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Abstract This paper applies a Kuramoto model of coupled oscillators to investigate the
north–south (N–S) solar asymmetry and properties of meridional circulation. We focus our
study on the asymmetry of the 11-year phase, which is slight but persistent: only two changes
of sign (around 1928 and 1968) are observed in the past century. We present a model of two
non-linear coupled oscillators that links the hemispheric phase asymmetry of sunspots with
the asymmetry of the meridional flow. We use a Kuramoto model with evolving frequencies
and constant symmetric coupling to show how asymmetry in meridional circulation could
produce a persistent phase lead of one solar hemisphere over the other. We associate the nat-
ural frequencies of the two oscillators with the velocities of the meridional flow cells in the
northern and southern hemispheres. We assume the respective circulations to be independent
and estimate the value of the relevant cross-equatorial coupling by the coupling coefficient in
the Kuramoto model. We find that a persistent N–S asymmetry of sunspots and the change
of the leading hemisphere could indeed both be the result of the evolving frequencies of
meridional circulation; the necessary asymmetry of the meridional flow may be small; and
the cross-equatorial coupling has an intermediate range value. Possible applications of these
results in solar dynamo models are discussed.

Keywords Asymmetry · Coupling · Kuramoto model · Meridional flow · Nonlinear
oscillators · Phase synchronization · Solar activity · Solar cycle

1. Introduction

The dynamo theory faces the challenge of explaining the existence and observed evolution
of the solar magnetic field (Charbonneau, 2014). One of the peculiar properties of the solar
magnetic field is the observed hemispheric asymmetry, which does not directly follow from
the solar dynamo equations. It is believed to be closely related to the meridional circulation,
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which is also responsible for the long-term changes of the solar cycle (Lopes et al., 2014;
Hathaway, 2015).

Recent research in the solar north–south (N–S) asymmetry may be divided into two
main directions: studies of the amplitude asymmetry, and studies of the phase asym-
metry (Hathaway, 2015). Different aspects of the amplitude of the N–S asymmetry are
widely investigated (Newton and Milsom, 1955; Vizoso and Ballester, 1990; Carbonell,
Oliver, and Ballester, 1993; Knaack, Stenflo, and Berdyugina, 2004; Ballester, Oliver, and
Carbonell, 2005; Temmer et al., 2006; Carbonell et al., 2007, Badalyan, Obridko, and
Sykora, 2008; Norton and Gallagher, 2010; Sýkora and Rybák, 2010; Badalyan, 2011;
Badalyan and Obridko, 2011; Muraközy and Ludmány, 2012; Svalgaard and Kamide, 2013;
Zou et al., 2014; Lopes and Silva, 2015; Nagovitsyn and Kuleshova, 2015), and first at-
tempts are made to understand the role of asymmetry in the flux transport dynamo models
(Belucz and Dikpati, 2013; Shetye, Tripathi, and Dikpati, 2015). Three ranges of period-
icities greater than 1 year are found in the amplitude asymmetry: short periods of about
1 – 4 years (e.g. Badalyan, Obridko, and Sykora, 2008; Knaack, Stenflo, and Berdyug-
ina, 2004, Badalyan and Obridko, 2011), a medium range of about one to three solar cy-
cles (e.g. Carbonell, Oliver, and Ballester, 1993), and long-term periodicities of about 100
years (Li, Gao, and Zhan, 2009). It is found that the short- and mid-term periodicities
in the amplitude asymmetry indices are similar but not exactly equal to that of the ini-
tial series in both hemispheres (Carbonell, Oliver, and Ballester, 1993; Knaack, Stenflo,
and Berdyugina, 2004; Badalyan, Obridko, and Sykora, 2008; Sýkora and Rybák, 2010;
Badalyan and Obridko, 2011; Lopes and Silva, 2015). The characteristic time of the long-
term variation is difficult to establish because the data sets are short, but the estimated values
are similar to the length of the Gleissberg cycle (Li, Gao, and Zhan, 2009; Muraközy and
Ludmány, 2012, Zou et al., 2014).

The N–S asymmetry changes its sign during each solar cycle (e.g. Temmer et al., 2006).
The lead of one hemisphere is replaced by the lead of the other during one solar cycle. For
example, during the rise of Solar Cycle 24, the northern hemisphere was dominating and
the excess of the southern hemisphere is observed during the declining phase (Chowdhury,
Choudhary, and Gosain, 2013). A similar change of the leading hemisphere was detected
for Solar Cycles 12 – 15, 21 – 23, and the opposite change in Cycles 17 – 18 (see Temmer
et al., 2006; Hathaway, 2015 as a review). A close look at the N–S asymmetry reveals
that although the two hemispheres are “generally in phase” (Hathaway and Wilson, 2004),
there is a slight phase difference between them that may reach 1.5 years in some solar
cycles. In the past decade the evolution of the hemispheric phase difference was investigated
(Zolotova and Ponyavin, 2006, 2007; Donner and Thiel, 2007; Zolotova et al., 2009, 2010;
Deng et al., 2011, 2013; McIntosh et al., 2013). Muraközy and Ludmány (2012) find no
significant relation between the amplitude and the phase of the hemispheric asymmetry, and
these two measures are now considered as independent characteristics.

