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Abstract NASA’s Solar Terrestrial Relations Observatory (STEREO) mission has coin-
cided with a pronounced solar minimum. This allowed for easier detection of corotating
interaction regions (CIRs). CIRs are formed by the interaction between fast and slow solar-
wind streams ejected from source regions on the solar surface that rotate with the Sun.
High-density plasma blobs that have become entrained at the stream interface can be tracked
out to large elongations in data from the Heliospheric Imager (HI) instruments onboard
STEREO. These blobs act as tracers of the CIR itself such that their HI signatures can be
used to estimate CIR source location and radial speed. We estimate the kinematic proper-
ties of solar-wind transients associated with 40 CIRs detected by the HI instrument onboard
the STEREO-A spacecraft between 2007 and 2010. We identify in-situ signatures of these
transients at L1 using the Advanced Composition Explorer (ACE) and compare the in-situ
parameters with the HI results. We note that solar-wind transients associated with CIRs ap-
pear to travel at or close to the slow solar-wind speed preceding the event as measured in
situ. We also highlight limitations in the commonly used analysis techniques of solar-wind
transients by considering variability in the solar wind.

Keywords Corotating interaction regions - Solar wind

1. Introduction

Interaction regions are formed in the solar wind by the interaction between fast and slow
solar-wind streams from the Sun. When faster material catches up with slower material,
previously emitted along the same solar radial, a density enhancement forms at the stream
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Figure 1 In-situ data from the ACE spacecraft showing proton-number density (solid) and speed (dashed)
associated with a pair of CIRs. The denser material can be clearly seen to travel at a speed close to that
of the slow solar wind, being followed by more rarefied, faster material. Reproduced with permission from
Rouillard et al. (2008).

interface as the faster and slow material originate from different regions of the Sun, so
they are threaded by different magnetic-field lines and then cannot mix or flow past one
another. This interaction region, which has the overall structure of an Archimedean spiral,
is called a corotating interaction region (CIR: Gosling and Pizzo, 1999). Following this
density enhancement is a rarefied region consisting of the faster solar-wind material. The
faster solar-wind material will be less dense than the slower material as the ions move out
faster; thus there is a larger spacing and hence less dense material. Thus, the faster solar wind
that has not yet collided with the slower solar wind forms a less dense region following the
density enhancement as the feature corotates with the Sun. It is possible that the stream
interfaces can form into shocks further out in the heliosphere (Smith and Wolfe, 1976).
These features, for a pair of CIRs, and associated high-speed streams in 2007, can be seen
in Figure 1 from Rouillard et al. (2008), which presents in-situ data from the Advanced
Composition Explorer (ACE) spacecraft taken between 18 September and 6 October 2007.
Proton-number density is shown by the solid-black line and the speed by the dashed line.
In this figure, the density enhancement typical of a CIR is seen to coincide with solar-wind
material appearing to have a speed close to the slow solar wind, which is about 350 kms~!
as measured at 1 AU (Lang, 2001).

The source regions of the slow and fast solar wind are thought to differ, with the slower
material tending to emanate from regions of closed magnetic field and fast material from
regions of open magnetic field (Poletto, 2013). As demonstrated by the Ulysses mission, the
fast/slow solar-wind source regions are more clearly delineated during solar minimum and
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hence the deeper solar minimum at the end of Solar Cycle 23 (2007 —2010) provides a good
opportunity to make CIR observations, as stated by, e.g. Williams et al. (2011). Borovsky
and Denton (2006) compared the influences of coronal mass ejections (CMEs) and CIRs on
infrastructure and established that, while CMEs pose a greater problem for ground-based
systems, CIRs cause greater spacecraft charging and so can have a larger impact on space-
based systems. It is thus important to be able to establish the propagation characteristics of
solar-wind transients that form CIRs and forecast their arrival at Earth, especially during the
declining phase of the solar cycle, when their influence is the greatest (Davis et al., 2012).

Coronagraphs have been used for decades to image sunlight that has been Thomson scat-
tered from plasma-density enhancements in the solar wind. Observations from such instru-
ments do not extend far out from the Sun (a maximum of 30 Ry ). More recently, instruments
have been developed that allow the solar wind to be imaged out to much greater distances
of 1 AU and beyond. An example of such a heliospheric-imaging instrument was the So-
lar Mass Ejection Imager (Eyles et al., 2003) onboard the NRL/NASA Coriolis spacecraft.
This was followed in 2006 by the Heliospheric Imagers (HIs) onboard the two spacecraft
of NASA’s Solar Terrestrial Relations Observatory (STEREOQ: Kaiser et al., 2007) mission.
Each STEREO spacecraft also hosts a pair of coronagraphs.

