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Abstract Standing fast sausage modes in flare loops were suggested to account for a con-
siderable number of quasi-periodic pulsations (QPPs) in the light curves of solar flares. This
study continues our investigation into the possibility of inverting the measured periods P

and damping times τ of sausage modes to deduce the transverse Alfvén time R/vAi, den-
sity contrast ρi/ρe, and the steepness of the density distribution transverse to flare loops.
A generic dispersion relation governing linear sausage modes is derived for pressureless
cylinders where density inhomogeneity of arbitrary form takes place within the cylinder. We
show that in general the inversion problem is under-determined for QPP events where only a
single sausage mode exists, whether the measurements are spatially resolved or unresolved.
While R/vAi can be inferred to some extent, the range of possible steepness parameters may
be too broad to be useful. However, for spatially resolved measurements where an additional
mode is present, it is possible to deduce self-consistently ρi/ρe, the profile steepness, and
the internal Alfvén speed vAi. We show that at least for a recent QPP event that involves
a fundamental kink mode in addition to a sausage one, flare loop parameters are well con-
strained even if the specific form of the transverse density distribution remains unknown.
We conclude that spatially resolved, multi-mode QPP measurements need to be pursued to
infer flare loop parameters.

Keywords Coronal seismology · Magnetic fields, corona · Waves, magnetohydrodynamic

1. Introduction

There is now ample evidence for the existence of low-frequency waves and oscillations in
the structured solar atmosphere (for recent reviews, see e.g., Nakariakov and Verwichte,
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2005; Banerjee et al., 2007; Roberts, 2008; De Moortel and Nakariakov, 2012; Liu and
Ofman, 2014). When combined with magnetohydrodynamic (MHD) theory, the measured
wave parameters allow inferring the solar atmospheric parameters that are difficult to mea-
sure directly. This practice was originally proposed for the solar corona (Roberts, Edwin,
and Benz, 1984; see also Rosenberg, 1970; Uchida, 1970; Zajtsev and Stepanov, 1975), but
has been extended to spicules (e.g., Zaqarashvili and Erdélyi, 2009), prominences (e.g., Ar-
regui, Oliver, and Ballester, 2012), magnetic pores (e.g., Morton et al., 2011), and various
structures in the chromosphere (e.g., Jess et al., 2009; Morton et al., 2012), to name but a
few. Compared with sausage waves (with azimuthal wavenumber m = 0), kink waves (with
m = 1) have received more attention, presumably because of their ubiquity in the solar at-
mosphere (e.g., Nakariakov et al., 1999; Aschwanden et al., 1999; Tomczyk and McIntosh,
2009; Kupriyanova, Melnikov, and Shibasaki, 2013). However, recent observations indi-
cated that sausage waves abound as well (e.g., Nakariakov, Melnikov, and Reznikova, 2003;
Morton et al., 2012; Grant et al., 2015; Moreels et al., 2015). In addition, standing sausage
modes in flare loops were shown to be important for interpreting a considerable fraction
of quasi-periodic pulsations (QPPs) in the light curves of solar flares (see Nakariakov and
Melnikov (2009) for a recent review).

A theoretical understanding of fast sausage waves supported by magnetized cylinders is
crucial for their seismological applications. For this purpose, the transverse density distri-
bution is usually idealized as being in a step-function (top-hat) form, characterized by the
internal (ρi) and external (ρe) values (e.g., Meerson, Sasorov, and Stepanov, 1978; Spruit,
1982; Edwin and Roberts, 1983; Cally, 1986; Kopylova et al., 2007; Vasheghani Farahani
et al., 2014). In a low-β environment such as the solar corona, two regimes are known to
exist, depending on the longitudinal wavenumber k (e.g., Spruit, 1982). When k exceeds
some critical kc, the trapped regime arises, whereby the sausage wave energy is well con-
fined to the cylinder. In contrast, if k < kc, then the leaky regime results, and fast sausage
waves experience apparent temporal damping by emitting their energy into the surrounding
fluid. Furthermore, the k-dependence of the periods P and damping times τ of leaky waves
disappears when k is sufficiently small (e.g., Kopylova et al., 2007; Vasheghani Farahani
et al., 2014). Let R denote the cylinder radius, and vAi denote the internal Alfvén speed. In
the long-wavelength limit (k → 0), P is found to be primarily determined by the transverse
Alfvén transit time R/vAi, while the ratio τ/P is largely proportional to the density contrast
ρi/ρe (Kopylova et al., 2007). This then enables one to employ the measured P and τ to de-
duce ρi/ρe and R/vAi, with the latter carrying important information on the magnetic field
strength in flare loops.

Evidently, there is no reason to expect that the density distribution across magnetic cylin-
ders is in a step-function fashion. This has stimulated a series of studies to examine the prop-
erties of fast sausage waves in magnetized cylinders with a continuous transverse density
profile by either proceeding analytically with an eigenmode analysis (Edwin and Roberts,
1988; Lopin and Nagorny, 2014, 2015) or numerically solving the linearized MHD equa-
tions as an initial-value problem (Nakariakov, Hornsey, and Melnikov, 2012; Chen et al.,
2015a). Many features in the step-function case, the k-dependence in particular, were found
to survive. However, the period P (Nakariakov, Hornsey, and Melnikov, 2012) and damping
time τ (Chen et al., 2015a) may be sensitive to yet another parameter, namely the steepness
or equivalently the length scale of the transverse density inhomogeneity. We note that the
steepness is crucial in determining such coronal heating mechanisms as resonant absorption
(e.g., Hollweg and Yang, 1988; Goossens, Andries, and Aschwanden, 2002; Ruderman and
Roberts, 2002) and phase mixing (Heyvaerts and Priest, 1983). There is then an obvious need
to employ the measured P and τ of sausage modes to infer the profile steepness, in much
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the same way that kink modes were employed (Arregui et al., 2007; Goossens et al., 2008;
Soler et al., 2014). This was undertaken by Chen et al. (2015b, hereafter Paper I), based on
an analytical dispersion relation (DR) governing linear fast sausage waves in cylinders with
a rather general transverse density distribution. The only requirement was that this profile
can be decomposed into a uniform cord, a uniform external medium, and a transition layer
connecting the two. However, this layer can be of arbitrary width and the profile therein can
be in arbitrary form.

