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Abstract We present a study of the complex event consisting of several solar wind tran-
sients detected by the Advanced Composition Explorer (ACE) on 4 – 7 August 2011, which
caused a geomagnetic storm with Dst = −110 nT. The supposed coronal sources, three
flares and coronal mass ejections (CMEs), occurred on 2 – 4 August 2011 in active region
(AR) 11261. To investigate the solar origin and formation of these transients, we study the
kinematic and thermodynamic properties of the expanding coronal structures using the Solar
Dynamics Observatory/Atmospheric Imaging Assembly (SDO/AIA) EUV images and differ-
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ential emission measure (DEM) diagnostics. The Helioseismic and Magnetic Imager (HMI)
magnetic field maps were used as the input data for the 3D magnetohydrodynamic (MHD)
model to describe the flux rope ejection (Pagano, Mackay, and Poedts, 2013b). We character-
ize the early phase of the flux rope ejection in the corona, where the usual three-component
CME structure formed. The flux rope was ejected with a speed of about 200 km s−1 to the
height of 0.25 R�. The kinematics of the modeled CME front agrees well with the Solar
Terrestrial Relations Observatory (STEREO) EUV measurements. Using the results of the
plasma diagnostics and MHD modeling, we calculate the ion charge ratios of carbon and
oxygen as well as the mean charge state of iron ions of the 2 August 2011 CME, taking
into account the processes of heating, cooling, expansion, ionization, and recombination of
the moving plasma in the corona up to the frozen-in region. We estimate a probable heat-
ing rate of the CME plasma in the low corona by matching the calculated ion composition
parameters of the CME with those measured in situ for the solar wind transients. We also
consider the similarities and discrepancies between the results of the MHD simulation and
the observations.

Keywords MHD · Magnetic field · Coronal mass ejections · Solar wind · Models

1. Introduction

The key problem of space weather forecasting is the prediction of geoeffective transient solar
wind streams that are capable of causing geomagnetic storms. One of the most geoeffective
solar wind (SW) transients are interplanetary coronal mass ejections (ICMEs). They are
considered as interplanetary manifestations of coronal mass ejections (CMEs) associated
with solar activity eruptive processes. Observational criteria and properties of ICMEs and
their specific types, such as magnetic clouds at 1 AU, can be found in many publications
(e.g. Gosling, 1990; Bothmer and Schwenn, 1998; Zurbuchen and Richardson, 2006; Webb
and Howard, 2012, and references therein).

For the earliest prediction of ICME arrival at Earth, one needs to understand the key
factors that determine the formation of the transient plasma flows in the corona and their
propagation in the heliosphere. From an observational point of view, a typical ICME de-
velops in the corona in four main stages: (1) eruption of plasma with the formation and
expansion of a flux rope in the corona that is observable by EUV telescopes up to a distance
of 1.3 – 1.7 R� from the solar center, (2) appearance of a CME in the field of view of white-
light coronagraphs above the limb at distances >2 R�, (3) propagation of the CME in the
heliosphere visible with wide-field coronagraphs or heliospheric imagers, (4) appearance in
situ of the solar wind transient with signatures of ICME – significant deviations of the main
parameters (Vp, np, Tp, and B , which are the proton velocity, density, temperature, and the
magnetic field, respectively) from the ambient values (Richardson and Cane, 2004, 2010).
The tracking of a CME from the low corona to Earth using a qualitative morphological
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analysis of the pre-eruption structure and the subsequent events was presented by DeForest,
Howard, and McComas (2013).

CMEs are the clearest evidence of ICME initiations. The source regions of CMEs in the
solar corona can be identified and localized by their characteristic signatures: solar flares,
flows, magnetic reconfiguration, EUV waves, jets, coronal dimmings or brightenings, fila-
ment eruptions, and post-flare loop arcades revealed by continuous monitoring of the solar
corona by EUV imaging using well-developed methods of data processing. Cremades and
Bothmer (2004) have studied 276 CMEs in the period 1997 – 2002 and concluded that the
topology of these CMEs and their orientation were defined by the location and magnetic con-
figuration of the sources, in particular, the position of the neutral line between two opposite
magnetic polarities. This characteristic has been recognized in the solar event of 2 August
2011, which is considered below.

Prediction of ICME arrival in the Earth environment depends on the CME kinematics
in the heliosphere. Solar wind models describe this propagation. The simplest one, the
Archimedean spiral (or ballistic) model (ASM), is based on the assumption that the solar
wind streams have constant velocity during the whole passage from the Sun to Earth (Nolte
and Roelof, 1973; McNeice, Elliot, and Acebal, 2011). The ASM model does not take into
consideration the evolution of the CME velocity in the heliosphere, so it can be used only
for an approximate determination of the arrival time interval with an uncertainty of half a
day. The improved drag-based model (DBM) assumes that the dynamics of CMEs is domi-
nated by the magnetohydrodynamic (MHD) aerodynamic drag (Cargill et al., 1996; Vršnak,
2001; Owens and Cargill, 2004; Cargill, 2004; Vršnak et al., 2004, 2010; Vršnak and Žic,
2007; Vršnak, Vrbanec, and Čalogović, 2008; Borgazzi et al., 2009; Lara and Borgazzi,
2009), i.e. that above a distance of 20 R�, CMEs faster than the ambient solar wind are de-
celerated, whereas those that are slower are accelerated by the ambient flow (Gopalswamy
et al., 2000). A validation analysis shows that the mean uncertainty in predicting the arrival
time of ICMEs by the DBM reaches from 12.9 hours, when the deviation of CMEs from
the Sun–Earth line is larger than their half-width, to 6.8 hours when this deviation is smaller
(Vršnak et al., 2013; Shi et al., 2015). Prediction of the arrival time by the kinematical mod-
els is based on the knowledge of the initial CME velocity at a distance of ∼20 R�, which
is subject to the projection effect, which in turn depends on the angle between the CME
propagation direction and the Sun – Earth line. Colaninno and Vourlidas (2009) proposed
a method to derive the propagation direction by comparing masses of the CME structure
determined from the Thomson scattering intensities observed by the two Solar Terrestrial
Relations Observatory (STEREO) spacecraft located in different angular positions. They
found that the direction ambiguity becomes reasonably small (≤20◦) for angular separa-
tions between spacecraft >50◦. However, this method does not take into consideration the
CME size and distribution of masses in the 3D CME structure, so it gives the center-of-mass
velocity rather than the velocity of the leading edge that is commonly used in prediction.

The aforementioned estimations concern the propagation of single CMEs. In some cases,
two or more successive CMEs propagate in the direction of Earth. As a result of interaction,
these CMEs change their kinematic parameters. Temmer et al. (2012) described the case
of 1 August 2010, when the interaction of two CMEs resulted in a strong deceleration of
the overtaking second CME, followed by their merging and further propagation as a single
structure. The authors succeeded to simulate the kinematical evolution of the second CME
using the drag-based model (Vršnak et al., 2013) and varying the drag parameter, �, value
and the ambient solar wind speed from the region of interaction (∼35 R�) to Earth. Other
cases of interaction between CMEs and analyses of their kinematics by multipoint observa-
tions were described in Möstl et al. (2012), Lugaz et al. (2012), Colaninno and Vourlidas
(2015), and in references therein.



90 Page 4 of 29 D. Rodkin et al.

Currently, several sophisticated physics-based models exist for solar wind forecasting
near Earth and beyond with the use of the MHD approach: the Wang–Sheeley–Arge (WSA)-
Enlil model, MHD-Around-a-Sphere (MAS)-Enlil model, Space Weather Modeling Frame-
work (SWMF), and their combinations (Jian et al., 2015). These models structurally consist
of two main parts: the solar coronal and heliospheric components. The coronal part of the
WSA, MAS, and SWMF models approximates the outflow at the inner boundary of the he-
liosphere based on synoptic magnetograms constructed from daily full-disk photospheric
magnetograms (Arge and Pizzo, 2000) using a semi-empirical model based on the potential
magnetic field approximation. Then, the boundary outflow and magnetic field distributions
are used as the initial data in MHD simulations, which describe the radial expansion and
evolution of the solar wind plasma in the heliosphere.