Features have been detected using the HI instruments onboard STEREO and the Solar
Mass Ejection Imager (SMEI) onboard the Coriolis spacecraft (Tappin and Howard, 2009),
which have been associated with CIRs (Rouillard ef al., 2008, 2009, 2010; Sheeley et al.,
2008). It is thought that these features correspond to blobs of plasma that have become
entrained at the stream interface (Rouillard et al., 2008, 2010). Investigations into these
features have tended to focus on individual CIR events (Rouillard et al., 2008, 2010) and,
while there is undoubtedly great value in doing so, it is also useful to consider the average
properties over a wider range of events to look for trends and common features. That is the
aim of this study. We shall make some comparisons with Davis et al. (2012) who performed
an analysis on a larger number of CIR-associated solar-wind transients.

2. Remote CIR Observations from STEREO

The STEREO mission was launched in late 2006 with the particular aim of tracking CMEs
as they propagate all the way from the Sun through the heliosphere out to 1 AU and beyond,
especially those directed towards the Earth. The mission comprises two spacecraft, each in
Earth-like heliocentric orbits, with STEREO-A orbiting ahead of the Earth in its orbit and
STEREO-B behind.

The Heliospheric Imagers (HI-1 and HI-2: Eyles et al., 2009) form part of STEREO’s
Sun Earth Connection Coronal and Heliospheric Investigation (SECCHI: Howard et al.,
2008 and Eyles et al., 2009), along with two coronagraphs (COR1 and COR2) and an ex-
treme ultraviolet imager (EUVI). The SECCHI package comprises the mission’s remote-
imaging capabilities. Taken alone, the HI instruments provide a circular field of view cen-
tred on the Ecliptic plane and extending from 4.0 to 88.7° elongation from the spacecraft—
Sun line. This enables solar-wind transients to be tracked from the corona out to Earth-like
distances and beyond. As the STEREO mission progresses, each of the two spacecraft sep-
arates from the Sun—Earth line by about 22.5° per year. This provides SECCHI with an ever
changing, stereoscopic view of the region of space between the Earth and Sun. The HI instru-
ments themselves are visible-light cameras, which detect sunlight that has been Thomson
scattered from electrons in the solar wind (Eyles et al., 2009). The densities associated with
solar-wind transients are relatively low and so, in order to highlight them in the HI data,
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Figure 2 The top panel shows an example J-map extending over September 2007 showing the structure of
three CIRs as seen from STEREO-A. Bottom panel shows the same J-map, but with superimposed traces of €
as a function of time, each trace corresponding to a single transient with a constant ¢ (see Equation (1)). The
traces are colour-coded according to the scattering angle with y going from 0 to 180° such that those regions
in red correspond to a scattering angle of 90° and should appear brighter than those that are blue/purple, and
they have a y close to 0 or 180°.

running-difference images are often used (see Davies et al., 2009 for more information).
Moreover, strips along a particular solar radial can then be extracted and a time—elongation
map (commonly called a J-map) formed (Sheeley et al., 1999; Davies et al., 2009). An ex-
ample J-map can be seen in the top panel of Figure 2. This includes data taken from HI-1,
HI-2, and COR2 on STEREO-A and encompasses September 2007, showing up to taken
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Figure 3 Schematic showing
the geometry when observing
CIRs with STEREO-HI. A series
of plasma elements are seen
moving out from the Sun [S] of
which we consider one [P]. This
element moves radially outward
from the Sun with constant
speed V;. Elongation [€] and
propagation angle [¢] are as
shown. The observer,
STEREO-A in this instance is
at the point labelled A.

from the Ecliptic plane. There are algorithms designed to remove the stellar background, al-
though they often leave some residue behind. The background F-corona is removed by tak-
ing a sequence of images (at least three) and finding the minimum value occurring in each
pixel across the images. By removing this, most of the background should be removed. For
some larger features, such as the Milky Way, a larger sequence of images might be required.
All of this image preparation can be done via the secchi_prep routine, supplied as a part of
the Solarsoft package. This figure shows three families of transients, each associated with a
CIR. Each CIR is apparent as a family of discrete time—elongation tracks, seen in the figure,
that converge at larger elongation values. These transient families have been identified as the
HI-2A signatures of CIRs by Rouillard ez al. (2008). The time—elongation profile of a solar-
wind transient, which can be extracted from a J-map, can be analysed to yield an estimate
of its radial speed and propagation direction (Howard et al., 2006; Rouillard et al., 2008;
Lugaz, Vourlidas, and Roussev, 2009; Davies et al., 2013).