The aim of the present study is to extend the analysis in Paper I in the following aspects.
First, we remove the restriction for the transverse density profile to involve a uniform cord,
thereby enabling the analysis to be applicable to a richer variety of density distributions. Sec-
ond, when validating the results from this eigenmode analysis, we employ an independent
approach by solving the time-dependent version of linear MHD equations. We detail these
time-dependent computations pertinent to the afore-mentioned transverse density profile.
Third, we extend the seismological applications in Paper I to QPP events that involve both
kink and sausage modes. To illustrate the scheme for inverting multi-mode measurements,
Paper I adopted the analytical expressions for the kink mode period and damping time in
the thin-tube-thin-boundary (TTTB) limit as given by Goossens et al. (2008). In this study
we replace the TTTB expressions with a self-consistent, linear, resistive MHD computation.
This is necessary given that flare loops tend not to be thin (Aschwanden, Nakariakov, and
Melnikov, 2004), and it is not safe to assume a priori that the density inhomogeneity takes
place in a thin transition layer. Fourth, in connection with the third point, we take this oppor-
tunity to provide a very detailed examination of resonantly damped kink modes in cylinders
with transverse density profiles in question.

This manuscript is organized as follows. Section 2 presents the necessary equations, the
derivation of the analytic DR in particular. The behavior of sausage waves in nonuniform
cylinders and its applications to QPP events are then presented in Section 3. Finally, Sec-
tion 4 summarizes the present study.

2. Mathematical Formulation

2.1. Derivation of the Dispersion Relation

Appropriate for the solar corona, we adopted ideal, cold (zero-β) MHD to describe fast
sausage waves. The magnetic loops hosting these waves were modeled as straight cylinders
with radius R aligned with a uniform magnetic field B = Bẑ, where a standard cylindri-
cal coordinate system (r, θ, z) was adopted. The equilibrium density was assumed to be a
function of r only and of the form

ρ(r) =
{

ρi[1 − (1 − ρe
ρi

)f (r)], 0 ≤ r < R,

ρe, r > R,
(1)

where f (r) is some arbitrary function that increases smoothly from 0 at r = 0 to unity
when r = R. Furthermore, ρi and ρe denote the densities at the cylinder axis and in the
external medium, respectively. The corresponding Alfvén speeds follow from the definition
vAi,e = B/

√
4πρi,e.

It suffices to briefly outline the mathematical approach for establishing the pertinent dis-
persion relation (DR), since this approach has been detailed in Paper I. To start, we focused
on axisymmetric sausage perturbations, and Fourier-analyzed any perturbation δf (r, z, t) as

δf (r, z, t) = Re
{
f̃ (r) exp

[−i(ωt − kz)
]}

. (2)
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It then follows from the linearized, ideal, cold MHD equations that the Fourier amplitudes
of the transverse Lagrangian displacement (ξ̃r ) and Eulerian perturbation of total pressure
(p̃T) are governed by Equations (6) and (7) in Paper I, respectively. Now that sausage waves
do not resonantly couple to torsional Alfvén waves for the configuration we examine, we
employed regular series expansions about y ≡ r − R/2 = 0 to express ξ̃r and p̃T in the
nonuniform portion of the density distribution. Further requiring that sausage waves do not
disturb the cylinder axis (ξ̃r = 0 at r = 0), and employing the conditions for ξ̃r and p̃T to be
continuous at the interface r = R, we found that the DR can be expressed as

μeRH
(1)
0 (μeR)

H
(1)
1 (μeR)

ξ̃1(R/2) − ξ̃1(R/2) − Rξ̃ ′
1(R/2)

ξ̃1(−R/2)

=
μeRH

(1)
0 (μeR)

H
(1)
1 (μeR)

ξ̃2(R/2) − ξ̃2(R/2) − Rξ̃ ′
2(R/2)

ξ̃2(−R/2)
. (3)

Here H(1)
n denotes the n-th order Hankel function of the first kind, and μe is defined by

μ2
e = ω2

v2
Ae

− k2

(
−π

2
< argμe ≤ π

2

)
. (4)

Furthermore,

ξ̃1(y) =
∞∑

n=0

any
n and ξ̃2(y) =

∞∑
n=0

bny
n (5)

are two linearly independent solutions for ξ̃r in the portion r < R. Without loss of generality,
we chose

a0 = R, a1 = 0, b0 = 0, b1 = 1. (6)

The rest of the coefficients an and bn can be found by replacing R with R/2 in Equation (11)
in Paper I and contain the information on the density distribution. Finally, the prime ′ denotes
the derivative of ξ̃1,2 with respective to y.

Before proceeding, we note that a series-expansion-based approach was recently adopted
by Soler et al. (2013) to treat wave modes in transversally nonuniform cylinders where the
azimuthal wavenumber m is allowed to be arbitrary. A comparison between this approach
and ours is detailed in Appendix C, where we show that both approaches yield identical
results for trapped sausage modes (m = 0). While our approach seems more appropriate to
describe leaky sausage modes, we stress that a singular expansion as employed by Soler
et al. (2013) is necessary to treat wave modes with m �= 0.