The Enlil model is a 3D time-dependent heliospheric model based on ideal MHD equa-
tions (Odstrčil, 1994; Odstrčil, Dryer, and Smith, 1996; Odstrčil and Pizzo, 1999). The inner
boundary of the Enlil model is placed at 21.5 or 30 R� beyond the outermost critical point
and the outer boundary is taken from 2 to 5 or 10 AU. To predict the propagation of CMEs,
the WSA-Enlil cone model additionally uses white-light images from the Large Angle and
Spectrometric Coronagraph (LASCO: Brueckner et al. (1995)) and coronagraphs onboard
STEREO (Howard et al., 2008). This model characterizes the basic properties of the CME,
including velocity and size (Pizzo et al., 2011; Mays et al., 2015). It focuses mainly on the
prediction of the arrival time of the CME without localizing its coronal origin. Mays et al.
(2015) concluded in their statistical analysis of 35 CMEs between January 2013 and July
2014 that the mean estimated error of the CME arrival by the Enlil model was 12.3 hours.
The inaccuracy of current models arises to a considerable degree from insufficient knowl-
edge of the interaction of the CME plasma with the ambient solar wind and other wind
components in the heliosphere. Information about these processes can be obtained from the
fast-progressing heliospheric tomography that is based on the interplanetary scintillation
(IPS) in radio waves (Manoharan, 2010).

Among other parameters of solar wind transients, the ion charge composition of the
plasma is one of the important identifiers of their origin, whereas it depends on the parame-
ters of the source and remains practically unchanged during the solar wind propagation in the
heliosphere. Analysis of the ion charge state and mass composition of the solar wind plasma
helps to separate its different components and to determine its source (Fisk, Schwadron, and
Zurbuchen, 1998; Zhao, Zurbuchen, and Fisk, 2009; Zhao et al., 2014; Kilpua et al., 2014;
Wang, 2012).

It is believed that the ion charge state of the solar wind, registered at Earth’s orbit, approx-
imately corresponds to its state in the corona at the altitude where it is “frozen-in” (a tran-
sition to the limiting case, where the ionization and recombination times of the plasma in
the corona are on the order of or longer that the time of the solar wind propagation in the
heliosphere (Hundhausen, Gilbert, and Bame, 1968)). The frozen-in condition is valid at
distances between 1.5 to 4 R�, which depends on the type of ion and the level of activity
(Feldman, Landi, and Schwadron, 2005).

The main factors that determine the ion composition of the CME plasma and its evolution
in the corona are temperature, density, and mass velocity, which depend on the level of solar
activity. At higher activity, plasma temperature and density in the source and average CME
speed increase. During the expansion of the CME plasma from the origin to the frozen-
in region, its ion composition evolves as a result of various processes, such as heating by
an energy release from the flare site and cooling by heat conduction, radiation losses and
adiabatic expansion. From in situ measurements it was established that the faster CMEs and
ICMEs, as a rule, have higher ion charge states than the slower ones (Gopalswamy et al.,
2013).
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Gruesbeck et al. (2011) presented a procedure for deriving the ion composition of CMEs
in the corona. To achieve this, they used in situ measurements of the ion charge states of
C, O, Si, and Fe and interpreted them in the context of a model for the early evolution of
the CME plasma. They obtained, in particular, a best fit for the data provided by an initial
heating of the plasma, followed by a cooling expansion. Lepri et al. (2012) presented an
analysis and comparison of the heavy ion composition, observed during the passage of an
ICME at the Advanced Composition Explorer (ACE) and Ulysses. They compared the ion
composition, obtained across the two different observation cuts through the ICME, with pre-
dictions for heating during the eruption, based on models of the time-dependent ionization
balance throughout the event. The authors of these two articles based their considerations
only on assumptions about conditions in the coronal sources without comparing them with
measurements.

Lynch et al. (2011) and Reinard, Lynch, and Mulligan (2012) used large-scale non-ideal
2.5D MHD simulations of the solar wind and investigated the ion charge state composition
during the CME propagation. They found only a qualitative matching between the observa-
tion and model in the charge state enhancements in the flux rope material and in its front
because a 2.5D model is not suitable for the proper quantitative description of the ionization
state of plasma elements. The 3D MHD model presented in this article (Pagano, Mackay,
and Poedts, 2013b) certainly addresses these improvements, but the very different spatial
domains of the two studies make direct comparison difficult. Pagano et al. (2008) have
previously successfully derived the ion composition from the post-processing of MHD sim-
ulations. They explained several observational features of shocks connected to CMEs by
reconstructing the out-of-equilibrium ionization state of O VI and Si XII, when an MHD
shock undertakes the plasma.

In this article, we present a complex method to predict the ion composition of solar wind
transients using both numerical simulations and direct observations of the CME initiation in
the corona. This approach enables us to establish relations between parameters of the CME
source in the corona and the resulting in situ parameters of the solar wind transients. We
consider a case of three solar events: X-ray flares and CMEs that occurred on 2 – 4 August
2011, which led to significant disturbances of the solar wind near Earth on 4 – 7 August 2011
and produced a strong geomagnetic storm with a minimum value of Dst = −110 nT (Yiğit
et al., 2016). In our work, we focus on the investigation of the solar part of this complex
event under favorable conditions, when the associated coronal phenomena have arisen near
the solar disk center and the resulting CMEs are observed in quadrature by the Sun Earth
Connection Coronal and Heliospheric Investigation (SECCHI: Howard et al., 2008) instru-
ments onboard the STEREO-A and B spacecraft and the LASCO C2 coronagraph onboard
SOHO.

The article consists of eight sections. This section presents a review of the methods for
identification of ICMEs and their solar sources. In Section 2 we present a general descrip-
tion of three eruptions on 2 – 4 August 2011. Sections 3 – 6 contain a detailed analysis of
the first event of 2 August 2011: the observational data, diagnostics of the CME plasma,
description of the 3D MHD model of the flux rope ejection, comparison of the results of
numerical simulations with observations, and analysis of the plasma ion composition in the
solar source and its evolution in the corona. The final sections summarize the results of our
study. A detailed study of the second and third events of 3 and 4 August, when two CMEs
interacted in the heliosphere, will be presented in a next article.

In the analysis, we use the data from the Solar Dynamic Observatory (SDO): the solar
EUV images from the Atmospheric Imaging Assembly telescope (AIA: Lemen et al., 2012),
and the photospheric magnetic field maps from the Heliospheric and Magnetic Imager in-
strument (HMI: Schou et al., 2012). Diagnostics of flares in the coronal sources are fulfilled
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using the Geostationary Operational Environmental Satellite system (GOES) X-ray data,
and temperature and density of the outflow plasma are defined by the differential emission
measure (DEM) method using the AIA multi-wavelength EUV images. The solar wind data,
including the ICME parameters and charge states of C, O, and Fe ions, are extracted from
the ACE data (Stone et al., 1998).

2. The Solar Wind Transients of 4 – 7 August 2011 and Their Solar
Sources

Figure 1 shows the level 2 one-hour averaged ACE solar wind data for the period 4 – 8
August 2011. The solar wind transients identified in these data were referenced in three
databases related to the International Study of Earth-Affecting Solar Transients (ISEST).1

The ICME and CME lists of the George Mason University (GMU)2 and of the University
of Science and Technology of China (USTC)3 describe only one ICME of 6 August 2011,
classified as the EJ+CIR+SH (ejecta + corotating interaction region + shock) event (GMU

Figure 1 ACE solar wind data for 4 – 8 August 2011. The times of shocks, Sh1 and Sh2, that correspond to
the geomagnetic storm sudden commencements (Richardson and Cane, 2010) are marked by the solid lines.
The start and end of ICME1 and ICME2 are marked by the dot-dashed lines.

1http://solar.gmu.edu/heliophysics/index.php/ISEST.
2http://solar.gmu.edu/heliophysics/index.php/GMU_CME/ICME_List.
3http://space.ustc.edu.cn/dreams/wind_icmes.

http://solar.gmu.edu/heliophysics/index.php/ISEST
http://solar.gmu.edu/heliophysics/index.php/GMU_CME/ICME_List
http://space.ustc.edu.cn/dreams/wind_icmes
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Table 1 Characteristics of the ICMEs on 4 – 5 August 2011 presented in the ICME list of Richardson and
Cane (http://www.srl.caltech.edu/ACE/ASC/DATA/level3/icmetable2.htm).