We briefly outline how the kinematic characteristics of features associated with CIRs can
be derived from time—elongation profiles using single-spacecraft fitting techniques. Figure 3
shows an example geometry from the STEREO mission. We consider a plasma element [P],
characterised as a point, propagating out from the Sun [S] at a fixed propagation angle
[¢] relative to the observer. As the feature propagates out across the HI field of view (HI
FOV not indicated), its elongation angle [€] (the angle between the Sun—spacecraft line
and spacecraft—plasma element line) increases. By applying the sine rule to triangle ASP it
is possible to arrive at an expression for the elongation variation [€(¢)], as viewed from a
single vantage point (Rouillard et al., 2008):

ey

€(t) = arctan( Vit sing ) ,

rsc(t) — Vit cos ¢

where ¢ is the travel time from launch (considered for ease to be 0 at € = 0) of the plasma
element, rgc is the distance from the Sun of the observing spacecraft, and V; the solar-
wind transient radial propagation speed. This expression assumes that the propagation of
the plasma is at a constant speed and direction. It is possible to fit time—elongation profiles
using Equation (1) in order to extract the best-fit values of V; and ¢ that correspond to that
profile (Rouillard et al., 2008). This technique is termed fixed-¢ fitting (Kahler and Webb,
2007). A single CIR as imaged by HI results in a family of time—elongation profiles, each
corresponding to (it is surmised) an individual blob entrained at the stream interface. Due
to the geometry of the situation, these tracks will converge at higher elongation values as
seen by STEREO-A/HI and diverge at higher elongation values as seen by STEREO-B/HI
(Rouillard et al., 2009). There are various techniques for fitting time—elongation profiles;
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Table 1 Trajectories of -
transients determined from HI-A ~ 1rack Date Time ¢ Ve : New Vrl

observations. The events are (UT] [°] [kms™"] [kms™"]
taken from 2007 and the time is
that at which the transient passed ~ CIR-D

the € =5° Poi}?t- The estimated 09Sep 0107  84+04  268+14 268

propagation characteristics

obtained by Rouillard ef al. b 09 Sep 1945 82+09 288 +£24 288

(2010) are shows in columns C 10 Sep 0657 78 £ 10 285+ 16 285

labelled ¢ and V;. The final d 10Sep 2139 63411 299 + 11 298

column, labelled New Vy e 11Sep 0752 61411  311+£18 309

provides an estimate of the radial

propagation speed assuming the f 11 Sep 2019 37+£07 335407 324

spacecraft motion is corrected

for, arrived at by assuming the CIR-E

findings of Conlon, Milan, and g 17 Sep 0531 80 £ 08 307 +£21 307

Davies (2014). h 17Sep 1412 80+£11  306+34 306
i 18 Sep 0138 59+10 321+£07 319
j 18 Sep 0720 52+09 319+07 316
k 18 Sep 1719 55+12 340 £ 09 337
1 19 Sep 0612 40406 324407 314

however, the fixed-¢ approximation outlined here is more appropriate to solar-wind tran-
sients that are point-like in cross section as opposed to spatially extended. As the individual
transients that make up a CIR are assumed to be relatively small in size, the fixed-¢ geome-
try should accurately describe their geometry. Analysis conducted by Rouillard et al. (2008)
on transients associated with the CIRs (for which in-situ data can be seen in Figure 1) as-
certained propagation speeds of around 270 kms™!, lower than the in-situ speed that had
been measured. This leads to some ambiguity surrounding the propagation characteristics
ascertained from HI J-maps.

As discussed by Conlon, Milan, and Davies (2014), ¢ will not actually be constant even
if the transient propagates out radially, as spacecraft motion during the propagation of the
transient will cause ¢ to vary, changing by about 1° per day. This effect will increase ¢ rel-
ative to STEREO-A and decrease ¢ for STEREO-B. The authors suggest that Equation (1)
could be modified into

Vit sin(g + 32231)
) @

'y
€(t)= arctan(rsc(t) T Vioosnt 3@0:;2.5 5
to account for this, where ¢ is in seconds and then ny is the number of seconds in a year.
It is important to note that Equation (2) only applies to STEREO observations made in the
Ecliptic plane.