2.2. Solution Method

Throughout this study, we focus on standing sausage modes by restricting longitudinal
wavenumbers (k) to be real, but allowing angular frequencies (ω) to be complex-valued
(ω = ωR + iωI). In addition, we focus on fundamental modes, namely those with k = π/L

where L is the loop length. In practice, we started with prescribing an f (r), and then solved
Equation (3) by truncating the infinite series expansion (Equation (5)) to retain terms with
n up to N = 101. Using an even larger N leads to no appreciable difference. It should be
noted that ω in units of vAi/R depends only on the combination [f (r), kR,ρi/ρe]. The
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corresponding period P and damping time τ follow from the definitions P = 2π/ωR and
τ = 1/|ωI|.

For validation purposes, we also obtained ω as a function of k in a way independent of
this eigenmode analysis. This was done by solving the time-dependent equation governing
the transverse velocity perturbation δvr(r, z, t) as an initial-value problem. For given combi-
nations of [f (r), kR,ρi/ρe], the periods and damping times of sausage modes can be found
by analyzing the temporal evolution of the perturbation signals (see Appendix A for details).
As we show in Figure 2, the values of P and τ derived from the two independent approaches
are in close agreement. However, numerically solving the analytical DR is much less com-
putationally expensive. In addition, the values of τ for heavily damped modes can be readily
found, whereas the perturbation signals in time-dependent computations decay too rapidly
to allow a proper determination of τ .

3. Numerical Results

It is impossible to exhaust the possible prescriptions for f (r). We therefore focus on one
choice, namely

f (r) =
(

r

R

)μ

, (7)

where μ is positive. The density profiles with a number of different μ are shown in Figure 1,
where ρi/ρe is chosen to be 100 for illustration purposes. Evidently, the profile becomes
increasingly steep as μ increases and approaches a step-function form when μ approaches
infinity. This makes it possible to investigate the effect of profile steepness by examining the
μ-dependence of the numerical results. In addition, for fundamental modes with k = π/L,
the dependence on kR is translated into that on the length-to-radius ratio L/R.

3.1. Behavior of Sausage Waves in Nonuniform Tubes

Figure 2 presents the dependence on L/R of the period P and damping time τ for a series of
μ values as labeled. For illustration purposes, the density ratio ρi/ρe is taken to be 100. The
dash-dotted line in Figure 2a represents P = 2L/vAe, and separates trapped (to its left) from
leaky (right) modes. The solid curves represent the results from solving the analytical DR
(Equation (3)), whereas the circles represent those obtained with the initial-value-problem

Figure 1 Transverse
equilibrium density profiles as a
function of r for different
steepness parameters μ as
labeled. Here the density contrast
ρi/ρe is chosen to be 100 for
illustration purposes.
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Figure 2 Dependence on
length-to-radius ratio L/R of
(a) periods P and (b) damping
times τ of fundamental sausage
modes. A number of density
profiles with different μ are
examined as labeled. The black
dash-dotted line in (a) represents
P = 2L/vAe and separates the
trapped (to its left) from leaky
(right) regimes. The open circles
represent the values obtained by
solving Equation (12) with an
initial-value-problem approach,
which is independent of the
eigen-mode analysis presented in
the text. The density contrast
ρi/ρe is chosen to be 100.

approach. A close agreement between the curves and circles is clear, thereby validating
the DR.

Figure 2a indicates that the wave period P increases monotonically with L/R in the
trapped regime and rapidly settles to some asymptotic value in the leaky one. Likewise,
Figure 2b shows that, being identically infinite in the trapped regime, the damping time τ

also experiences saturation for sufficiently large L/R. In addition, both P and τ increase
substantially with increasing μ at a given L/R. We note that while the tendency for P to be
larger for steeper density profiles agrees with the study by Nakariakov, Hornsey, and Mel-
nikov (2012), it does not hold in general. Figure 3 in Paper I shows that the opposite occurs
for some different profile prescriptions. This means that the largely unknown specific form
of the transverse density distribution plays an important role in determining the dispersive
properties of sausage modes. Consequently, when the period and damping time of sausage
modes are seismologically exploited, the uncertainty in specifying the density profile needs
to be considered.

3.2. Applications to Spatially Unresolved QPP Observations

In essence, Figure 2 indicates that the period P and damping time τ of sausage modes can
be formally expressed as

Psaus = R

vAi
Fsaus

(
L

R
,μ,

ρi

ρe

)
, (8)

τsaus

Psaus
= Gsaus

(
L

R
,μ,

ρi

ρe

)
. (9)
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Figure 3 Inversion curve (the
solid line) and its projections
(dashed) in the three-dimensional
parameter space spanned by
[μ,ρi/ρe,R/vAi]. All points
along this curve are equally
possible to reproduce the
quasi-periodic-pulsation event
reported in McLean and Sheridan
(1973), where the oscillation
period is 4.3 s, and the
damping-time-to-period ratio
is ten.

We note that the damping-time-to-period ratio τ/P is adopted here instead of τ itself, the
reason being that τ/P does not depend on R/vAi. Furthermore, the L/R-dependence disap-
pears for cylinders with large enough L/R.

We first consider the applications of Equations (8) and (9) to spatially unresolved QPP
events, for which only P and/or τ can be regarded known. However, the information is miss-
ing on both the physical parameters [vAi,μ,ρi/ρe] and geometrical parameters [L,R]. If a
trapped sausage mode is responsible for causing a QPP event, which occurs when the signals
do not show clear damping, then only Equation (8) is relevant. This means that any point on
a three-dimensional (3D) hypersurface in the 4D space formed by [R/vAi,L/R,μ,ρi/ρe] is
possible to reproduce the measured P . Even if the signals in a QPP event are temporally de-
caying, the range of possible parameters that can reproduce the measured P and τ is still too
broad to be useful: a 2D surface in the 4D parameter space results. The situation improves
if we can assume that the flare loops hosting sausage modes are sufficiently thin such that
the L/R-dependence drops out. Equations (8) and (9) then suggest that for trapped (leaky)
modes, we can deduce a 2D surface (1D curve) in the 3D space formed by [R/vAi,μ,ρi/ρe].
We note that the idea for deriving 1D inversion curves was first introduced by Arregui et al.
(2007) and later explored in e.g., Goossens et al. (2008) and Soler et al. (2014). While res-
onantly damped kink modes were examined therein, the same idea also applies to leaky
sausage modes in thin cylinders, the only difference being that the transverse Alfvén time
(R/vAi) replaces the longitudinal one (L/vAi).