N of event Shock date/time,
[UT]

ICME start date/time,
[UT]

ICME end date/time,
[UT]

Vmax
[km s−1]

1 4 Aug. 2011 21:53 5 Aug. 2011 05:00 5 Aug. 2011 14:00 440

2 5 Aug. 2011 17:51 6 Aug. 2011 22:00 7 Aug. 2011 22:00 610

list) or SH+EJ (shock + ejecta) event (USTC list), which led to the geomagnetic storm of
6 August, 12:00 UT, with Dst = −110 nT. The GMU list associates the ICME with the M9
flare and halo CME that occurred on 4 August 2011. The Richardson and Cane ICME list
(hereafter RC list)4 mentions two shocks and two ICMEs, indicated in Table 1 and marked in
Figure 1. The shock times in the RC list correspond to the sudden commencement of the geo-
magnetic storms that accompanied the shocks when they reached the Earth’s magnetosphere
(Richardson and Cane, 2010). The first ICME showed small enhancements of the magnetic
field, proton density, and speed above the background level. The temperature-related ion
ratios, C6+/C5+, O7+/O6+, and the mean charge of iron ions, QFe, slightly exceeded the
background. Only the structure-related Fe/O ratio showed a noticeable increase to the value
of 0.55, which corresponds to a first ionization potential (FIP) bias of ∼3 and implies plasma
from closed magnetic structures in the source region. The second ICME displayed a jump
of the proton speed to 610 km s−1 with moderate enhancements of the magnetic field mag-
nitude and proton density. Thus, the typical ICME signatures (Zurbuchen and Richardson,
2006; Richardson and Cane, 2004), except for the decreased proton temperature and the ion
composition, were shown weakly by both ICMEs. However, the identification of the second
ICME in the RC list is rather ambiguous because other signatures such as an enhanced mag-
netic field and ion charge state did not appear. The negative values of the z component, Bz,
of the interplanetary magnetic field (IMF) (−5 and −17 nT in the geocentric solar magneto-
spheric (GSM) coordinate system) were registered in the sheaths that followed the shocks,
being the most likely cause of the geomagnetic storm of 6 August 2011. The development
of this storm was considered in detail by Yiğit et al. (2016).

An application of the ballistic propagation model (assuming that the ICME speed be-
tween the Sun and Earth is equal to its in situ value taken from the RC list) gives a pre-
liminary time period for the solar events that probably produced these ICMEs from 31 July
2011, 18:00 UT to 4 August 2011, 13:00 UT. During this period, three flares and three
CMEs, directed to Earth, occurred in active region (AR) 11261 (Table 2). To identify the so-
lar sources of the solar wind transients, we used simulations of two heliospheric CME prop-
agation models: the Advanced Drag Model (ADM) (Vršnak et al., 2013) and the WSA-Enlil
Model (Pizzo et al., 2011). When we take an asymptotic solar wind speed of 350 km s−1, the
ADM gives transit times of 74.28, 84.48, and 51.08 hours with a mean uncertainty of ∼10
hours for the three CMEs listed in Table 2 (Shi et al., 2015). These transit times correspond
to the time slots of the ICME arrival time (at Earth): 4 August 2011, 22:50 UT – 5 Au-
gust 2011, 18:50 UT, 6 August 2011, 16:30 UT – 7 August 2011, 12:30 UT, and 5 August
2011, 21:20 UT – 6 August 2011, 17:20 UT (Figure 2). The slots associated with CME1 and
CME2 agree well in time with the ICMEs in the RC list and enhancements in the ion charge
state composition derived from ACE data. The slot associated with the fast CME3 coincides
with the noticeable enhancements in the ion charge state and magnetic field magnitude, but

4http://www.srl.caltech.edu/ACE/ASC/DATA/level3/icmetable2.htm.

http://www.srl.caltech.edu/ACE/ASC/DATA/level3/icmetable2.htm
http://www.srl.caltech.edu/ACE/ASC/DATA/level3/icmetable2.htm


90 Page 8 of 29 D. Rodkin et al.

Table 2 Flares and CMEs that occurred on 2 – 4 August 2011 according to data from GOES, STEREO-
A/COR2 (A) and SOHO/LASCO (L).

Date of event Flare onset
time, [UT]

Flare class CME (A) onset
time, [UT]

VCME (A)

[km s−1]

CME (L) onset
time, [UT]

VCME (L)

[km s−1]

2 Aug. 2011
(CME1)

05:19 M1.4 05:54 781 06:36 712

3 Aug. 2011
(CME2)

13:24 M6.0 13:54 892 14:00 610

4 Aug. 2011
(CME3)

03:41 M9.3 04:12 1193 04:12 1315

Figure 2 ACE QFe data. The
solar wind transients identified
by the QFe enhancements (solid
lines with numbers) and their
arrival time slots given by the
Advanced Drag Model (the
dash-dotted lines) are indicated.
The numbers designate the
association with the CMEs listed
in Table 2.

Table 3 Ion composition parameters of the solar wind transients determined from the QFe enhancements
(Figure 2).

Ntrans Start/end, [UT] C6+/C5+
min/max/mean

O7+/O6+
min/max/mean

QFe
min/max/mean

Fe/O
min/max/mean

1 5 Aug. 03:00/5 Aug. 14:00 0.74/3.03/1.31 0.11/0.40/0.25 9.28/11.5/10.1 0.13/0.55/0.31

2 7 Aug. 02:00/7 Aug. 22:00 0.20/0.69/0.36 0.03/0.15/0.10 9.45/12.05/10.45 0.07/0.37/0.19

3 6 Aug. 06:00/7 Aug. 01:00 0.31/5.46/2.20 0.09/1.32/0.52 9.94/15.85/12.74 0.14/0.51/0.31

was not identified as an ICME. It should be noted that the ADM time slots coincide with
the ion charge state transients with a mean discrepancy of 5.6 hours. The minimum, maxi-
mum, and mean values of the ion composition parameters for these transients are given in
Table 3.

To understand the nature of the third transient, we consider the results of the simulation
of this complex event by the WSA-Enlil model, presented in the Enlil solar wind prediction
helioweather database.5 It was found that CME3 (started on 4 August 2011) overtook CME2
because it was faster. CME2 started on 3 August 2011, at the distance of ∼0.6 AU, when
CME1 had already reached Earth. In Figure 3 we present the map of the normalized plasma

5http://helioweather.net/archive/2011/08/.

http://helioweather.net/archive/2011/08/
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Figure 3 (a) Normalized
density map in the ecliptic plane.
(b) The J-map for the three solar
wind transients obtained with the
WSA-Enlil model on 5 August
2011, 00:00 UT
(http://helioweather.net/archive/
2011/08/).

density in the ecliptic plane for 5 August 2011, 00:00 UT, and the J-map for the three solar
wind transients from the helioweather database. As a result of the interaction between the
second and third CMEs, the merged cloud reached Earth on 6 – 8 August 2011, producing
the observed variation of the ion composition.

In Section 3 we consider in general the complex solar wind event of 4 – 7 August 2011,
study its coronal sources, and examine in detail the formation of CME1, which originated
on 2 August 2011. The features of the second and third CMEs and their solar origin will be
studied in a following publication.

3. Formation of the CME of 2 August 2011 in the Corona

3.1. Kinematics

We study the formation of three CMEs on 2 – 4 August 2011 in the low corona using the
SDO/AIA images in different wavelength channels. After preliminary processing of level 1
to level 1.5 data, we produce running-difference images to identify the moving coronal struc-
tures associated with a CME. These structures are seen as expanding loops, but in fact they
represent projections of the expanding erupting shells integrated over their legs along the
line of sight (LOS). In the studied events the largest contrast is seen in the 211 Å channel
images.