Rouillard et al. (2010) used Equation (1) to fit individual time—elongation profiles as-
sociated with features within CIRs. They noticed that their estimated radial propagation
speed appeared to change as a function of propagation direction [¢] the two appearing to be
anti-correlated when using fixed-¢ fitting. They observed this primarily with STEREO-A,
for which they had more data. The effects of spacecraft motion on fixed-¢ fitting of sin-
gle time—elongation profiles noted by Conlon, Milan, and Davies (2014) change the fitted
propagation speed and ¢ so we first consider whether it can explain the trend observed by
Rouillard ef al. (2010).

Table 1 (excluding the final column) reproduces Table 1 from Rouillard ef al. (2010)
(slightly restructured for ease of reading), showing speed and propagation direction from in-
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Figure 4 (a) Two CIRs from 2007, with the individual time-elongation profiles shown and labelled in
panel b. CIR-D is on the left (associated with tracks a—f) and CIR-E is on the right (associated with tracks
g—1). This figure is reproduced with permission from Rouillard ez al. (2010).

dividual features associated with each of two STEREO-A CIRs, labelled CIR-D and CIR-E.
Figure 4 (reproduced from Rouillard ez al., 2010) shows (a) a time—elongation map covering
the two CIRs in question and (b) the individual best-fit time—elongation profiles. The final
column of Table 1 gives an estimate for the radial propagation speed assuming that space-
craft motion is corrected for. Although the variation in ¢ has not been included here, this was
a systematic variation of no more than 2° in each case, consistent with the results presented
by Conlon, Milan, and Davies (2014). Correcting for spacecraft motion makes little differ-
ence to the estimated speed. However, for small ¢-values, there is a noticeable difference,
in each case acting such that the relationship between ¢ and V; previously noted is reduced,
although not completely removed; i.e. for lower ¢-values the revised speed was lower than
that presented by Rouillard ez al. (2010). This is consistent with the findings of Conlon, Mi-
lan, and Davies (2014). As mentioned previously, Rouillard et al. (2010) also performed this
analysis on STEREO-B/HI observations; however, they only have a few tracks from each
CIR as seen from STEREO-B and so we have only included the STEREO-A results here.

Most previous studies (such as Rouillard et al., 2008, 2010) have performed fitting on
single time—elongation profiles, each corresponding to a single blob entrained at the stream
interface; however, Sheeley and Rouillard (2010) fitted the entire family of CIR tracks and
we follow their example. By varying V; and the location of the source, a best fit to an entire
family of traces can be achieved by eye. In this way, the fitting is conducted on a family
of traces at once, as opposed to individual traces. The lower panel of Figure 2 shows an
example of this, with traces fitted to three different families of tracks.

The K-coronal component of the light detected by HI is sunlight that has been Thomson
scattered by electrons in the inner heliosphere. Along any particular line of sight, the HI in-
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strument is most sensitive to light scattered from the intersection of the line of sight with the
“Thomson surface”, the sphere with a diameter extending from the observer to the Sun. This
results in an intensity varying as sin® y, where y is the scattering angle (Howard and Tappin,
2009), i.e. ZSPO. This is counterbalanced to some extent by the “Thomson Plateau”, the
overall result of which is that the scattering brightness is actually approximately constant
over a broad range of solar exit angles for a given position in the image plane, i.e. features
can still be seen away from the Thomson sphere. We have colour-coded the traces in Fig-
ure 2 according to the scattering angle [y ]. The traces themselves are plotted at 5° intervals
of ¢, 90° to 0° for 400 hourly time steps. The single best-fit speeds for the three CIRs seen in
Figure 2 are 280 km s, 280 kms™!, and 450 kms~!. The two events labelled by Rouillard
et al. (2010) as CIR-D and CIR-E have speeds of 280 kms~! derived by this method. These
propagation speeds, derived by fitting to the whole family of tracks, mainly fall below the
range of fitted speeds for the individual blobs presented by Rouillard et al. (2010) for CIR-D
and CIR-E.