Figure 3 presents the 1D curve and its projections (the dashed lines) onto various planes
in the [R/vAi,μ,ρi/ρe] space, using the QPP event reported in McLean and Sheridan (1973)
as an example. For this event, the oscillation period is 4.3 s and the damping-time-to-period
ratio is ten. Table 1 presents a set of values read from the solid curve in Figure 3. Of the
parameters to be inferred, the transverse Alfvén time R/vAi and density ratio ρi/ρe can
be somewhat constrained. To be specific, the pair [R/vAi, ρi/ρe] reads [2.94 s,182] when
μ = 1, and reads [1.64 s,88.2] when μ = 100. However, the steepness parameter μ is dif-
ficult to constrain, since its possible range is too broad. This agrees with Paper I, where we
concluded that for spatially unresolved QPPs, the transverse Alfvén time is the best con-
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Table 1 Values of [μ,ρi/ρe,R/vAi] deduced for the QPP event reported in McLean and Sheridan (1973).

μ 1 2.5 4 6.5 9 12 20 60 100

ρi/ρe 182.0 118.3 104.0 95.8 92.5 91.0 89.2 88.2 88.2

R/vAi (s) 2.94 2.23 2.02 1.87 1.80 1.76 1.7 1.65 1.64

strained, whereas the steepness (the length of the transition layer in units of loop radius l/R

in that paper) corresponds to the other extreme.
The question then is how to make sense of this seismological inversion. To this end,

we may compare our results with what is found with the DR for a step-function density
profile (Equation (18) in Paper I). Noting that the μ-dependence no longer exists in the step-
function case, we find with the measured P and τ that [R/vAi, ρi/ρe] = [1.62 s,88.2]. As
expected, this agrees well with what we found for large μ. However, it differs substantially
from the results for small μ. From this we conclude that, although simple and straightfor-
ward, the practice for deducing [R/vAi, ρi/ρe] using the DR for step-function profiles is
subject to substantial uncertainty if the uncertainties in prescribing the transverse density
structuring are taken into account. In particular, it may substantially underestimate R/vAi.
This uncertainty will be carried over to the deduced values of the Alfvén speed and conse-
quently the magnetic field strength, provided that we can further estimate the loop radius R

and internal density ρi.

3.3. Applications to Spatially Resolved QPP Observations

We now consider the seismological applications of Equations (8) and (9) to spatially re-
solved QPP events. In this case, the geometrical parameters L and R can be considered
known, and only the combination of [vAi,μ,ρi/ρe] remains to be deduced. It then follows
that if a trapped (leaky) mode is presumably the cause of a QPP event, the measured pe-
riod P (P together with the damping time τ ) allows a 2D surface (1D curve) to be found in
the 3D space formed by [vAi,μ,ρi/ρe].

Something more definitive can be deduced if a QPP event involves more than just a
sausage mode. Similar to Paper I, we examined the case where a fundamental kink mode
exists together with a fundamental sausage one, with both experiencing temporal damping.
Let Psaus and τsaus denote the period and damping time of the sausage mode, respectively.
Likewise, let Pkink (τkink) denote the period (damping time) of the kink mode. Furthermore,
we assume that wave leakage leads to the apparent damping of the sausage mode, whereas
resonant absorption is responsible for damping the kink mode. We find that Pkink and τkink

can be formally expressed as

Pkink = L

vAi
Fkink

(
L

R
,μ,

ρi

ρe

)
, (10)

τkink = L

vAi
Hkink

(
L

R
,μ,

ρi

ρe

)
. (11)

To establish the functions Fkink and Hkink, we adopted the same approach as in Terradas,
Oliver, and Ballester (2006). A set of linearized resistive MHD equations (Equations (1) –
(5) therein) was solved for the dimensionless complex angular frequency (ωkinkL/vAi) as an
eigenvalue. A uniform resistivity η̄ was adopted, resulting in a magnetic Reynolds number
Rm = vAiR/η̄. It turns out that ωkinkL/vAi does not depend on Rm when Rm is sufficiently
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Figure 4 Illustration of the
scheme for inverting the
two-mode QPP event reported
in Kolotkov et al. (2015). The
curves in (a) are found by
requiring that the
damping-time-to-period ratio
τsaus/Psaus and period Psaus for
fundamental sausage modes
agree with the measured values
for a series of given values of μ.
The solid curve in (b) represents
the damping time τkink for
fundamental kink modes
expected with the values
[μ,ρi/ρe, vAi] given in (a). Its
intersection with the horizontal
dashed line, representing the
measured value for τkink, gives a
unique combination of
[μ,ρi/ρe, vAi] labeled by the
crosses.

large, and this saturation value is taken to be the value that ωkinkL/vAi attains with the
input parameters [L/R,μ,ρi/ρe] (see Appendix B for details). We note that Fkink and Hkink

can also be established with the approach developed by Soler et al. (2013), where a less
computationally costly method based on singular series expansion was employed.