Figure 4a represents a group of expanding loop-like features in the 211 Å running-
difference image at 05:58:02 UT, 2 August 2011, in the initial stage of CME1 formation
(Table 1). These structures apparently represent projections of the eruption shell on the disk
plane. They disappeared at ∼06:00 UT, probably as a result of the CME take-off or because
of heating, as we show in Section 4. The distance-time graphs in Figure 4c show the height
variation of the CME in the low corona, seen in EUV AIA images (channel 211 Å), and
above the limb, seen by STEREO-A/EUVI in 171 Å (Figure 4b) and in the field of view
of the LASCO C2 coronagraph. We associate the transverse distances from the LASCO

http://helioweather.net/archive/2011/08/
http://helioweather.net/archive/2011/08/
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Figure 4 Formation of the CME on 2 August 2011. (a) The running-difference image (AIA, 211 Å) shows
the erupted structures in projection on the disk at 05:58:02 UT. (b) The running-difference image of the CME
seen by STEREO-A/EUVI in 171 Å at 06:02:15 UT. (c) The dotted line shows the dependence of the CME
expansion height (the origin is marked by the cross in Figure 4a) on time. Crosses correspond to the brightest
structure at the disk seen by AIA, triangles to the CME expansion above the limb seen by STEREO-A/EUVI,
and the diamonds to the CME expansion seen by LASCO/C2. The solid line corresponds to the flux from
GOES 1.0 – 8.0 Å in 10−4 W m−2 (the flare occurred on 2 August 2011). (d) Dependence of the CME speed
on time seen by AIA, EUVI, and LASCO (symbols are the same as in (c)). The dotted line shows the fitting
function (see text).

data with height, assuming the self-similar expansion of the CME, when the vertical, dr,
and horizontal, dh, displacements are in the same relation as the radial speed of the CME,
vr, measured by STEREO-A/COR2, and the transverse speed, vh, measured by LASCO:
dr/dh � vr/vh = 1.09. The acceleration phase of the CME corresponds to the second peak
of the flare flux profile (bottom in Figure 4c).

Figure 4d shows the dependence of the CME speed on height, calculated from the data
of different instruments. Projection effects are not important in our case. The WSA-ENLIL
3D simulations show that the leading edge of the CME structure in the ecliptic plane devi-
ates from the Sun – Earth line westward by no more than 10◦, whereas the position angle
of STEREO-A at that time was 100.5◦. Thus, the data in Figure 4d, obtained from obser-
vations by COR2 on STEREO-A, represent the real radial velocity of the CME. During the
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Table 4 Averaged values of the
electron temperature and density
in the flare on 2 August 2011 (the
parameters are obtained in the
region marked with a red cross in
Figure 4a).

Time, [UT] Teff, [MK] ne, [cm−3]

05:32 9.12 1.53 × 109

05:44 7.31 2.48 × 109

05:50 7.19 2.40 × 109

expansion, the CME speed increased from 26 km s−1 at hr � 0.06 R� to ∼800 km s−1 at
5 R�.

3.2. Plasma Diagnostics

To derive the plasma parameters from the image data on 2 August 2011, we apply a plasma
diagnostics method for the flare region and the moving coronal structure associated with
the CME at five different times. We use the differential emission measure (DEM) analy-
sis to evaluate averaged electron temperatures and densities of the plasma structures under
consideration. The DEM analysis is carried out using intensities in six SDO/AIA EUV chan-
nels: 94 Å, 131 Å, 171 Å, 193 Å, 211 Å, and 335 Å. In all five positions along the direction
of propagation, we build the light curves of the mean intensities in 4×4 arcsec boxes as a
function of time and determine the fluxes in each spectral channel as the maximum value
minus the mean background. The background corresponds to the quiet corona before the
moving CME structure reaches it. The intensity flux Fi in the channel i can be written
as

Fi =
∫

�T

Gi(T )DEM(T )dT , (1)

where Gi(T ) is the temperature response function of the passband i, and DEM(T ) is
the DEM distribution of the plasma. To retrieve the function DEM(T ), we use a DEM
technique that is based on the probabilistic approach to the inverse problem (see, e.g.,
Urnov et al., 2007; Goryaev et al., 2010; Urnov, Goryaev, and Oparin, 2012 for the
details). The DEM temperature distribution for each plasma structure under consider-
ation is then used to determine an effective temperature, Teff, according to the for-
mula

Teff =
∫

�T
T G(T )DEM(T )dT∫

�T
G(T )DEM(T )dT

, (2)

where G(T ) = ∑
i Gi(T ) is the total temperature response for all channels. The av-

eraged electron density in a given plasma structure is then estimated using the total
emission measure (EM) and the plausible geometry of the corresponding plasma struc-
ture.

The averaged temperatures and densities for the flare on 2 August 2011 are given in
Table 4. Furthermore, the plasma parameters for the moving CME structure on 2 August
2011 in the range 0.1 – 0.15 R� from the solar surface are presented in Figure 5. It is worth
noting that the temperatures in the moving plasma structure are noticeably lower than in the
corresponding flare.

4. Numerical Simulation of the Flux Rope Ejection

To model this specific flux rope ejection in the solar corona, we use an ideal 3D MHD
simulation, coupled with a continuous time series evolution of the magnetic field through
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Figure 5 Electron temperature
and density evolution for the
expanding plasma structure
determined by the DEM method
from the AIA images on
2 August 2011.

a series of quasi-static nonlinear force-free (NLFF) fields. The latter technique is used to
produce a non-potential initial condition that is used in the ideal MHD simulation. This
approach is a combination of the models presented in Pagano, Mackay, and Poedts (2013b)
and Gibb et al. (2014), which have been specifically tuned for the present simulation.

The key idea is to describe the flux rope formation and the conditions before the onset of
the ejection with the time series of NLFF fields, suited for a slow, quasi-static, and magnet-
ically dominated evolution, and to adopt a full MHD description when the evolution of the
system becomes fast, out of equilibrium, and in a multi-β regime, where β is the rate of the
plasma pressure to the magnetic pressure.

4.1. NLFF Field Time Series

In order to describe the slow evolution of the region of interest, a continuous time series of
NLFF fields are generated from the corresponding time series of magnetograms (Mackay,
Green, and van Ballegooijen, 2011; Gibb et al., 2014). In the present application we use 50
magnetograms from 31 July 2011 at 05:00:41 UT to 2 August 2011 at 06:00:41 UT sampled
every 60 minutes. The procedure and set of equations solved is the same as in Mackay,
Green, and van Ballegooijen (2011).

The time series of NLFF fields is constructed assuming four closed boundaries at the
sides for the 3D box. The bottom boundary, representing the solar surface, is forced to have
magnetic flux balance and the top boundary is set to be open.

In Figure 6a – b we show the initial magnetograms on 31 July 2011 at 05:00:41 UT
and the final magnetogram on 2 August 2011 at 06:00:41 UT with the final 3D magnetic
configuration, shown by the green lines. The initial magnetic configuration is assumed to
be potential, while the final stage is highly non-potential with a magnetic flux rope formed.
Over the time series of NLFF fields, a magnetic flux rope forms as a consequence of the
continuous motion and evolution of the magnetic field at the lower boundary. The flux rope
forms along the polarity inversion line (PIL) and is about 0.03 R� long; its central point is
located at the coordinates x = 0.0078 R� and y = 0.018 R�, which in the MHD simulation
domain correspond to the heliographic coordinates x = 181′′, y = 205′′ on 2 August 2011
at 06:00:41 UT. The flux rope covers only part of the PIL, whereas sheared magnetic field
lines are present along the whole PIL, marking the non-potentiality of the final magnetic
field configuration.

Figure 6c shows a running difference of AIA 211 Å passband image at the same time
as the last magnetogram, where we apply the Sobel filter to highlight the coronal structures
that are probably associated with the expanding flux rope. We find that the general topology
of the loops is reproduced, where the magnetic field lines match the loop structures at the
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Figure 6 Maps of the surface magnetic field measured on (a) 31 July 2011 at 05:00:41 UT (the heliographic
coordinates of the center of the image are x = −252′′ , y = 178′′) and (b) on 2 August 2011 at 06:00:41 UT
(the center of the image is at x = 174′′ , y = 188′′). In (b) we overplot some magnetic field lines from the 3D
magnetic configuration, obtained with the NLFF time series. (c) Map of running-difference images from the
AIA 211 Å filter with a Sobel filter applied (scale of difference in DN) on 2 August 2011 at 06:00:41 UT.
Blue lines are representative of the flux rope.

lower left corner of the image, and the system of loops departs in different directions from
the enhanced emission region and many of the loops around the magnetic flux rope.