3. CIR Propagation Speed

40 clear CIRs (i.e. 40 families of converging tracks) were identified in Ecliptic STEREO-
A/HI J-maps from January 2007 to June 2010. Fits, by eye, were performed to the whole
family of traces in each instance to estimate radial propagation speeds, as outlined in Sec-
tion 1. The fitting was performed to equations that incorporate the correction for spacecraft
motion outlined by Conlon, Milan, and Davies (2014). For each CIR identified this way, we
thus have a single estimated radial propagation speed for all of the features associated with
the CIR (as opposed to a single speed per time—elongation profile). The details of the CIRs
can be seen in Table 2, with the first column giving the start time of the elongation profiles
that start at ¢ = 180° to the nearest hour, and the second column showing the propagation
speed. Profiles of different speeds were tested to see how far from the values presented in
Table 2 one could go before the fit was clearly wrong, i.e. before the fitted family of traces
was clearly very different from the traces in the underlying J-map. In this manner, it was
possible to arrive at an estimate for the uncertainty in the speeds of about 30 kms™".

Figures 1 and 5 show the in-situ and imaging signatures, respectively, of one of the CIRs
considered in this study, being the third event in Figure 2 and second event in Figure 4. The
top panel of Figure 5 reproduces a limited part of the J-map over an 11-day period: extending
from 16 to 27 September 2007. The bottom panel shows the same J-map, but this time with
the traces associated with the current fitting procedure. The curves start at ¢ of 180° and
decrease to 0° in 5° steps. In this example, the overplotted family of tracks convincingly
fits the underlying CIR structure (with the proviso that the fit is poorer at lower elongation
values, as noted by Williams et al. (2009)) and yields a radial of speed 450 kms~'. The
in-situ measured speed of the transient is around 400 kms~.

Figure 6 considers each of the 40 events identified in STEREO-A/HI J-maps and com-
pares the average CIR radial propagation speeds, as determined by fitting to entire families
of tracks in the HI J-maps, to the speed of the associated density enhancement as measured
in-situ at ACE. These we selected on the basis of them having clear signatures in HI and
accompanying solar-wind data at ACE. We predicted the arrival time of features observed
in STEREO/HI at the ACE spacecraft to identify in situ signatures. The points in blue dis-
regard spacecraft motion and those in black incorporate it. It can be seen that while there
is a large amount of scatter, the HI-derived radial speeds that do not incorporate spacecraft
motion are consistently lower than the speeds of the associated density enhancements as
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Table 2 Timing and propagation speed of the 40 events used in this study. The start time is the start time of
the time—elongation profile that starts at ¢ = 180° to the nearest hour in the format dd mmm yyyy hh.

Start time V; +30 [kms~!] Start time Vp 30 [kms™!]
04 May 2007 09:00 290 06 Nov 2008 22:00 270
04 June 2007 12:00 400 25 Nov 2008 16:00 360
10 June 2007 18:00 390 14 Dec 2008 14:00 350
11 July 2007 02:00 360 25 Dec 2008 04:00 250
18 July 2007 00:00 320 10 Jan 2009 07:00 330
28 July 2007 06:00 350 18 Jan 2009 19:00 310
08 Aug 2007 16:00 440 29 Jan 2009 00:00 340
25 Aug 2007 00:00 280 05 Feb 2009 18:00 350
01 Aug 2007 00:00 280 15 Feb 2009 15:00 300
10 Aug 2007 18:00 450 28 Feb 2009 15:00 330
28 Sep 2007 10:00 280 04 Mar 2009 00:00 330
04 Nov 2007 00:00 360 31 Mar 2009 00:00 310
13 Jan 2008 00:00 300 24 May 2009 12:00 370
24 Jan 2008 18:00 400 27 Sep 2009 00:00 240
10 Feb 2008 06:00 350 22 Oct 2009 08:00 260
18 Feb 2008 06:00 320 14 Deb 2010 02:00 280
09 Mar 2008 12:00 380 20 Feb 2010 18:00 390
11 May 2008 08:00 390 06 May 2010 02:00 400
04 July 2008 04:00 320 11 May 2010 12:00 330
10 July 2008 06:00 340 01 June 2010 20:00 380

measured in situ at the ACE spacecraft, a trend that is no longer seen once spacecraft mo-
tion is incorporated into the analysis. It might be expected that the stream blobs would travel
at some intermediate speed between the preceding slow and following fast solar-wind speed,
but this does not agree, however, with the findings of Sheeley et al. (1997), who use obser-
vations from the Large Angle and Spectroscopic Coronagraph (LASCO) on board the Solar
and Heliospheric Observatory (SOHO) to track stream blobs close to the Sun. They noted
that the blobs appeared to passively trace the outflow of the slow solar wind, although their
observations were not restricted to entrained blobs.