In the present article we follow Donner and Thiel (2007) and characterize the N–S asym-
metry by the hemispheric phase difference of the 11-year signal of daily sunspot areas.
Although Donner and Thiel (2007) considered a period of 10.75 years, they checked that
the evolution of the phase difference was stable in a wide range of periods associated with
the length of the solar cycle. Statistical investigations reveal no significant correlation be-
tween the asymmetry and the length of the solar cycle (Carbonell, Oliver, and Ballester,
1993; Norton and Gallagher, 2010).

The persistence of phase-leading in one of the Sun’s hemispheres over time spans on the
order of four solar cycles has been shown (Zolotova et al., 2010; McIntosh et al., 2013; Nor-
ton, Charbonneau, and Passos, 2014). During the past century, for which reliable daily data
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are available, there are only two changes in the leading hemisphere (near 1928 and 1968).
These dates are close to the moment of the N–S asymmetry change obtained by Li, Gao,
and Zhan (2009) and Deng et al. (2013). This persistence argues against a stochastic phe-
nomenon (Zolotova et al., 2010; Norton, Charbonneau, and Passos, 2014). Zolotova et al.
(2010) pushed their analysis back by some three centuries and suggested that these phase
reversals in leading hemisphere are quasi-periodic, with a period close to eight solar cycles,
i.e. that of the Gleissberg cycle also observed in the long-term evolution of the amplitude
asymmetry (Li, Gao, and Zhan, 2009; Muraközy and Ludmány, 2012; Zou et al., 2014).
Lopes et al. (2014) showed that a combination of low-order dynamo models (LODM) with
inverse methods has significant potential to help in understanding the N–S asymmetry and
its origin. Several authors have suggested that the origin of the N–S asymmetry of sunspots,
including the persistent lead of one hemisphere, may be related to the asymmetry of the
meridional flow (McIntosh et al., 2013; Norton, Charbonneau, and Passos, 2014; Virtanen
and Mursula, 2014).

Meridional circulation is believed to be a large-scale plasma flow whose surface com-
ponent transports the residual field toward the poles; this contributes to the polarity re-
versals. Inversions of heliospheric measurements have indicated that there are at least two
cells overlying each other in each hemisphere. The deep-seated equatorward component
of the meridional circulation is responsible for the migration of dynamo waves over the
course of a solar dynamo cycle (Passos, Charbonneau, and Miesch, 2015). Both pole-
ward and equatorward flows show significant hemispheric asymmetry (Rightmire-Upton,
Hathaway, and Kosak, 2012, Zhao et al., 2013), which is believed to be related to the
N–S asymmetry of the solar magnetic field and sunspot distribution (Norton, Charbon-
neau, and Passos, 2014). Recent research in the flux transport dynamo models is fo-
cused on reproducing irregularities of solar dynamics such as the change of the solar
cycle (Lopes et al., 2014) and the N–S asymmetry (Belucz and Dikpati, 2013; Shetye,
Tripathi, and Dikpati, 2015). An important parameter essential for this modeling is the
cross-equatorial coupling, which connects solar hemispheres (Norton and Gallagher, 2010;
Svalgaard and Kamide, 2013). In the present article we apply the Kuramoto model and re-
construct the optimum value of the cross-equatorial coupling from the evolution of the phase
difference between solar hemispheres.

The Kuramoto model is usually applied for direct modeling of synchronization phenom-
ena in systems with a large number of oscillators (see Strogatz, 2000, for a review). The
model depends on the natural frequencies of the oscillators, which are usually chosen to be
constant or randomly distributed (e.g. Hong and Strogatz, 2011). Partial or total synchro-
nization is studied depending on a coupling coefficient, which is initially considered to con-
tribute symmetrically to all equations. Recent developments of the Kuramoto model led to
certain modifications of the classical model, including non-constant frequencies (Hong and
Strogatz, 2011), for instance, stochastic components in the coupling coefficients, stochas-
tic components in the equations themselves, couplings that evolve with time (e.g. Leander,
Lenhart, and Protopopescu, 2015), or low-dimensional (rather than high-dimensional) sys-
tems with constant parameters (e.g. Maistrenko et al., 2010; Kuznetsov and Sedova, 2014).

Blanter et al. (2016) considered a model of two coupled oscillators with constant natural
frequencies and evolving coupling to reproduce the evolution of the solar cycle period. In the
present article, we use the same model with two evolving frequencies and constant symmet-
ric cross-equatorial coupling in an attempt to reproduce changes in the leading hemisphere.
We associate the natural frequencies of the oscillators with the velocities of the meridional
flow cells in the northern and southern solar hemispheres. Following conclusions of previ-
ous studies (e.g. Temmer et al., 2006; Norton and Gallagher, 2010), we assume the natural
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frequencies of the two cells to be independent, and the circulation in the two hemispheres to
be connected by a cross-equatorial coupling.