It is also crucial to point out that as a result of a slow variation of the magnetic field,
the final magnetic configuration is not sensitive to time intervals of some minutes, which is
different from the 60-minute sampling time of the HMI magnetograms. This means that the
final configuration could represent any time within some minutes around the exact magne-
togram.

4.2. MHD Model

The final 3D magnetic configuration from the NLFF field time series is then used as in-
put for an ideal MHD simulation. This approach is an extension of the technique suc-
cessfully adopted in Pagano, Mackay, and Poedts (2013a) and then further developed in
Pagano, Mackay, and Poedts (2013b, 2014), where the magnetic configuration, obtained
from a magneto-frictional nonlinear force-free model, is the input as an initial condition in
an ideal MHD simulation.

To do so, we import the three components of the magnetic field from the NLFF time series
grid to the grid of our 3D MHD model. Specifically, Pagano, Mackay, and Poedts (2013a,
2013b) described a number of thorough tests to show that this is possible to preserve the
stability or instability of the configuration.

4.2.1. Interpolation of the Magnetic Configuration

In the present article we have simplified the way in which the 3D interpolation is performed
and adopted a Cartesian grid. In Cartesian coordinates, let B(x, y, z) be the value that we
wish to compute in the position (x, y, z), which we know lies in the cell, defined by the
indexes [i : i + 1, j : j + 1, k : k + 1], where the quantity b is defined. We compute

B(x, y, z) =
i+1,j+1,k+1∑

i,j,k

b(i, j, k)V (i, j, k)/V, (3)

where V (i, j, k) is the volume defined by the point (x, y, z) and the cell corner opposite
to the position (i, j, k), and V is the sum of these volumes. This approach guarantees the
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continuity of the solution and its smoothness independently of the spatial resolution of the
grid where B(x, y, z) is defined.

4.2.2. Plasma Distribution

As the time series of NLFF fields provides only the magnetic configuration, we need to adopt
an initial distribution of plasma density, speed, and temperature in order to close a complete
set of MHD variables. We aim at a realistic and general representation of the solar corona,
so we seek to produce a distribution of plasma that takes the heterogeneity of the coronal
plasma into account. In particular, we intend to describe the initial flux rope plasma as colder
and denser than the plasma outside of the flux rope. Magnetic flux ropes are structures where
the magnetic field is usually more intense than in their surroundings and where the magnetic
field presents twist. Therefore, we define the following proxy function to link the plasma
temperature and density to the magnetic field:

ω =
√

ω2
x + ω2

y + ω2
z , (4)

where

ωx = |B × ∇Bx |
|∇Bx | , (5)

ωy = |B × ∇By |
|∇By | , (6)

ωz = |B × ∇Bz|
|∇Bz| , (7)

where B = (Bx,By,Bz) is the magnetic field, the Cartesian coordinates x and y are tangent
to the solar surface, and z is perpendicular to the surface. The function ω is positive definite
and peaks where the magnetic field presents more twist and is more intense, e.g. near the
center of the magnetic flux rope axis. As an example, at the flux rope axis, ∇Bz is parallel
to the solar surface along the direction connecting two opposite polarities and perpendicular
to the magnetic field that is mostly parallel to the x – y plane. In this configuration, ωz is
relatively high. Additionally, the value of ω is proportional to the magnetic field intensity,
which results in it being higher near the solar surface and lower at farther radial distances
from the solar surface.

In order to effectively use ω to model the solar atmosphere, we define the function

� = arctan
ω − ω�

�ω
/π + 0.5, (8)

where ω� and �ω are two simulation parameters. � is then bound between 0 and 1 and the
temperature is defined by

T = �(Tflux rope − Tcorona) + Tcorona, (9)

where Tflux rope and Tcorona are two simulation parameters that represent the temperature in
the flux rope and in the external corona. The thermal pressure is independently specified by
the exponential solution for hydrostatic equilibrium with constant gravity with a uniform
temperature set equal to Tcorona:

p = ρ0

μmp
kBTcorona exp

(
−z

gμmp

kBTcorona

)
, (10)
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Table 5 Values for the initial
condition parameters of the ideal
MHD simulation.

Parameter Value Units

ρ0 1.1 × 10−12 g cm−3

ω� 300 G

�ω 80 G

Tflux rope 105 K

Tcorona 2 × 106 K

where p is the thermal pressure, ρ0 is a simulation parameter that sets the density at the solar
surface, μ = 1.31 is the average particle mass, mp is the proton mass, kB is the Boltzmann
constant, and g is the solar gravitational acceleration at the solar surface. The density ρ is
given by the equation of state:

ρ = p

T (B)

μmp

kB
, (11)

where ρ is the density, and T is the temperature.

4.2.3. MHD Simulation

Based on the approach described in Section 4.2.2, and using the final 3D magnetic field
configuration obtained from the NLFF time series as described in Section 4.1, we construct
the initial condition for the MHD simulation. Table 5 shows the values used in our model
for the relevant parameters.

We use the MPI-parallelized Adaptive-Mesh Refinement Versatile-Advection Code
(MPI-AMRVAC) software (Porth et al., 2014) to solve the MHD equations, where exter-
nal gravity is included as a source term,

∂ρ

∂t
+ ∇ · (ρv) = 0, (12)

∂ρv

∂t
+ ∇ · (ρvv) + ∇p − (∇ × B) × B

4π
= ρg, (13)

∂B

∂t
− ∇ × (v × B) = 0, (14)

∂e

∂t
+ ∇ · [(e + p)v

] = ρg · v, (15)

where t is time, v velocity, g is the vector of the solar gravitational acceleration, and the
total energy density, e, is given by

e = p

γ − 1
+ 1

2
ρv2 + B2

8π
, (16)

where γ = 5/3 denotes the ratio of specific heats.
The computational domain is composed of 256 × 256 × 248 cells, distributed on a uni-

form grid. The simulation domain is similar to the one used in the time series of NLFF fields,
and it extends over 0.267 R� in the x and y direction and over 0.266 R� in the z direction,
starting from z = 0.0027 R� above the photosphere. The boundary conditions are treated
with a system of ghost cells. Two layers of cells between z = 0 and z = 0.0021 R� are used
as fixed lower boundary conditions during the ideal MHD simulation. Open boundary con-
ditions are imposed at the outer boundary, and finally, reflective boundary conditions are set
at the x and y boundaries of the simulation box.
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Figure 7 Lower boundary of the initial condition of the ideal MHD simulation: (a) Lorentz force, (b) ω,
(c) log10 (ρ [g cm−3]), and (d) log10 (T [K]). The axes scales are in units of R� .

Figure 7 shows the values of the radial component of the Lorentz force at the lower
boundary, the function ω, derived from the magnetic configuration, and the resulting distri-
bution of the electron density ne and temperature T . The Lorentz force is maximum at the
location of the flux rope. The map of ω follows the pattern we have prescribed, being higher
around the region of the PIL and peaking where the flux rope is located. Consequently, the
maps of ne and T show the regions with a higher twisted magnetic field. In particular, the
position where the magnetic flux rope sits (compare with Figure 6) presents a density ∼10
times higher than its surroundings and a temperature value ∼10 times lower. It is also to be
noted that in our model the location, where the flux rope is relatively cold is consistent with
the observations of AIA in the 211 Å band (Figure 6c) as the location where the flux rope is
not visible, since the filter is tuned to observe plasma at higher temperatures.

The present initial condition is clearly out of equilibrium for a number of reasons. In
our simulation the initial plasma β ranges between the two extrema of β ∼ 10−3 (at the
flux rope) and β ∼ 103 (in very confined regions where the magnetic field is less intense).
Elsewhere it lies between 10−2 and 10−1. Therefore, the strongest unbalanced force in the
initial condition is the Lorentz force in the magnetic flux rope, which is directed upward.
At the same time, the radial profiles of density and pressure do not prescribe the balance
between the thermal pressure gradient and the gravity force. However, as addressed in de-
tail in Pagano, Mackay, and Poedts (2013a), this unbalance shows effects over timescales
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longer than the dynamics triggered by the Lorentz force, and these effects can therefore be
neglected.