3.1. CIR Periodicity and Predicted Arrival Times

If the same long-lived source region on the Sun is causing a repeating sequence of events
from the vantage of a single, fixed observer, then it should have a constant Carrington longi-
tude, just separated by one solar-rotation period (assuming the source region remains fixed
on the solar surface). Calculating the Carrington longitude should also give an indication of
the longevity of a given source region. Knowing the rotation rate of the Sun and the approx-
imate radial propagation speed and direction of a feature associated with the CIR allows
one to predict its arrival at any point in the heliosphere, including tracing it back to a source
at the Sun. Typical analysis of CIRs makes assumptions which would be invalid if there
were significant temporal variability over a few days to a week. Thus, it is of interest to
this study.

The top panels of Figures 7 and 8 show year-long time-series of the Carrington longitude
for 2008. Each point on the plot corresponds to the location of a particular CIR source region
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Figure 5 J-map for an 11-day period in September 2007 in which can be seen a CIR (top panel). The bottom
panel shows the fitted profiles, overplotted but no longer with constant ¢-values. The coloured traces start at
180° and decrease to 5° in 5° increments. These ¢-values are the starting values of each trace, but ¢ is now
allowed to change with time (i.e. each trace does not now have a constant ¢-value). Once again, the colour
coding is done according to the scattering angle [y ] such that one would expect the red areas to be brighter
than the blue.

on the Sun as it crosses the sub-solar point as estimated from the J-maps and the vertical-
purple-dashed lines show Carrington rotations. The bottom three panels of Figures 7 and 8
show the in-situ solar-wind speed and proton-number density, respectively, as measured at
each of STEREO-B, ACE, and STEREO-A. Figure 9 is the same as Figure 7 but for 2009.
The in-situ speed and density data are taken from the In-situ Measurement of Particles And
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Figure 6 The CIR speed as
measured by HI versus the speed
associated with the enhancement
in density as measured in-situ by
ACE. The blue points show those
speeds as estimated from HI
without incorporating spacecraft
motion and the black crosses
including spacecraft motion.

A general increase in propagation
speed estimated from HI can be
seen when incorporating
spacecraft motion.
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Figure 7 Top panel: The Carrington longitude of CIR source regions as they cross the sub-solar point.
Carrington rotations are shown by purple-solid-vertical lines. The lower three panels show the in-situ speed
data taken from the STEREO and ACE spacecraft, with predicted CIR arrival times overplotted as red-dashed
lines and the speeds estimated from STEREO-HI plotted as blue diamonds. This plot covers 2008.

CME Transients (IMPACT) suite of instruments (Acuifia et al., 2008) on the STEREO space-
craft and from NASA’s CDAWeb. The vertical-red lines in the in-situ panels correspond to
predicted arrival times of each of the CIRs considered in this study at each of these space-
craft. Plots such as this were generated for each of the years used in this study (2007, 2008,
2009, 2010). The Carrington longitude is defined to be 349.03° at 00:00 UT on 1 January
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Figure 8 Top panel: The Carrington longitude of CIR source regions as they cross the sub-solar point.
Carrington rotations are shown by purple-solid-vertical lines. The lower three panels show the in-sifu number
density data taken from the STEREO and ACE spacecraft, with predicted CIR arrival times overplotted as
red-dashed lines. This plot covers 2008.

1995. Thus, the Carrington longitude [/], as presented in the upper panels of Figures 7, 8
and 9, is given by

= (329.03 - @) mod 360, 3)

where x is the number of days that have passed since 00:00 UT 1 January 1995 and P is the
synodic rotation period [26.24 days]. In the three Carrington rotations near the start of Fig-
ures 7 and 8, which both cover 2008, is a feature, at a Carrington longitude close to 0°, that
appears consistently every solar rotation. Another source region appears near a longitude of
130° for two consecutive solar rotations. The clearest example of a recurring feature can be
seen in Figure 9. Here, a series of points labelled “C” can be seen to reoccur at approxi-
mately the same Carrington longitude with a periodicity of about one Carrington rotation
(other source regions coexist with this). However, the longitude of the source region appears
to slowly drift. This would suggest either a source region that does not perfectly corotate
with the Sun, or else that the rotation rate that we use for the Sun is not exactly appropriate
for the Ecliptic plane. It is also possible that uncertainties with the derived longitudes cause
this. Nevertheless, this seems to show that a given source region on the Sun can persist for
multiple solar rotations, and considering the associated in-situ speed and density plots it
can be seen that, as would be expected, there is considerable variation on these time scales
(months). There are also more than one observed feature per solar rotation, so there are
multiple source regions on the Sun.