With Psaus, τsaus, Pkink, and τkink measured, we find that the number of equations is more
than needed, since now there are only three unknowns, vAi, μ, and ρi/ρe. In practice, we
consider the expression for Pkink as redundant and use the rest for seismological purposes.
As suggested in Paper I, the kink mode period expected from Equation (10) with the de-
duced parameters can be compared with the measured value. The difference between the
two allows us to say, for instance, whether it is safe to identify the oscillating signals with
the particular modes. In addition, this difference can also serve as an estimate of the errors
of the deduced loop parameters for a given density prescription.

While seemingly fortuitous, QPP events involving multiple modes do occur (e.g.,
Nakariakov, Melnikov, and Reznikova, 2003; Kupriyanova, Melnikov, and Shibasaki, 2013;
Kolotkov et al., 2015). For instance, when analyzing the multiple signals in the QPP event
on 14 May 2013, Kolotkov et al. (2015) identified a fundamental fast kink mode with pe-
riod Pkink = 100 s and damping time τkink = 250 s together with a fundamental sausage
mode with Psaus = 15 s and τsaus = 90 s. In addition, the flare loop hosting the two modes
was suggested to be of length L = 4 × 104 km and radius R = 4 × 103 km, if the apparent
width of the loop is taken as the loop diameter. Now the seismological inversion is rather
straightforward and involves only two steps, as illustrated in Figure 4. First, with the aid of
Equation (9), we readily derive a curve (the solid curve in Figure 4a) in the [μ,ρi/ρe] plane
to be compatible with the measured τsaus/Psaus. The internal Alfvén speed vAi for a given
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pair of [μ,ρi/ρe] is then found with Equation (8) to agree with the measured Psaus, yielding
the dash-dotted curve. Second, we evaluate the kink mode damping time with Equation (11)
with a series of combinations [vAi,μ,ρi/ρe], thereby finding the solid curve in Figure 4b.
The intersection of this solid curve with the horizontal dashed line, representing the mea-
sured kink mode damping time (τkink = 250 s), then yields that μ = 11.8, ρi/ρe = 28.8, and
vAi = 653 km s−1. It is worth stressing that Equation (10) yields an expected kink mode pe-
riod of 88 s with the measured L and R as well as this set of deduced parameters. This is
close to what was measured (100 s), substantiating the interpretation of the long-period sig-
nal as the fundamental kink mode, as was done by Kolotkov et al. (2015). Alternatively, this
agreement between the two values also suggests that the errors in this inversion procedure
are rather moderate.

What are the uncertainties of the derived flare loop parameters? Evidently, they come
entirely from the uncertainties associated with the unknown specific form of the transverse
density structuring. To provide an uncertainty measure, we repeated the afore-mentioned
inversion process for all four different density prescriptions in Paper I, where we examined
only one profile (the sine profile) and adopted the TTTB approximation to describe Fkink and
Hkink. Now with the pertinent analytical DRs for sausage modes and self-consistent resistive
MHD computations for kink modes, we find that the density contrast ρi/ρe is constrained
to the range from 28.4 to 31.1, and the internal Alfvén speed vAi lies between 594 and
658 km s−1. Interestingly, for the μ-power profile examined here, the values inferred for
ρi/ρe and vAi also lie in these rather narrow ranges. On the other hand, the deduced μ value
indicates that the density profile across the flare loop in question is rather steep, which also
agrees with the ratios of the transition layer width to loop radius (0.167 ≤ l/R ≤ 0.284)
inferred with the profile prescriptions in Paper I. From this we conclude that at least for the
profiles examined in the present study and Paper I, the uncertainties of the inferred profile
steepness, density contrast, and internal Alfvén speed are relatively small.

4. Summary

A substantial fraction of quasi-periodic pulsations (QPPs) in the light curves of solar flares
is attributed to sausage modes in flare loops. The present study continues the effort we initi-
ated in Chen et al. (2015b, Paper I) to infer flare loop parameters with the measured periods
P and damping times τ of fundamental standing sausage modes supported therein. For
this purpose we extended the analysis of Paper I to sausage waves in nonuniform, straight,
coronal cylinders with arbitrary transverse density profiles comprising a nonuniform inner
portion and a uniform external medium. Working in the framework of ideal and cold MHD,
we derived an analytical dispersion relation (DR, Equation (3)) and focused on density pro-
files of a μ-power form (Equation (7)). The dispersive properties of fundamental standing
modes were examined, together with their potential to infer flare loop parameters.

We found that P and τ in units of the transverse Alfvén time R/vAi depend only on
the density contrast ρi/ρe, length-to-radius ratio L/R of coronal cylinders, and the profile
steepness μ. For all profiles examined in both this study and Paper I, when the rest of the
parameters are fixed, P (τ ) in units of R/vAi increases (decreases) with increasing L/R

and tends to some saturation value when L/R is sufficiently large. For spatially unresolved
QPPs, we showed that a curve in the 3D space formed by R/vAi, ρi/ρe, and μ can almost be
deduced. This occurs when we can assume that L/R � 1 beforehand. Applying this inver-
sion procedure to the event reported by McLean and Sheridan (1973), we found that R/vAi is
the best constrained, whereas the steepness parameter is the least constrained. For spatially
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resolved QPPs, we showed that while geometric parameters of flare loops are available, the
inversion problem remains under-determined. However, when an additional mode co-exists
with the fundamental sausage mode, the full information on the unknowns, [vAi,μ,ρi/ρe],
can be inferred. In this case, the inversion problem may become over-determined. Applying
this idea to a recent QPP event where temporally decaying kink and sausage modes were
identified, we found that vAi, ρi/ρe, and the profile steepness can be constrained to rather
narrow ranges.

The discussions on the limitations to our inversion procedures as presented in Paper I
also apply here and are not repeated. Instead, we stress the great potential of using multi-
mode QPP measurements to determine flare loop parameters rather precisely, the internal
Alfvén speed in particular. To this end, not only modes of distinct nature (e.g., a fundamental
kink mode co-existing with a sausage one) are useful, modes of the same nature but with
different longitudinal node numbers work as well. While fundamental kink modes and their
harmonics have been seismologically exploited (see e.g., the review by Andries et al., 2009),
serious studies using sausage modes need to be conducted.