Blanter et al. (2016) used an inversion to reconstruct the evolution of the phases of the
poloidal and toroidal components of the solar magnetic field. In the present article we also
consider an inverse problem; we attempt to estimate the hemispheric asymmetry of the
meridional flow that is required to reproduce the observed phase evolution of sunspot ar-
eas in the northern and southern hemispheres. The inverse approach has recently become
a major tool that allows one to reconstruct properties of the meridional circulation through
magnetic field observations and dynamo modeling (e.g. Zhao et al., 2013; Lopes et al., 2014;
Passos, Charbonneau, and Miesch, 2015).

In Section 2 we present the data (sunspot areas) and calculate the phases of the 11-year
solar cycles in the northern and southern hemispheres, respectively, over the time span of
1875 – 2015. The evolution of the phase difference and instantaneous solar cycle period is
determined through the evolution of these hemispheric phases. In Section 3 we solve an
inverse problem in the frame of the Kuramoto model with two oscillators. Natural frequen-
cies of two coupled oscillators are estimated from the hemispheric phases determined in
Section 2. We estimate the asymmetry of reconstructed natural frequencies and the value
of the optimum coupling relevant to the model with two independent cells. Simple model
examples are used for illustration and comparison. Finally, we discuss the results and draw
some conclusions in Section 4.

2. Hemispheric Phases of Sunspot Areas

In the present article, we consider the N–S asymmetry of sunspot areas in terms of the phase
difference and investigate how its long-term evolution may be reconstructed by a Kuramoto
model with two non-linear coupled oscillators.

2.1. Data

We consider the daily sunspot areas from the Greenwich–USAF/NOAA sunspot data from
1874 to 2015 for the northern (NH) and southern (SH) solar hemispheres, which are avail-
able through http://solarscience.msfc.nasa.gov/greenwch/daily_area.txt. A 1-year sliding av-
eraging is performed before applying any further analysis to avoid contamination of the
11-year phase by high-frequency components. We also considered 2- and 4-year sliding
windows, but the resulting phase is close to the 1-year sliding averaging (see Appendix).

2.2. Change of Leading Hemisphere

We consider the evolution of the phases �NH(t) and �SH(t) of the 11 yr signal in the daily
Greenwich–USAF/NOAA sunspot total areas relevant in the northern and southern hemi-
spheres, respectively. The frequency of the Fourier transform is taken to be � = 2π/�,
with � = 11 yr, which is the approximate period of the solar Schwabe cycle, and phases are
estimated in an 11 yr long centered sliding window � in the following way:

�f (t) = − arctan

(
Bf

Af

)
,

http://solarscience.msfc.nasa.gov/greenwch/daily_area.txt
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Figure 1 Evolution of the 11 yr phases (a) and their difference (b) for sunspot areas in the northern (blue)
and southern (red) hemispheres.

where

Af (t) + iBf (t) =
∫ t+�/2

t−�/2
f (τ)

(
cos(�τ) + i sin(�τ)

)
dτ,

f being a given function integrated over time τ . Time t is counted from 1850. The phases of
both hemispheres drift by some 3 radians between 1900 and 2000 (Figure 1a), implying that
the Schwabe cycle does not have constant 11 yr periodicity. This simple calculation applied
to the Greenwich–USAF/NOAA time series of sunspot areas immediately confirms the two
changes in the leading hemisphere, one in 1927 and the other in 1964 (Figure 1b). The
change in phase difference between the two hemispheres that took place in 1964 during Solar
Cycle 20 is particularly strong (Figures 1b). Altogether, the hemispheric phase difference
�� = �NH − �SH ranges over an amplitude over about 1 radian. Our aim in this article
is to reproduce the evolution of the hemispheric phase difference with a Kuramoto model
through the solution of an inverse problem. As seen in more detail in the following section,
the method takes variations in the main ∼11 yr period fully into account.

2.3. Instantaneous Period of the Solar Cycle

The length of the solar cycle period may be estimated from the evolution of hemispheric
phases �NH(t) and �SH(t). Figure 1a shows a clear common trend in the evolution of the
two hemispheric phases �NH(t) and �SH(t). This trend originates in the variability of the
length of the solar cycle, which is different from the 11 yr period that corresponds to the
standard frequency �. The instant frequencies of the solar cycle in both hemispheres may
be retrieved from the evolution of phases �NH(t) and �SH(t):

νNH(t) = � + �̇NH(t),

νSH(t) = � + �̇SH(t).
(1)

In order to reduce the daily variability of the instantaneous frequencies νNH(t) and νSH(t),
the derivatives �̇NH(t) and �̇SH(t) of the phases should be averaged over a centered inter-
val T . The evolution of instantaneous frequencies νNH(t) and νSH(t), for T = � = 11 yr is
shown in Figure 2a; it is quite similar for both hemispheres, except in the 1960s. Figure 2b
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Figure 2 Solar cycle evolution. (a) Evolution of the hemispheric instant frequencies for T = 11 yr of sunspot
areas in the northern (blue) and southern (red) hemispheres. The dashed line indicates the frequency � that
corresponds to the 11 yr period. (b) Evolution of the instantaneous period of sunspot activity estimated as
the combined instantaneous period of both hemispheres (blue) and as a spline interpolation of the distances
between two consecutive minima of individual solar cycles (red).