5. Results of the MHD Simulation and Comparison with Observations

We run the MHD simulation starting from the final magnetic configuration, obtained from
the time series of NLFF fields, when the magnetic flux rope is fully formed, in order to
describe the evolution of the ejection of the magnetic flux rope. The pre-eruptive initial
magnetic configuration described in Section 4.1 is obtained from a long-term sequence of
magnetograms with a cadence of one hour, and thus it cannot indicate the exact start time
of the magnetic flux rope ejection. Therefore we present the MHD evolution in terms of the
time elapsed from the initial condition, and we impose the time of the MHD simulation ini-
tial condition to match the observed CME initiation time. For this specific simulation, we re-
port in Table 2 the onset of the eruption, i.e. the time of the initial condition, at 05:54:40 UT.
The initial condition of the MHD simulation is out of equilibrium, and several plasma flows
occur at the beginning.

However, the dominant evolution occurs where the flux rope plasma is pushed upward
by the unbalanced Lorentz force and the flux rope starts erupting. In order to follow the
evolution of the flux rope, we display the simulation from a line of sight parallel to the y

axis. In Figure 8 we show the electron density, integrated along this line of sight, together
with the temperature and velocity in the z direction, integrated along the line of sight and
weighted over ne. We use as characteristic stages in the evolution the times of t = 0 min,
t = 6.04 min, and t = 14.51 min from the eruption onset. Additionally, by considering the
evolution of vz and ω, we manually track the directions of propagation of the magnetic flux
rope and the position of its center along this direction at each snapshot of the simulation.
This is possible because the cuts of both vz and ω along the direction of propagation of the
flux rope show a local peak at the flux rope center. This direction is represented by the red
line and the position of the red star in Figure 8.

The particle density maps show an expansion and an upward propagation of the struc-
tures that are initially lying low in the domain. The same motion is highlighted by the visible
change in the magnetic field lines. In particular, the flux rope magnetic field lines (rep-
resented by the blue lines) show a distinctive motion, where the magnetic field lines are
increasingly longer and less twisted in the course of the evolution.

The evolution of vz describes this behavior well, where we see a region of the upward-
directed velocity that is composed of an elongated region where the plasma speed is higher,
and a bow-shaped region ahead that represents the front of the ejecta. In particular, the
elongated region extends along the direction of propagation of the flux rope and dominates
other motions that are present in the domain. The maximum of vz reaches values greater than
500 km s−1 at t = 11.5 min in the MHD simulation. It should be noted that some boundary
effects are visible at the external boundary, where some moderate inflow develops over the
course of the simulation. However, the low density of the inflowing plasma makes this effect
negligible for the dynamics of the ejection. It is interesting to note that no shocks are formed
ahead of the flux rope ejection. When we take the MHD simulation snapshot at 06:06:43 UT
into consideration, we find that the plasma speed at the front of the ejection is ∼130 km s−1,
where the sound speed is ∼300 km s−1. Only behind the propagation of the flux rope do we
find regions with supersonic or super-Alfvénic velocities, where the Mach number is 1.5 or
the Alfvénic Mach number is ∼3.
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Figure 8 Panels showing the evolution of the MHD simulation. The upper row shows the integral of the
electron density, the middle and lower row show the integrals of the z component of the velocity and temper-
ature, respectively, averaged by the electron density. In the upper row some magnetic field lines (green lines)
and flux rope field lines (blue lines) are overplotted. The left column shows quantities at the time in the simu-
lation corresponding to t = 0 min, the central column to t = 6.04 min, and the right column to t = 14.51 min
from the eruption onset. The red dashed line represents the direction of propagation of the magnetic flux rope
and the red star is the position of the center of the flux rope at each time.

The evolution of the temperature is significantly complex because of the energetics of the
flux rope ejection. As has been shown in similar simulations (Pagano, Mackay, and Poedts,
2014), the numerical resistivity plays a crucial role in heating the plasma, while expansion
and decompression can lead to the cooling of the plasma in certain regions. As soon as the
simulation starts, magnetic energy is converted into thermal energy, and this leads to an
overall increase of the temperature. At the same time, this does not occur everywhere, but
only where the magnetic field is initially more twisted, e.g. near the PIL. Subsequently, the
temperature decreases in some regions, but overall stays above the initial one.

Although the detailed comparison between the final state of the MHD simulation and the
corresponding state in the region under study poses major challenges, it is still interesting
to carry out a qualitative comparison to gain a global understanding of the weaknesses and
strengths of the model. Figure 9a shows a map of the temperature averaged for the electron
density along the line of sight from the top view at t = 14.51 min in the MHD simulation.
Figure 9b shows a difference image between the AIA 211 Å passband at 06:09:00.62 and
05:55:00.62 UT. The latter time is the closest AIA image to the assumed flux rope ejection
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Figure 9 (a) Temperature integrated along the z direction and averaged with the electron density at
t = 14.51 min in the MHD simulation. Some magnetic field lines (green lines) and flux rope field lines (blue
lines) are overplotted. (b) Difference in the AIA observations in the 211 Å passband between 06:09:00.62
and 05:55:00.62 UT (the scale is in DN).

time at 05:54:40 UT, the former time is 14.3 minutes later, which is approximately the dura-
tion of the MHD simulation. We find that the region in the center of the field of view, where
the emission in the AIA 211 Å passband is enhanced, roughly corresponds to a region in
the MHD simulation where the plasma is heated up on average (to about 4 MK) and that
a nearby location where the emission diminishes corresponds to a relatively cold location
in the MHD simulation. In general, the MHD simulation shows an increase in temperature,
which is consistent with the generally enhanced emission in the 211 Å passband. The mag-
netic field lines displayed in Figure 9a also describe a topology with many similarities to the
topology suggested by the structures in Figure 9b. Examples include the system of loops in
the bottom left corner of the field of view and the expanding structures on the top right from
the center of the image. They roughly correspond to the flux rope location at this time in the
MHD simulation.

Additionally, we have carried out a simple visual comparison of the kinematics of the
flux rope ejection with STEREO observations taken over a time span after the observed
start of the flux rope ejection (at 05:54:40 UT), corresponding to the duration of the MHD
simulation. The visual tracking of the CME in the STEREO images lets us follow the apex of
the expanding loops that initiate the CME motion (cross points in Figure 10a). In Figure 10a,
these radial distances are compared with the tracked radial distance of the center of the flux
rope and the front that propagates from its ejection in the MHD simulation. We find a very
good agreement of the locations identified in STEREO observations with the position of
the flux rope front, showing that the apex of the loops probably represents their motion
as a consequence of being pushed by the ongoing ejection and corresponds to the CME
front. The same good agreement is found in Figure 10b, where we compare the speeds of
propagation of the flux rope and the CME front with the speed inferred from STEREO
observations. In the MHD simulation, the CME front accelerates from 100 km s−1 to about
200 km s−1, while the flux rope moves at 200 km s−1 until the end of the simulation, where
it slows down to 100 km s−1. The points tracked in STEREO images always lie between
150 – 350 km s−1. As we cannot consider this analysis beyond a qualitative comparison, it
is interesting to show that the speeds of the structures predicted by the MHD simulation
are comparable to the speed at which they move in the STEREO observations. At the same
time, it seems that the model underestimates the observed velocity for at least a fraction of
the time of evolution around t = 200 s. There, the observed speed is ∼1.5 higher than the
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Figure 10 (a) Comparison
between the position of the center
of the flux rope, the front of the
ejection, and the position of the
upward-expanding loops in
STEREO images as a function of
time. (b) Comparison between
the speed of the center of the flux
rope, the speed of the front of the
ejection, and the apparent speed
of the expanding loops in
STEREO images as a function of
time. Times are shown in
minutes, where 0 is the starting
time of the MHD simulation at
06:00:41 UT. Dashed lines
represent the average speed of the
expanding loops in STEREO
observations with an error bar of
±65 km s−1.

speed of the flux rope center and the front of the ejecta in the MHD model. This difference
would be enough to make the plasma flow overcome the sound speed, thus leading to a shock
in the MHD model matching the observation. This may be a consequence of the differences
between the real atmospheric profile of ρ, T compared to the inferred and simulated profiles
used here.