Before closing, we note that Bayesian techniques have been successfully applied to the
inference of density structuring transverse to coronal loops hosting resonantly damping kink
modes (Asensio Ramos and Arregui, 2013; Arregui, Asensio Ramos, and Pascoe, 2013; Ar-
regui, Soler, and Asensio Ramos, 2015). With such techniques, the errors in the measure-
ments of kink mode periods and damping times can be properly propagated, and the plau-
sibility of a density profile prescription can be assessed. When no particular prescription is
favored, approaches like model-averaging can be employed to yield an evidence-averaged
inference. While so far the applications of such techniques have been primarily focused on
kink modes, similar ideas are expected to be equally applicable to sausage modes. For this
purpose, the DRs derived here and in Paper I should be useful.
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Appendix A: Fast Sausage Modes in Nonuniform Cylinders:
A Time-Dependent Approach

This section provides a detailed examination of sausage modes from an initial-value-
problem perspective. We note that similar studies were carried out for step-function density
profiles by Terradas, Andries, and Goossens (2007), and for continuous profiles by Nakari-
akov, Hornsey, and Melnikov (2012) and Chen et al. (2015a). To start, it is straightforward to
derive an equation governing the transverse velocity perturbation δvr(r, z, t) from linearized,
time-dependent, cold MHD equations. Formally expressing δvr(r, z, t) as v(r, t) sin(kz), we
find that v(r, t) is governed by (e.g., Chen et al., 2015a)

∂2v(r, t)

∂t2
= v2

A(r)

[
∂2

∂r2
+ 1

r

∂

∂r
−

(
1

r2
+ k2

)]
v(r, t). (12)

With a ρ(r) profile given by Equations (1) and (7), we can readily evaluate the profile for
the Alfvén speed vA(r) = B/

√
4πρ(r). Equation (12) can then be readily solved when sup-

plemented with appropriate initial and boundary conditions. For this purpose, we developed
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Figure 5 Spatial distribution of
the transverse velocity
perturbation at a number of
different times for kR = 1.2. The
initial perturbation is described
by Equation (13). Here the
density ratio ρi/ρe = 10 and the
steepness parameter μ = 3.

a simple finite-difference code that is second-order accurate in both space and time, and
solved Equation (12) on a uniform grid spanning [0, router] with a spacing �r = 0.02R and
router = 1000R. A uniform time-step �t = 0.8�r/vAe is adopted to ensure numerical stabil-
ity in view of the Courant condition. We made sure that further refining the grid leads to no
discernible difference. Furthermore, the outer boundary router is placed sufficiently far from
the cylinder such that the signals to be analyzed are not contaminated by the perturbations
reflected off the outer boundary. Pertinent to sausage modes, we require that v(r = 0, t) = 0.
In addition, v(r = router, t) is specified to be zero for simplicity. Throughout this section, we
examine a density ratio ρi/ρe of ten and a steepness parameter μ of three. Moreover, for all
computations we adopt the same initial condition (IC)

v(r, t = 0) = r

R
exp

[
−

(
r

R

)2]
,

∂

∂t
v(r, t = 0) = 0, (13)

which is chosen not to be too localized to avoid exciting higher order modes.
Figure 5 presents the spatial distribution of v(r, t) for kR = 1.2 at a number of t as

labeled. As time progresses, some ripples propagate outward with the external Alfvén speed
(vAe = √

ρi/ρevAi = √
10vAi). The amplitudes of these ripples are rather insignificant and

decrease with time, meaning that little energy is transmitted into the external medium for
the adopted IC, even though it is not an exact eigen-function. The majority of the energy is
trapped in the cylinder, a signature of trapped modes.

That this computation pertains to the trapped regime is better shown by Figure 6, where
the temporal evolution of v(R, t) is displayed. In addition to the numerical results (the black
curve), a fit in the form A cos(ωRt +φ) is given by the red line. This fitting procedure yields
that ωR = 3.51vAi/R, in exact agreement with the value found from solving the dispersion
relation (Equation (3)). The black curve can be hardly told apart from the red one when t �
4R/vAi, meaning that the signal at this location rapidly evolves into a trapped eigenmode.

What happens for a small kR? This is examined in Figure 7, where the spatial dependence
of v(r, t) for kR = 0.1 is presented. In response to the initial perturbation, some ripples are
also seen to propagate away from the cylinder. However, in this case the signal close to the
cylinder axis (r = 0) decays so rapidly that a different scale has to be used to plot v(r, t) at
long times (Figure 7b). From Figure 7b we also see that at a given time, the amplitude of the
perturbations in the external medium tends to increase with distance first before decreasing
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Figure 6 Temporal evolution of
the transverse velocity
perturbation v(r = R, t) for
kR = 1.2. The initial perturbation
is described by Equation (13). In
addition to the numerical result
from this time-dependent
computation (the black curve),
a fit to this curve in the form
A cos(ωRt + φ) is given by the
red line for comparison. Here the
density ratio ρi/ρe = 10 and the
steepness parameter μ = 3.

Figure 7 Similar to Figure 5,
but for kR = 0.1. The spatial
distributions for t = 18 and
24R/vAi are plotted in a separate
panel.

toward the front (also see the blue curve in Figure 7a). This is a signature of leaky eigen-
functions (e.g., Cally, 1986; Terradas, Andries, and Goossens, 2007).