shows the evolution of the combined instantaneous period

P (t) = 4π

〈νNH〉T + 〈νSH〉T , (2)

which is similar to the evolution of the instantaneous period of sunspot activity used in
Blanter et al. (2016), and the same obtained through a cubic spline interpolation of the
lengths of the actual solar cycles (in that case, the length of individual solar cycles is deter-
mined as the distance between two consecutive minima; see Blanter et al., 2016, for details
of the method). The difference between the two instantaneous period curves of Figure 2b in
the beginning (1880s) is due to an edge effect of the interpolation method (Blanter et al.,
2016).

3. Kuramoto Model and Inverse Problem Solution

In this section we solve an inverse problem in the frame of a Kuramoto model with two
oscillators of the form:

θ̇1(t) = ω1(t) + κ

2
sin

(
θ2(t) − θ1(t)

)
,

θ̇2(t) = ω2(t) + κ

2
sin

(
θ1(t) − θ2(t)

)
.

(3)

Parameters of the model are estimated from the hemispheric phases �NH(t) and �SH(t)

computed above. In order to reduce the transition interval, we take initial conditions to be
equal to the first values of hemispheric phases θ1(0) = �NH(t0); θ2(0) = �SH(t0). Two syn-
thetic series X1(t) = sin(θ1(t)) and X2(t) = sin(θ2(t)) are then generated by a Kuramoto
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model with these parameters. Phases ϕ1(t) and ϕ2(t) of the 11 yr signal in the synthetic se-
ries X1(t) and X2(t) are finally compared with hemispheric phases �NH(t) and �SH(t). The
distance between the reconstructed and the original phase differences is a measure of the
quality of the Kuramoto model reconstruction (KMR). Another measure of a successful re-
construction is the distance between the reconstructed and original combined instantaneous
periods.

3.1. Choice of Parameters

In the Kuramoto model given by Equation (3), there are three free parameters: the frequen-
cies ω1, ω2, and the coupling κ . Blanter et al. (2014, 2016) considered the frequencies ω1

and ω2 to be constant and symmetrical with respect to the solar cycle frequency � and the
coupling κ = κ(t) (symmetrical or non-symmetrical) to evolve with time, derived from the
evolution of the phase difference and instantaneous period. In the present article, we re-
construct the Kuramoto parameters from the evolution of hemispheric phases �NH(t) and
�SH(t). Thus, we consider a model with non-zero constant coupling κ and evolving fre-
quencies ω1(t) and ω2(t) based on Equation (3).

In order to estimate frequencies ω1(t) and ω2(t), we replace phases θ1 and θ2 in Equa-
tion (3) by the observed phases �NH(t) and �SH(t) shown in Figure 1. The frequencies
ω1(t) and ω2(t) are expressed through phases �NH(t) and �SH(t) and their difference
��(t) = �NH(t) − �SH(t) as follows:

{
ω1(t) = � + �̇NH(t) + κ

2 sin(��(t)),

ω2(t) = � + �̇SH(t) − κ
2 sin(��(t)).

(4)

The coupling coefficient κ may be arbitrary, but its value should not be too close to zero to
avoid instability of the reconstruction with respect to the initial conditions (see Section 3.7).
We show later (Section 3.7) that the quality of the reconstruction does not depend on the
coupling κ .

Hemispheric phases �NH(t) and �SH(t) are estimated with respect to oscillations with
frequency �, which is also a hidden parameter of our inverse problem. We assume � =
2π/�, with � = 11 yr, and we show in Section 3.7 that the quality of the reconstruction is
stable with respect to � when the relevant period � = 2π/� is close enough to 11 years.

3.2. Synthetic Series and Their Phases

We introduce the frequencies ω1(t) and ω2(t) determined by Equation (4) into Equation (3)
to compute the phases θ1(t) and θ2(t), and then determine the two synthetic series X1(t) =
sin(θ1(t)) and X2(t) = sin(θ2(t)).

Phases ϕ1(t) and ϕ2(t) of the 11 yr Fourier components estimated from series X1(t) and
X2(t) as described in Section 2.2 are considered as the reconstruction of phases �NH(t) and
�SH(t), respectively. The evolution of the phase difference �ϕ(t) = ϕ1(t) − ϕ2(t) and the
combined instantaneous period

p(t) = 2π

� + 〈 (ϕ̇1+ϕ̇2)

2 〉T
(5)

are compared with ��(t) and P (t), respectively.
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Figure 3 Solar cycle evolution. Left: Evolution of the hemispheric phases for sunspot areas (a) and cor-
responding KMR (b) for the northern (blue) and southern (green) hemispheres. Right: Evolution of phase
difference (c) and combined instantaneous period (d) for sunspot areas (blue) and corresponding KMR (red).
The base frequency � corresponds to the 11 yr period. Coupling is κ = 0.2, T = 11 yr.

