 5 %. For a fixed value of heq(−1.05 R�), an increase in n by 31% decreases
the peak position by 17%. It also increases the Fall% of the Lorentz force at h̃0 (relative to
its peak value) by 19.5%.

Although we have considered only Lorentz forces and solar wind aerodynamic drag in
order to explain CME dynamics, we note that there can be other important contributors to
the overall energetics. For instance, the work involved in CME expansion and the energy ex-
pended in possibly heating the CME plasma (see, e.g., Kumar and Rust, 1996; Wang, Zhang,
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and Shen, 2009; Emslie et al., 2012) are not considered here. These could well be impor-
tant, in addition to the energy dissipated due to aerodynamic drag. An understanding of these
quantities can be achieved via observations of CME expansion, as well as measurements of
thermodynamic quantities inside the CME as it progresses through the heliosphere. The lat-
ter can possibly be done with the upcoming Solar Probe Plus and Solar Orbiter missions or
via an off-limb spectroscopy mission.
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