Figure 8 presents the temporal evolution of v(R, t) (the black curve) together with a
fitting in the form A cos(ωRt + φ) exp(ωIt) (red). From this fitting we find that [ωR,ωI] =
[2.98,−0.34]vAi/R, coinciding with the eigenmode computation for the adopted kR. The



890 M.-Z. Guo et al.

Figure 8 Similar to Figure 6,
but for kR = 0.1. The fit (the red
curve) to the time-dependent
solution (black) is in the form
A cos(ωRt + φ) exp(ωIt).

black and red curves agree closely with each other for t � 2.5R/vAi, substantiating the
interpretation that the signal settles to a leaky eigenmode.

Appendix B: Fast Kink Modes in Nonuniform Cylinders: A Resistive,
Linear MHD Computation

This section provides some details for the resistive, linear MHD computations that we em-
ployed to establish the functions Fkink and Hkink contained in Equations (10) and (11). Such
a description seems informative even though our approach is identical to the one adopted
by Terradas, Oliver, and Ballester (2006, hereafter TOB06), since the density profile given
by Equation (1) has not been explored for resonantly damped kink modes. Now that the ap-
proach has been detailed in Section 3.1 in TOB06, it suffices to note here that we are looking
for a dimensionless complex-valued angular frequency ωkinkL/vAi for a set of dimensionless
parameters [L/R,μ,ρi/ρe]. The magnetic Reynolds number Rm = vAiR/η̄ is also relevant,
where η̄ is the resistivity and assumed to be uniform.

Figure 9 presents the Rm dependence of the real (ωR) and imaginary (ωI) parts of the
dimensionless angular frequency for kR = 0.1π and ρi/ρe = 20. A number of μ values
are examined as given by the curves in different colors. Figure 9b shows that the curves
significantly depend on Rm only for relatively small Rm. As discussed in TOB06, this is
attributable to the competition between resistivity and resonant absorption in damping the
kink modes. For large (small) Rm, resonant absorption (resistivity) plays a more important
role, and consequently the damping rate |ωI| is insensitive (sensitive) to Rm. Interestingly,
in agreement with Figure 2 of TOB06, |ωI| is not sensitive to the density profile steepness
when Rm is small. On the other hand, |ωI| rapidly settles to some asymptotic value when Rm

exceeds some critical value. Similar to TOB06, with increasing profile steepness this critical
Rm increases, whereas the asymptotic |ωI| decreases. Examining Figure 9a, we find that
ωR is different for different μ values even at small Rm. Despite this, it is important for the
present purpose that neither ωR nor ωI depends on Rm when Rm is sufficiently large. Their
asymptotic values are taken to be the eigen-frequencies of kink modes whose damping is
solely due to resonant absorption.

How do these saturation values depend on the steepness parameter μ when the rest of
the parameters are fixed? This is examined in Figure 10, where a series of computations are
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Figure 9 Dependence on the
magnetic Reynolds number Rm
of (a) the real and (b) imaginary
parts of the dimensionless
eigen-frequency for kink modes
in cylinders with a transverse
density profile given by
Equations (1) and (7). A number
of different steepness parameters
μ are examined as labeled. Here
the dimensionless longitudinal
wavenumber kR = 0.1π , and the
density ratio ρi/ρe is fixed at 20.

Figure 10 Dependence on the
steepness parameter μ of (a) the
real and (b) imaginary parts of
the eigen-frequencies for
resonantly damped kink modes in
cylinders with a transverse
density profile given by
Equations (1) and (7). A number
of density ratios ρi/ρe are
examined as labeled. Here the
dimensionless longitudinal
wavenumber kR = 0.1π . The
eigen-frequencies are found with
linear resistive MHD
computations at sufficiently large
magnetic Reynolds numbers.
They are normalized to ωk , the
value attained for density profiles
of a step-function form. See text
for details.
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conducted for a number of density ratios ρi/ρe as labeled. The dimensionless longitudinal
wavenumber kR is also taken to be 0.1π . For presentation purposes, both ωR and ωI are nor-
malized to the kink frequency ωk , which is attained for density profiles of a step-function
form. It turns out that the correction to ωk due to dispersion is not negligible at the cho-
sen kR, meaning that ωk needs to be computed by solving the relevant dispersion relation
(e.g., Edwin and Roberts, 1983, Equation (8b)). The computed value is a few percent differ-
ent from its thin-tube counterpart, namely

√
2kvAi/

√
1 + ρe/ρi (e.g., Equation (40) in Soler

et al., 2013, hereafter S13). Similar to Figure 1 in S13, our Figure 10 shows that ωR and |ωI|
tend to decrease with increasing density profile steepness, approaching the step-function
values when μ is sufficiently large. In addition, |ωI|/ωk at a fixed steepness parameter in-
creases with increasing ρi/ρe. However, while here ωR/ωk tends to increase with ρi/ρe

regardless of μ, it does not show a monotonical dependence on ρi/ρe in Figure 1 of S13
when the steepness parameter is fixed. This difference signifies the importance of describ-
ing the density profile in detail when determining the properties of resonantly damped kink
modes: while a μ-power profile is examined here, S13 explored a sine profile (Equation (63)
therein).

Appendix C: Examining Sausage Modes in Nonuniform Cylinders
with Series-Expansion-Based Methods

So far, two series-expansion-based methods have been available to derive explicit expres-
sions for the sausage perturbations in the nonuniform portion of the density distribution.
One (approach I, S13) is based on singular expansions as a byproduct of a comprehensive
examination of resonantly damped kink modes, whereas the other (approach II, Paper I) is
based on regular expansions. This section provides a rather detailed comparison between the
two.