3.3. Quality of the Kuramoto Model Reconstruction

In order to estimate the closeness of an observed series F(t) to its Kuramoto reconstruction
f (t) obtained through a given Kuramoto model, we calculate the relative residual r0 by
normalizing the L2-difference between the two series to the variance of the observed series
(the mean value 〈F 〉 and integrals are taken over the whole time span of the reconstructed
series):

r0(f ) =
∫
(F (t) − f (t))2 dt∫
(F (t) − 〈F 〉)2 dt

. (6)

The relative residual relevant to the representation of F(t) by its mean value f (t) = 〈F 〉
is r0(f ) = 1, therefore the smaller r0 < 1, the more successful the reconstruction.

Figure 3 shows how the phase evolution and change of leading hemisphere (Figure 3a)
are reproduced in the Kuramoto model with parameters � = 2π/11 yr and κ = 0.2 (Fig-
ure 3b). The phase difference ��(t) is successfully reconstructed by the phase difference
�ϕ(t) with a relative residual r0(�ϕ) = 0.11 (Figure 3c). The combined instantaneous pe-
riod P (t) is even more successfully reconstructed by the combined instantaneous period
p(t) given by Equation (5) with a relative residual r0(p) = 0.06 (Figure 3d).

3.4. KMR Frequencies and Coupling

The reconstruction of natural frequencies ω1(t) and ω2(t) depends on the coupling param-
eter κ . Stronger coupling leads to higher values of the long-term frequency variations ωi(t)
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Figure 4 Frequencies in the Kuramoto model. Evolution of frequencies ω1(t) (blue) and ω2(t) (red) in the
Kuramoto model with � = 2π/11 yr and coupling κ = 0.2 (a), κ = 1 (b), and κ = 5 (c). The dashed line
indicates the base frequency �. (d) Evolution of the period length relevant to the mean frequency ω (red) and
combined instantaneous period P (blue) estimated for T = � = 11 yr.

and suppresses their short-term oscillations (compare examples relevant to κ = 0.2, 1, and
5 in Figure 4a, b, and c). When the coupling is strong enough, the change in leading hemi-
sphere is clearly reflected in the evolution of frequencies (Figure 4c). We note that when the
coupling is weak, the frequencies in both hemispheres have the same sign (Figures 4a, b).
Negative frequencies may be interpreted as rotation in the opposite direction.

The mean frequency ω(t) = (ω1(t) + ω2(t))/2 is determined by phases �NH(t), �SH(t)

according to Equation (4), thus

ω(t) = � + �̇NH(t) + �̇SH(t)

2
. (7)

It does not depend on coupling and represents the evolution of the combined in-
stantaneous frequency ν(t) = (νNH(t) + νSH(t))/2 (see Equation (1)). We note that the
equality ω(t) = ν(t) appears as a consequence of the symmetrical coupling in Equa-
tion (4).

Figure 4d compares the evolution of 2π/ω with the combined instantaneous period P

estimated by Equation (2) for T = � = 11 yr. The latter gives a smoother version of the
former.

The evolution of natural frequencies ω1(t) and ω2(t) in the case of weak coupling follows
the evolution of the solar cycle instantaneous frequencies νNH(t) and νSH(t) in the northern
and southern hemispheres, respectively. In the case of strong coupling, the evolution of
frequencies ωi(t) follows the evolution of the phase difference ��. These properties of
frequencies ωi(t) directly follow from Equation (4): in the case of weak coupling, we can
neglect the last term in Equation (4) and the frequencies ω1(t) and ω2(t) are determined by
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the solar cycle hemispheric frequencies νNH(t) and νSH(t) according to Equation (1):

ω1(t) ∼ νNH(t), ω2(t) ∼ νSH(t).

In the case of strong coupling, the last term of Equation (4) determines the evolution of
frequencies:

ω1(t) ∼ κ

2
sin

(
��(t)

)
, ω2(t) ∼ −κ

2
sin

(
��(t)

)
.

3.5. Asymmetry and Coupling

Figures 4a – c show that the difference between hemispheric natural frequencies ωi(t) in-
creases with coupling. We introduce a measure of asymmetry,

A =
∫
(ω1(t) − ω2(t))

2 dt∫
(ω1(t) + ω2(t))2 dt

. (8)

Figure 5a shows that the quality of the KMR does not depend on coupling when the ini-
tial conditions in Equation (3) correspond to those of the data. However, when the initial
conditions are remote from the first data point, we obtain larger relative residuals because
of the weak convergence in the domain of weak coupling. The asymmetry grows with cou-
pling (Figure 5b), and the absolute value of the correlation between natural frequencies
ωi(t) and the phase difference �� increases (Figure 5c). In contrast, the correlations of
the periods pi = 2π/ωi with the corresponding instantaneous periods, PNH = 2π/νNH and
PSH = 2π/νSH respectively, decrease and tend to zero (horizontal dashed line) for strong
coupling (Figure 5d).