6. Ion Charge State Evolution of CMEs

The ion charge state of the CME plasma, as well as its evolution in the corona, depends
mainly on the following factors: (i) the chemical element to which the considered ions be-
long, (ii) the plasma conditions (such as temperatures and electron densities), and (iii) the
bulk velocities of the plasma in the corona. In the previous sections we derive parameters
of the erupting plasma and of the emerging flux rope at distances of up to 0.25 R� from
both direct EUV measurements and the MHD model. In this section, we investigate the ion
charge state evolution of the plasma structures under study by considering the ratios of car-
bon, C6+/C5+, and oxygen, O7+/O6+, and the average charge of iron ions, QFe, which were
measured in situ with ACE. For this purpose, it is necessary to analyze how these parameters
evolve during the plasma propagation in the corona at larger distances of several solar radii.
We assume that in the whole space between the solar surface and the frozen-in region the
expanding plasma is in a quasi-stationary state, i.e. the plasma ionization and recombination
timescales are shorter than the expansion timescale of the plasma.

The evolution of the ion charge states in the corona can be described by the following
system of continuity equations for a set of ions from the atomic species of interest in the rest
frame of the expanding plasma structure (see, e.g. Ko et al., 1997):

∂yi

∂t
= Ne

(
yi−1Ci−1(Te) − yi

(
Ci(Te) + Ri−1(Te)

) + yi+1Ri(Te)
)
, (17)
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Figure 11 Evolution of electron
temperature and density of the
flux rope and CME LE plasmas
derived from the MHD
simulations.

where yi = ni/
∑Z

i=0 ni is the relative fraction of the ion with the number density ni in the
charge state i, Ne is the electron density, Te is the electron temperature, Ci is the ionization
coefficient rate for the transition from charge state i to i+1, and Ri is the total recombination
rate (including both radiative and dielectronic recombination) from the charge state i + 1
to i. To integrate the system of Equations (17), we use the recombination and ionization
rate coefficients Ri and Ci from the CHIANTI database (an atomic database for emission
lines) (Dere, 2007; Dere et al., 2009), where these data are given on the assumption that the
electron speed distribution is Maxwellian.

In order to solve the system of equations, one needs to know the time evolution of the
electron density and temperature, Te(t), Ne(t), in the plasma structure under study as well
as its bulk velocity, v(t). As the plasma parameters obtained from the EUV imaging and
MHD modeling are known only in the low corona up to the distance r0 ≈ 0.25 (in units of
R�) from the solar surface, we model the evolution of plasma conditions at larger distances,
r > r0, analytically by taking the processes of cooling, heating, and expansion of the plasma
into account, and we solve the system of equations (Equations (17)) for the chosen ion
species. As the initial conditions, we used the plasma parameters derived from the MHD
simulation. In our analysis we separate two specific regions: the hot flux rope structure
(hereafter referred to as “flux rope”) and the colder CME leading edge or compression front
(hereafter referred to as “CME LE”, see Figure 5 in Cheng et al., 2011) that surrounds the
flux rope. The evolving profiles of electron temperatures and densities for the flux rope and
the CME LE plasmas during the acceleration phase are presented in Figure 11.

As seen in Figure 11, the temperature of the flux rope rises to 6 – 9 MK at the beginning
of expansion and then drops as it moves away, whereas the CME LE temperature evolu-
tion has the reverse trend. This result is consistent with the recent studies where hot flux
rope structures were observed before and during the eruptive flare and CME events using
SDO/AIA data (see Cheng et al., 2011, 2012, 2013; Zhang, Cheng, and Ding, 2012). Nindos
et al. (2015) reported that almost half of the investigated eruptive events contained a hot flux
rope configuration. The high flux rope temperatures in Figure 11 are inconsistent with those
of the moving CME structure in Figure 5 because the latter corresponds to the colder outer
shell of the CME (see Figures 4a, 4b). At the same time, the hot flux rope is not visible
in Figure 4a because the flare is brighter than its emission. This is in good agreement with
the schematic model of the multi-temperature structure of the CME demonstrated by Cheng
et al. (2011) in their Figure 5.

The electron density at distances r > r0 is taken to have a power-law form

Ne(r) = Ne(r0)

(
r0

r

)3

, (18)
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consistent with the flux rope evolution for expansion in both length and radius (see, e.g.
Kumar and Rust, 1996; Lee et al., 2009). For the temperature profile we use a form similar
to the adiabatic relation

Te(r) = Te(r0)

(
Ne(r)

Ne(r0)

)α

, (19)

where the power index α is chosen to be consistent with the in situ measured values of
ion composition parameters. In the case of the adiabatic expansion, the factor α = γ − 1,
where γ = 5/3, is the adiabatic index. This simple form of the temperature profile is used
to account for possible heating, which the ejected plasma usually undergoes long after the
eruption (see, e.g. Akmal et al., 2001; Ciaravella et al., 2001). Lower values of the index
γ are often used in coronal models to take phenomenologically into account mechanisms
whose heating rates are unknown (see also Kumar and Rust, 1996; Lee et al., 2009).

Using Equations (17), we carried out calculations of the ion charge state evolution of C,
O, and Fe ions for the event on 2 August, 2011. A relationship between cooling rates of
plasma by different mechanisms, such as adiabatic expansion, thermal conductive cooling,
and radiative losses, depends on the plasma parameters and configuration of the erupting
structure and varies during the expansion in the corona. We analyze and estimate the cooling
effectiveness of these three terms separately for our plasma conditions by considering the
temperature evolution of the flux rope and the CME LE material. We find that the most
effective cooling factor is an adiabatic expansion. For instance, at the distance r = 0.5 the
decrease in temperature for the adiabatic regime prevails over the decrease in radiative and
conductive cooling by 3 – 5 times, and at r = 1 it is up to one order of magnitude and higher.
Thus, at distances r > 0.25, the adiabatic expansion is the clearly prevalent cooling process.

Assuming that the cooling is provided elsewhere only by adiabatic expansion, we obtain
the following frozen-in ion composition parameters: C6+/C5+ = 0.56, O7+/O6+ = 0.017,
and QFe = 7.4 for the CME LE plasma, and C6+/C5+ = 0.071, O7+/O6+ = 1.46 × 10−4,
and QFe = 7.4 for the flux rope structure. These values are too low in comparison with the
in situ observations (see Table 3). If we then introduce a heating process in the region where
the Fe ion state is frozen in by decreasing the index α from the adiabatic value 2/3 to 0.1, the
derived value of QFe increases to ∼10 – 11, which is in agreement with in situ observations.
However, in this case, the frozen-in ratios C6+/C5+ and O7+/O6+ become noticeably higher
by 2 – 3 times in comparison with the measurements.

In order to explain and to overcome this issue, we assume that the heating power depends
on the height in the corona. First, our numerical analysis shows that the ion charge states
of C and O ions reach the frozen-in conditions at distances of about 1 – 2 R�, whereas
the frozen-in region of Fe ions begins at distances of ≈4 – 5 R�. The reason is that the
recombination timescales of carbon and oxygen ions, τr = 1/(NeRi), dominate those of
the iron ions. Second, we consider separately two spatial intervals: the first is from r0 to
rh = 1.5, where the frozen-in conditions begin to play a role only for C and O ions, and the
second interval is from 1.5 R� for the Fe frozen-in region. We then calculate the evolution of
the ion charge states of C and O ions by matching the parameter α so that it agrees with the
observational data in the first spatial interval. For the CME LE plasma we adopt the value
α = 0.35 and find frozen-in values C6+/C5+ = 2.2 and O7+/O6+ = 0.32. For the flux rope
structure α = 0.2, and C6+/C5+ = 1.77 and O7+/O6+ = 0.14. At the same time, at 1.5 R�
we obtain QFe ≈ 7 – 8, which is noticeably lower than the measured in situ value.

Using the functional temperature difference between the proper adiabatic expansion and
the fitted values of the index α for the CME LE plasma and flux rope, we also estimate the
heating power from the coronal source, which maintains this difference. We find that this
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source acts from r0 to r ≈ 0.5 and its intensity sharply decreased with distance. The average
heating power for the two plasma structures is QCME ≈ 5 × 10−3 erg cm−3 s−1 for the CME
LE plasma and QFR ≈ 6 × 10−3 erg cm−3 s−1 for the flux rope.