As mentioned previously, knowing the radial propagation speed of features associated
with the CIRs observed and the rotation rate of the Sun, it is possible to calculate pre-

@ Springer



CIR Survey 2007 -2010 2303

o]

-100

-200

| (degrees)

&
o
o
HHH\HHHH‘HH HH\‘HHUI'U\‘HHHH\‘\HHHH
+

600

500

400

300

STEREO-B V (km/s)

600

500 &

400 Ey

W\ l
\

300

600

500

400

300

03,2009 06,/2009 09,/2009
Date (mm/yy)

ACE V (km/s)

TTTTTTITITIT
X
=
‘é
<
o)
&
<
il %\WMWHM 1l

STEREO-A V (km/s)

Figure 9 Top panel: The Carrington longitude of CIR source regions as they cross the sub-solar point.
Carrington rotations are shown by purple solid vertical lines. The lower three panels show the in-situ speed
data taken from the STEREO and ACE spacecraft, with predicted CIR arrival times overplotted as red-dashed
lines and the speeds estimated from STEREO/HI plotted as blue diamonds. This plot covers 2009. In the top
panel are a series of features labelled as “C” These features appear at a very similar longitude, separated by
a single solar rotation, indicating that the stream interface causing them is tied to the same feature at the Sun
which is then causing a feature that is seen every solar rotation.

dicted arrival times at various places in the heliosphere. The bottom three panels of Fig-
ures 7 and 9 show the in-situ bulk solar-wind speed as measured at STEREO-B, ACE,
and STEREO-A for 2007 and 2009, respectively. The vertical-red lines correspond to pre-
dicted arrival times of each of the CIRs considered in this study at each of these spacecraft.
The bottom three panels of Figure 8 show the corresponding in-situ proton-number den-
sity data for 2008. Comparing Figures 7 and 8, we see multiple increases and decreases
in solar-wind speed with corresponding density spikes at the leading edge of many of the
Viw increases. Many of these are CIR signatures, as shown in Figure 1. The same CIRs
will, in general, be seen at each spacecraft, although staggered in time due to the ob-
servers’ different heliospheric longitudes. Near the start of 2008, the spacecraft are close
in longitude and the offset in arrival time of solar-wind features at the different space-
craft is small, but this increases as the STEREO spacecraft drift away from the Sun—Earth
line.

In general there is good correspondence between the predicted arrival of a CIR derived
from the STEREO-A/HI data at an observing spacecraft and the arrival time of a density
enhancement in-situ at that spacecraft, as also observed by Williams et al., 2011. The prop-
agation speed of each event, estimated from HI, is shown by the blue diamonds in Figures 7
and 9 and shows the consistency with the slow solar-wind speed as described in Section 3.
It can be seen, by looking at Figures 7 and 9, that the arrival times match well with the slow
solar-wind speed.
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Figure 10 This figure highlights an event observed in-situ by each of the spacecraft, showing the speed
(black) and density (red-dashed) data. The gradual development of the material to look increasingly shocked
(i.e. the density enhancement sharpening) can be seen in a couple of the events shown here, for example
that event labelled A. It can be seen that as the feature develops over time (i.e. from STEREO-B to ACE to
STEREO-A) the velocity enhancement becomes sharper and the density enhancement much narrower.

The analysis that we conducted in order to estimate the propagation speed of the tran-
sients in this study assumed that the material had constant properties while it was being
observed, for each blob over its lifetime of observation and for every blob associated with
the same CIR, i.e. it assumed that as the Sun rotated, the material that it ejected would be at
a constant speed. Figures 10 and 11 highlight particular features of the previous plots. Look-
ing at these reveal that there is actually a great deal of variability in both speed and density
data from one spacecraft to the next and one Carrington rotation to the next. The speed mea-
sured by STEREO-B, for example, in the second half of 2008, shows a pair of peaks that
recur with a period of a Carrington rotation; however, the solar-wind streams can be seen
to merge/diverge on time scales shorter than a Carrington period. Thus, there is variability
on the time scale of a Carrington rotation, i.e. approximately 27 days. During this period,
a pair of features of note have been labelled as BO and B1. As seen by STEREO-B, BO is
a speed enhancement with a smaller shoulder-like structure at a lower speed labelled B1.
If STEREO-B in-situ data alone were being considered, the two would likely not be inter-
preted as different features, but having data from multiple spacecraft indicates otherwise.
Considering now the same features as observed at ACE, the “shoulder” on BO has become
less pronounced, and instead the speed of the fast solar-wind stream that arrived behind it
appears with an enhanced speed, being now equal to the speed of the feature previously la-
belled B1. Thus, it appears that there are two streams moving at differing speeds, and they
are separating out as time progresses. Looking now at the feature seen by STEREO-A, we
appear to be observing B1 merging with another fast solar-wind stream. It can be seen that
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Figure 11 Another in-situ feature seen by each of the STEREO and ACE spacecraft, showing a pair of
solar-wind streams moving at different speeds, indicated by BO and B1. These two streams can be seen to
separate with time (going from STEREO-B to ACE and then to STEREO-A) and so display variability that
calls into question the validity of some of the assumptions often made when analysing solar-wind transients
observed by STEREO/HI.