3.6. Optimum Coupling

In the case of weak coupling, both natural frequencies ωi(t) correlate with the solar cy-
cle combined instantaneous frequency ν(t) = 2π/P (t) (Figure 5d). This implies a strong
positive correlation C(ω1,ω2) between the two hemispheric frequencies ω1(t) and ω2(t)

(Figure 6). For high values of coupling, ω1(t) correlates and ω2(t) anticorrelates with the
phase difference ��(t) (Figure 5c). This implies a highly negative correlation C(ω1,ω2), as
seen in Figure 6. When κ = κ0 = 0.55, the correlation between natural frequencies is zero,
frequencies are orthogonal, and the connection between the northern and southern hemi-
spheres is fairly well represented by the coupling in Equation (3). We call the coupling κ0

corresponding to the orthogonal frequencies ω1(t) and ω2(t) the “optimum coupling” of the
reconstruction (see also Appendix).

3.7. Variability of the Reconstruction Quality

Figure 5a shows that when coupling is weak, the quality of the KMR of the phase difference
depends on initial conditions. The best quality is achieved when θ(0) = ��(t0). In contrast
to r0(�ϕ), the quality of the reconstruction of the mean period r0(p) and asymmetry A do
not depend on initial conditions. As already pointed out, the influence of initial conditions
increases as couplings become weaker.

The instantaneous frequencies �NH(t) and �SH(t) are retrieved when the base frequency
� of the solar cycle is taken to be 11 years (see Section 2). Consequently, the reconstruction
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Figure 5 KMR features depending on coupling. (a) Quality of the reconstruction of the phase differ-
ence (blue) and combined instantaneous period (red). Initial conditions are θi (0) = �i(t0) (solid line) and
θi (0) = 0 (dotted line). (b) Hemispheric asymmetry A; (c) correlation between frequencies ω in the NH
(blue) and SH (red) and ��; (d) correlation between the inverse frequencies 2π/ωi and the combined in-
stantaneous period of the solar cycle P . Only the quality of the reconstruction (a) depends significantly on
the initial conditions. The horizontal dashed lines (c, d) indicate the zero level.

Figure 6 Correlation between
hemispheric frequencies
C(ω1,ω2) depending on
coupling κ . Orthogonal
frequencies correspond to the
zero correlation (horizontal
dotted line) and a value of the
coupling equal to 0.55 (vertical
dashed line).

qualities r0(�ϕ) and r0(p) may depend on � = 2π/�. We note that our estimates of in-
stantaneous frequencies, based on the derivatives of phases in Equation (1), are correct only
for � chosen close to the mean value of the solar cycle period. When � is between 10 and
12 years, the relative residuals remain small: r0(�ϕ) = 0.12 ± 0.03 and r0(p) = 0.1 ± 0.05.
These relative residuals are similar to the typical values obtained in their Kuramoto recon-
structions by Blanter et al. (2014, 2016). Both relative residuals reach their minima when
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Figure 7 Evolution of the phase
difference between solar
hemispheres �� (red) in
comparison with the phase
difference θm of two Kuramoto
model simulations with
parameters a = 0.15, b = 0.1,
(blue) and a = 0.1, b = 0.05
(green).

� = 2π/� = 10.75 yr, which is the mean value of the solar cycle in the time span under
consideration (1875 – 2015).

3.8. Variability of Optimum Coupling and Asymmetry: Two Simulations

In order to interpret the variability of optimum coupling κ0 and asymmetry A, we now per-
form two direct simulations of the Kuramoto model given by Equation (3). We take natural
frequencies ω1(t) = ωm1(t) and ω2(t) = ωm2(t) that oscillate around �m = 2π/11 yr:

ωm1(t) = �m + a sin

(
�m

8
t − π

4

)
+ b sin

(
�mt − π

2

)
,

ωm2(t) = �m + a sin

(
�m

8
t + π

4

)
+ b sin(�mt).

(9)

The first oscillatory term reflects the Gleissberg cycle and the second term corresponds
to the Schwabe cycle. Both cycles are to be expected in the evolution of the merid-
ional flow (Jiang et al., 2014; Hathaway and Upton, 2014). The coupling is taken to be
κ = κm = 0.48, and two series Xm1(t) = sin(θm1(t)) and Xm2(t) = sin(θm2(t)) are simu-
lated by Equation (3) with frequencies from Equation (9). Figure 7 shows the evolution
of the phase difference θm(t) = θm1(t) − θm2(t) in comparison with the solar phase dif-
ference �� for two pairs of parameters (a, b): (0.15,0.1) and (0.1,0.05). Equation (8)
determines the relevant values of asymmetry A = Am, which are equal to 0.023 and 0.01,
respectively.

Now for any value of the coupling parameter κ and the base frequency �, we can perform
an inversion using the two phase series θm1(t) and θm2(t) to reconstruct natural frequencies
ωi(t) through Equation (4) and the asymmetry A through Equation (8). The optimum cou-
pling κ0 is estimated according to Section 3.6. The optimum coupling κ0 and the relevant
asymmetry A0 are compared with coupling κm and asymmetry Am.