In order to match the value QFe with the in situ measurements, we assume that in the
second interval r > 1.5 R� the parameter QFe increases as a result of an additional heating
power from the coronal source. We assume a temperature evolution at distances rh ≥ 1.5 as
Te(r) = Th(r/rh)

β . Taking the index β = 0.75, we obtain QFe ≈ 10 for the CME LE plasma
and QFe ≈ 11 for the flux rope, which is compatible with the in situ observations. Our
estimation of the heating power at the point rh = 1.5 gives Qh ∼ (1−2)×10−5 erg cm−3 s−1.

7. Discussion

We propose a method to predict the ion charge state of the ICME, produced by the flare and
CME solar event on 2 August 2011, using the SDO/AIA EUV observations, MHD numerical
simulation of the flux rope formation, and the analytical description of the plasma ion charge
state evolution in the corona up to the frozen-in region. We assume that the ion composition
of the ICMEs does not vary during their propagation in the heliosphere because of the very
long ionization and recombination relaxation times at low plasma density in comparison
with the travel time. In order to obtain the values of the ion charge state ratios C6+/C5+ and
O7+/O6+ and the average charge QFe close to those measured in situ, we introduce a heating
process that has different rates at distances 0.25 – 1.5 R� and 1.5 – 5 R�.

The results of plasma diagnostics (see Section 3.2) and MHD simulations suggest that
the erupting plasma is heated far from the flare region. Figure 5 shows that the temperature
drops to ≈1.5 MK at the base of the ejected structure under consideration, whereas the
MHD calculations exhibit noticeably higher temperatures for the hot flux rope and the colder
CME LE plasmas. The assumption of a heating source above the flare region is of course
debatable, but in a number of works the authors performed MHD simulations and discussed
various heating mechanisms in the CME plasma (see, e.g. Lee et al., 2009; Lynch et al.,
2011). At the same time, Zhang, Cheng, and Ding (2012) showed that in some cases, the
heating of the flux rope can start simultaneously with the ejection, as they observed the
appearance of hot channel signatures at the earliest stage of the slow rise of the ejection of a
magnetic flux rope.

Reinard, Lynch, and Mulligan (2012) carried out a numerical simulation of ion compo-
sition for two ICMEs (magnetic clouds), detected by STEREO and ACE on 21 – 23 May
2007, using the Magnetohydrodynamics-on-A-Sphere (MAS) and ARC7 ideal 2.5D MHD
models, described earlier by Lynch et al. (2011). Both models took field-aligned thermal
conduction, radiative losses, and coronal heating from the flare site during the initiation and
expansion of a flux rope in the corona up to distances of more than 10 R� into account. It
follows from their results that the key question in predicting the ICME ion composition by
numerical MHD modeling is a correct definition of the ratio between heating and cooling
processes that act on the erupting plasma in the corona. In the two models described by
Lynch et al. (2011), heating is introduced as the dominating factor that does not depend on
real conditions in the source. Thus, they obtained that the slower CMEs became hotter than
the faster CMEs, which contradicts the observations. In contrast, we use a 3D MHD model
to determine the plasma parameters of the ejecta on the initial stage of the flux rope ejec-
tion and fit the results with the EUV measurements by selecting the initial parameters of the
simulation.
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Our consideration refers to the case when the ICME parameters correspond to the apex
of the CME. In some cases, however, the nearby coronal holes (CHs) that produce high-
speed streams can seriously influence the appearance and parameters of the ICME near Earth
(Gopalswamy et al., 2009a,b, 2013; Mohamed et al., 2012; Mäkelä et al., 2013; Wood et al.,
2012). An interaction of the CME with a high-speed stream from the nearby coronal hole
can deflect the CME from its initial direction, which results in the shifting of the arrival time
ahead or behind the time as predicted by the kinematic models and can change other solar
wind parameters. We assume that the ion composition parameters in the collisionless helio-
sphere are not influenced by this interaction and can be used for the source identification,
but these cases are worth a dedicated study.

It should be noted that our model is rather simplistic and idealized, as it does not repro-
duce some important details of the CME formation, such as laminar and turbulent features
of the evolution visible in observations. Energy dissipation via electric resistivity, heat con-
duction, viscosity, and radiation should be especially taken into consideration during the
early phase of the evolution in the dense corona. The ideal one-fluid MHD approach we use
has a limited applicability in the case of the observed small-scale and fast variations. More-
over, the numerical ideal MHD modeling we conduct does not take into account the terms
in the energy equation that play a role in the coronal dynamics. Thermal conduction can be
responsible for diffusing heat in the domain, even though Pagano et al. (2007) and Pagano,
Mackay, and Poedts (2014) showed that this is largely inhibited inside the flux rope during
the CME propagation. Dimensionless scaling and the relative importance of corresponding
terms in the energy balance equations are not quite clear and need more investigation to
better understand the overall situation. Finally, a more accurate treatment of the effect of
magnetic resistivity on the amount of magnetic energy that is converted into heating would
require a much higher spatial resolution.

8. Summary and Conclusion

We present a complex study of a series of solar wind transients registered by ACE on 4 – 7
August 2011 and their solar sources, flares, and CMEs, which occurred on 2, 3 and 4 August
2011 in AR 11261. These events produced two shocks with sheaths and two ICMEs of the
MC type, as identified by the RC list. The analysis of the ion charge state of the solar wind
reveal three transients with enhanced temperature-dependent ratios C6+/C5+, O7+/O6+ and
a mean charge of iron ions QFe, which can be associated with hot plasma released in the
coronal sources. The first transient, determined from the ion composition, coincided with
the first ICME (Table 1), whereas the two others preceded the second ICME. The shift in
time between transients 2, 3, and the second ICME might be caused by interaction between
CMEs 2 and 3. Simulations with the WSA-Enlil cone model show that the third CME of
4 August surpassed the second CME of 3 August at a distance from the Sun of about 0.6 AU.

We study the formation of the first CME of 2 August in detail using the SDO/AIA images
in 211 Å and numerical simulations using NLFF and MHD modeling. The images of the
eruptive structures in different SDO/AIA spectral channels are used for diagnostics of the
outflow plasma by means of the DEM analysis. From the observational data we find that in
the event of 2 August, the temperature of the plasma during its visible expansion from 0.1
to 0.13 R� decreases from 2.7 to 1.7 MK and the density from 1 × 109 to 5 × 108 cm−3.
These values are lower than those obtained by modeling for the apex, and correspond to the
legs of the eruption shell. This confirms that heating is more effective in the upper part of
the expanding structure.
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The initiation of the CME of 2 August 2011 is simulated numerically using a combina-
tion of the NLFF magnetic field extrapolation model with a 3D MHD model of the expand-
ing flux rope, which is especially suited for the given case. The results of the simulation
and comparison with the EUV measurements demonstrate that the general topology of the
magnetic field matches the visible loop structure, whereas the flux rope is formed along the
polarity inversion line and is pushed upward by the unbalanced Lorentz force. The max-
imum speed is below the sound speed of 300 km s−1, which means that the model does
not predict the creation of a shock wave ahead of the flux rope ejection that was seen in
the observations. The MHD simulation shows a temperature of ∼4 MK in the CME apex,
which coincides with an enhancement of radiation in the 211 Å channel. On the relative
timescale starting at the moment of the flux rope increase, the simulated height-time depen-
dence of the CME structure up to the heights of 0.25 R� agrees well with the observations
of STEREO in 171 Å at the limb, the difference in speed is within the measurement errors
±65 km s−1.

Based on the results of the observations and numerical simulation, the ion composition
of CME1 in the frozen-in region in the event of 2 August 2011 is calculated with some
assumptions about heating and cooling processes. The calculated values of the temperature-
dependent ion ratios and the mean charge of iron agree with those measured in situ, under
the assumption that the expanding plasma is heated by an additional source. The average
heating power decreases with height from ∼ (5 – 6) × 10−3 erg cm−3 s−1 at rh ≈ 0.5 – 1.5 to
∼ (1 – 2) × 10−5 [erg cm−3 s−1] at rh ≈ 1.5 – 5.

In conclusion, our analysis of the ion composition of CMEs enables us to disclose a
relationship between the parameters of solar wind transients and properties of their solar
sources, which opens new possibilities of validating and improving solar wind forecasting
models.

This work is a contribution to the International Study of Earth-affecting Solar Transients
(ISEST) Minimax 24 project (the event of 4 August 2011 is included in the ISEST event
list).6
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