To facilitate this comparison, we focus on density profiles considered by both studies,
where a transition layer (TL) connects a uniform cord (with density ρi) and a uniform exter-
nal medium (with density ρe). The TL is of width l and centered around r = R. Approach
I solves the perturbation equation (Equation (4) in S13) by conducting an expansion about
the Alfvén resonance rA where ωR = kvA. For the density profiles in question, rA is located
in the TL. Valid for arbitrary azimuthal wavenumbers m, the analysis in S13 yields that for
sausage modes (m = 0), the series solutions are regular even though rA is a regular singu-
lar point. Physically, this means that sausage modes do not resonantly couple to the Alfvén
continuum. Approach II capitalizes on this fact and solves the perturbation equation (Equa-
tion (6) in Paper I) by performing a regular series expansion about r = R. In this aspect,
approach II is equivalent to I and both should yield identical solutions, provided that a point
exists in the TL such that ωR = kvA. Let rA denote this point for brevity, although it is not a
resonance for sausage modes.

Before proceeding, we note that the perturbations in the external medium were required
to be evanescent by S13, since leaky modes were not of interest therein. Consequently,
the Fourier amplitude of the Eulerian perturbation of total pressure was expressed with
K0(k⊥,er), the modified Bessel function of the first kind (Equation (10) in S13). To account

for leaky sausage modes, this needs to be replaced with H
(1)

0 (μer) (e.g., Cally, 1986). Here
μe is defined by Equation (4), and by definition, μ2

e = −k2
⊥,e. With the notations in S13, the
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Figure 11 Comparison of two series-expansion-based methods for computing eigen-frequencies of sausage
modes. To facilitate this comparison, the density distribution is different from the one described by Equa-
tion (1). Instead, the profile labeled “linear” in Equation (4) of Paper I is adopted. Here the dimensionless lon-
gitudinal wavenumber kR = 0.5, pertinent to the trapped regime (ωI = 0) for the chosen density ratio ρi/ρe
of 100. The real part of the eigen-frequency ωR is displayed as a function of l/R, the density length-scale in
units of loop radius. The black curve represents the results found with the method based on regular expan-
sions, and the crosses represent those obtained with analyzing the perturbation signals in the corresponding
time-dependent computations. Two treatments are adopted for the method based on singular expansions. In
one treatment the location of the nominal Alfvén resonance rA is assumed to be R (the open dots), while in
the other it is found iteratively (filled). See text for details.

DR therein then reads

−μe

ρe(ω2−k2v2
A,e)

H
(1)
1 [μe(R+l/2)]

H
(1)
0 [μe(R+l/2)]Ge − �e

−μe

ρe(ω2−k2v2
A,e)

H
(1)
1 [μe(R+l/2)]

H
(1)
0 [μe(R+l/2)]Fe − �e

−
−k⊥,i

ρi(ω
2−k2v2

A,i)

J1[k⊥,i(R−l/2)]
J0[k⊥,i(R−l/2)]Gi − �i

−k⊥,i

ρi(ω
2−k2v2

A,i)

J1[k⊥,i(R−l/2)]
J0[k⊥,i(R−l/2)]Fi − �i

= 0. (14)

For non-leaky waves, this recovers Equation (27) in S13, given that

μeH
(1)

1 [μe(R + l/2)]
H

(1)

0 [μe(R + l/2)] = k⊥,eK1[k⊥,e(R + l/2)]
K0[k⊥,e(R + l/2)] ,

where we have used the relation (Abramowitz and Stegun, 1970)

Km(w) = π

2
im+1H(1)

m (iw)

(
−π < argw ≤ π

2
,m = 0,1, . . .

)
.

For illustration purposes, below we examine a linear profile for the density distribution in the
TL (Equation (4) in Paper I), and assume that ρi/ρe = 100. For approach I, we solve Equa-
tion (14) instead of Equation (27) in S13, and for approach II we solve our Equation (17) in
Paper I.

Figure 11 compares the eigen-frequencies found for a series of l/R from the two ap-
proaches when kR equals 0.5. This kR falls into the trapped regime since the imaginary
parts (ωI) of the eigen-frequencies are zero, and hence only the real parts (ωR) are shown.
The solid line labeled “regular” represents the solutions from approach II. When adopting
approach I, we examine two different treatments for the location of rA: in one we simply
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Figure 12 Similar to Figure 11,
but for kR = 0.01 pertinent to
leaky modes, for which ωI is
non-zero and displayed in a
separate panel. See text for
details.

take rA to be R (the open dots), whereas in the other we solve Equation (14) iteratively to
simultaneously derive ωR and rA (the filled dots). We note that a value for rA needs to be
specified before solving this DR. However, the Alfvén speed at this guessed location usu-
ally is not equal to ωR/k thus found. Hence this latter iterative treatment. The filled dots fall
on the solid curve, and both agree exactly with the crosses representing the values found
from fitting the signals v(R, t) in the corresponding time-dependent computations (see Ap-
pendix A). This means that both approaches yield correct results, and approach II can be
seen as a specific case of the more general analysis presented in S13. Nonetheless, the ad-
vantage of approach II is that there is no need to find rA, which is necessary for approach I,
given that simply assuming rA = R beforehand can yield considerably different results (see
the open dots).

Some considerable difference arises when leaky sausage modes are examined. We con-
sider kR = 0.01, for which the real (ωR) and imaginary (ωI) parts of the complex-valued
eigen-frequencies are presented in Figure 12. The results from approach II are given by
the solid line and are found to agree well with the values found from analyzing the time-
dependent results (the crosses). However, they differ substantially from the results found
with approach I, where we assumed that rA = R. In this case, the iterative treatment does
not work because no point in the TL corresponds to a vA that equals ωR/k. The reason is
that in the leaky regime the apparent phase speed ωR/k consistently exceeds vAe, which in
turn always exceeds the Alfvén speeds in the TL.

Despite the afore-mentioned discussions, we stress that the mathematical approach pre-
sented in S13 is sufficiently general to treat modes with arbitrary azimuthal wavenumber m,
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trapped sausage modes (m = 0) included. A singular series expansion is necessary for treat-
ing all modes with m �= 0.
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