By varying the base frequency �, we find that the optimum coupling reaches its mini-
mum value for � = �0, where 2π/�0 = 10.75 (Figure 8, left) and the asymmetry relevant
to the optimum coupling κ0 has a flat minimum for � = 2π/� between 10.6 and 10.85 yr
(Figure 8, right). Comparison with model series shows that both the optimum coupling and
asymmetry are overestimated with respect to the original values (dashed lines). The mini-
mum values of the optimum coupling and asymmetry in the model reconstructions corre-
spond to � = �0. They extend to slightly lower periods (higher frequencies) with respect
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Figure 8 Reconstruction of optimum coupling (left) and hemispheric asymmetry A (right) depending on the
base frequency � of the KMR. Sunspot areas (red) are compared with two Kuramoto model simulations with
parameters a = 0.15, b = 0.1 (blue) and a = 0.1, b = 0.05 (green). Horizontal dashed lines show the values
of coupling (left) and asymmetry (right) used in the simulations.

to the value � = �m used in the simulation. We can consider values κ0, A0, and �0 as es-
timates of κm, Am, and �m, respectively, and we are led to conclude that all these estimates
are somewhat too large. Thus, when the evolution of natural frequencies is given by Equa-
tion (9), the Kuramoto model allows us to estimate only upper bounds of optimum coupling,
asymmetry, and base frequency.

4. Discussion

Solutions of the full magnetohydrodynamical (MHD) equations that would account for so-
lar activity are extremely difficult to obtain (Charbonneau, 2010). Several researchers have
turned to LODM, such as kinematic mean-field models obtained by a simplification and
truncation of the original MHD equations. Various properties of the solar cycle have been
retrieved based on these non-linear oscillators (Lopes et al., 2014; Nagy and Petrovay, 2013;
Passos and Lopes, 2008, 2011; Mininni, Gomez, and Mindlin, 2000, 2001), and an impor-
tant connection between features of the solar cycle and meridional circulation has been
put forward (e.g. Lopes and Passos, 2009; Karak, 2010; Hathaway and Rightmire, 2010;
Karak and Choudhuri, 2011; Nandy, Muñoz Jaramillo, and Martens, 2011; Belucz and Dik-
pati, 2013; Shetye, Tripathi, and Dikpati, 2015). The nature of the relationship between the
northern and southern hemispheres is a subject of great importance and is hotly debated in
connection with solar dynamo modeling. The evolution of the N–S amplitude asymmetry
gives evidence of a weak coupling between the hemispheres (Norton and Gallagher, 2010;
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Svalgaard and Kamide, 2013) and tends to be simulated by the differences in the merid-
ional circulation (Belucz and Dikpati, 2013; Shetye, Tripathi, and Dikpati, 2015). The phase
asymmetry between hemispheres is not yet modeled, and we make a first step in this direc-
tion with the present article.

We have introduced the idea of hemispheric meridional-flow circulation into a Ku-
ramoto model through variable natural frequencies of the two coupled oscillators, and ob-
tained that the phase asymmetry may indeed be induced by a relatively small asymmetry
of the meridional circulation in the two hemispheres. We estimated the value of cross-
equatorial coupling relevant to the independent frequencies of the northern and southern
meridional flow circulations. This coupling value is estimated to be about 0.55 ± 0.05
and cannot be considered as a strong coupling in agreement with Norton and Gallagher
(2010), because it does not induce a complete synchronization of the hemispheric circula-
tion, and natural frequencies remain sensitive to the high-frequency and QBO components
(see Appendix). On the other hand, the evolution of natural frequencies is not completely
determined by high-frequency oscillations, as is expected in the case of weak coupling (Fig-
ure 4a), and the long-term evolution relevant to the Gleissberg cycle is evident, in agree-
ment with previous findings (Zolotova et al., 2009, 2010; Li, Gao, and Zhan, 2009; Mu-
raközy and Ludmány, 2012). Consequently, we may consider the cross-equatorial coupling
as intermediate, and therefore its value is essential for the mutual evolution of solar hemi-
spheres.

We explain the origin of the change in hemispheric phase lead by the variations in merid-
ional flow frequencies. In terms of the Kuramoto model with two oscillators, we have two
possible causes of this change: variations in natural frequencies of the oscillators, and varia-
tions in their coupling. We note, however, that the change in leading hemisphere is relevant
to the zero value of the phase difference, and therefore the coupling coefficient enters Equa-
tion (3) with zero factor sin(θ). This means that the coupling variation cannot be crucial
during the change in hemispheric lead, and the only candidate inducing this change is the
change in natural frequencies. We have to accept, however, that our assumption of constant
coupling in Equation (3) is a pure simplification, and in real life, coupling may vary as well
as the natural frequencies.

The inverse technique is a powerful method to estimate several characteristics of deep so-
lar dynamo processes that cannot be observed or measured at the solar surface. It is widely
applied in helioseismology (e.g. Turck-Chièze and Couvidat, 2011; Rightmire-Upton, Hath-
away, and Kosak, 2012; Schad, Timmer, and Roth, 2012; Zhao et al., 2013; Hathaway and
Upton, 2014; Brun et al., 2015) as a way to estimate properties of the meridional circulation.
However, each type of inversion has its limitations and uncertainties (see Schad et al., 2015
for a review). In the present Kuramoto model we use the inverse method to estimate the
cross-equatorial coupling, but comparison with simple model examples (Section 3.8) shows
that our estimates may be higher than the original values and that this difference is sensitive
to the variation of natural frequencies. From considering the sensitivity of coupling to the
change in natural frequencies (see model examples at Figures 7 and 8), we suggest that the
estimate of the cross-equatorial coupling and the meridional circulation asymmetry may be
affected by centennial and decadal cycles (Gleissberg and Schwabe cycles) as well as by
quasi-biennial oscillations (see Appendix). However, this sensitivity is lower than 10% of
the estimated value.

In the Kuramoto model, which we present in this article, the phase difference between
hemispheres is not produced by variations in coupling, but stems from the evolution of the
frequencies attributed to the meridional flow. We consider the N–S asymmetry as the result
of the asymmetry of the hemispheric frequencies; the Kuramoto model provides a way to
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Figure 9 Influence of
preliminary averaging on the
11 yr phase evolution. Top:
Relative energy of periods
between 2 and 4 years; bottom:
evolution of 11 yr phase
difference between the north and
south hemispheres estimated in
the 11 yr sliding window. The
sliding window of preliminary
averaging is 1 yr (blue), 2 yr
(red), and 4 yr (yellow).

connect the asymmetry of meridional circulation with cross-equatorial coupling. We note
that the whole interval of low coupling values (κ < 0.1) shows the same N–S asymmetry
(Figure 5b) and that the optimum coupling (κ0 = 0.55) is strong enough to produce visible
variations in the asymmetry. Recent measurements of meridional flow (Jiang et al., 2014;
Hathaway and Upton, 2014) could provide an estimate of this asymmetry, but unfortunately,
the length of the records is too short (shorter than two solar cycles) and the variability of
observations is too large to allow a proper comparison with the Kuramoto model results in
which all values are averaged over 11 yr windows.

5. Conclusions

Our main conclusion is that a persistent N–S asymmetry of sunspot phases does not require
high values of the meridional flow dissymmetry (2% is sufficient). Our second conclusion
is that the change in the leading hemisphere may be produced by a slow evolution of nat-
ural frequencies similar to that found in the Gleissberg cycle. High coupling values lead
to a strong positive correlation between the hemispheric phase difference and natural fre-
quencies (Figure 5c) and a weak correlation of the natural frequencies with the solar cycle
instantaneous frequency (Figure 5d). We have found that the optimum coupling obtained in
the model is weak enough for us to claim that the evolution of frequencies of the meridional
flow correlates with the evolution of the solar cycle frequency, in agreement with obser-
vations (Hathaway and Upton, 2014) and other modeling (Hazra, Karak, and Choudhuri,
2014). Both conclusions support the expectation that the long-term evolution of the velocity
of the solar meridional flow can eventually be reconstructed from the N–S asymmetry of the
solar activity.
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Figure 10 Contamination of
natural frequencies by
quasi-biennial oscillations.
Evolution of natural frequencies
of the northern (blue) and
southern (red) hemispheres after
1 yr (top) and 4 yr (bottom)
preliminary averaging. The
coupling coefficient is κ = 0.55.

Figure 11 Contamination of the
optimum coupling by
quasi-biennial oscillations. The
correlation between natural
frequencies after 1 yr (blue) and
4 yr (red) preliminary averaging.
The horizontal dashed line
corresponds to a zero correlation;
the vertical dashed lines
correspond to the optimum
coupling.

Appendix

It is well known that the solar activity spectrum contains frequencies outside the 11 yr band
of periods. These frequencies may contaminate the 11 yr phase. In the main text we apply a
Kuramoto model to 1 yr preliminary averaged data. This averaging reduces oscillations with
periods below 1 year. However, so-called quasi-biennial oscillations with periods from 2 to
4 years may still affect the 11 yr phase evolution. We perform our analysis on 2 yr and 4 yr
preliminary averaged data. Figure 9 (top) shows the cumulative energy of periods between
2 and 4 years in the 11 yr sliding window normalized to the energy of the 11 yr component.
The relative energy reaches 0.15 after 1 yr preliminary averaging of data, but after 4 yr
averaging, its maximum is equal to 0.06. The evolution of the phase difference �� between
the northern and southern hemispheres is presented in the bottom panel of Figure 9, and we
see the same profile independent of the preliminary averaging. We can see the contamination
of the 11 yr phase by high-frequency oscillations of the solar activity as high-frequency
variations of the natural frequencies (Figure 10). These oscillations are smoothed by 4 yr
preliminary averaging, and the long-term evolution of natural frequencies remains the same.
The estimate of the optimum coupling relevant to the 4 yr preliminary averaging is slightly
higher: κ0 = 0.59 instead of 0.55 relevant to the 1 yr preliminary averaging used in the main
text (Figure 11).
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