there is therefore significant variability between observations from each of the spacecraft.
Looking now at another feature, labelled “A” in each of the plots, we can see that the speed
profile indicates a fast solar-wind stream, the leading edge of which over time (looking from
STEREO-B to ACE to STEREO-A) appears to sharpen dramatically, looking increasingly
like shocked solar wind. Comparing this with the density data, we see a density enhancement
narrow with time, slowly increasing in maximum density, and then dramatically sharpening
and increasing in density when seen at STEREO-A, once again looking more like a shocked
structure. Both of these examples serve to illustrate that there is significant variability com-
paring data from one spacecraft to the next. Considering the rotation rate of the Sun, and
the longitudinal separation between the spacecraft, this means that there is variability on
the time scale of 1.5 -2 days. CIR observations at different spacecraft have been compared
by Mason et al. (2009) and more specifically in reference to STEREO observations (Leske
et al., 2008) and Wind observations (Sanderson et al., 1998). These authors also noted that
features present in in-situ data from one spacecraft are not always observed when one would
expect at another spacecraft with an angular separation, as noticed here. They point out that
one major factor that causes this is that the Ecliptic plane, in which these observations are
made, does not lie along the plane containing the solar Equator. All of this indicates that one
should be quite careful when making approximations about constant solar-wind conditions,
although, as already mentioned, despite this the predicted arrival times established from HI
observations make such approximations appear to form a good match to the in-situ data on
the time scales presented here.
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4. Superposed-Epoch Analysis

A superposed-epoch study of the 40 CIR events characterised in the STEREO-A/HI data
was conducted using the HI-predicted arrival times as the zero time, using hourly ACE and
STEREO data. The top panel of Figure 12 presents the results of the superposed-epoch
analysis, showing the average values of bulk proton speed (black) and proton density (blue)
from ACE, and the middle and bottom panels show the same but using in-situ data from
the STEREO-A (middle) and -B (bottom) spacecraft. In each case, the epoch zero time is
shown by a red-vertical line. Each plot illustrates the speed and density signatures typi-
cal of a CIR, with the denser material also being some of the slower material. In a similar
superposed-epoch analysis conducted by Davis et al. (2012) it appears that the denser ma-
terial that should correspond to that observed by STEREO/HI is not quite associated with
the slow solar wind, but rather with material travelling at a speed slightly higher than that.
In the plots presented here, there is perhaps the indication that the denser material might
correspond to an intermediate speed in the STEREO-B plot, but this is not at all clear in
the STEREO-A and ACE plots (Figure 12). As the plots that Davis et al. (2012) present are
created from OMNI data, it is this last instance that we would expect to agree most closely.
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On balance from this article, it appears that these CIR-associated transients appear to be
travelling at, or perhaps very close to, the slow solar-wind speed, in agreement with Sheeley
et al. (1997), although the latter were not specifically looking at CIR entrained blobs. The
standard deviations associated with the data presented in Figure 12 are oy ~ 150 kms™',

0, ~6 cm™3.

5. Discussion

In this article, we have identified solar-wind transient features associated with CIRs in
STEREO/HI during a period of low solar activity, when such features should be more dis-
tinct, confirming the signatures of CIRs seen in STEREO/HI in the process. We have anal-
ysed the propagation characteristics of a significant number of these features and been able
to improve the estimates or propagation speed over some previous studies. We have been
able to confirm that the CIR-related transients travel at, or close to, the slow solar-wind
speed. There are, of course, some factors to keep in mind when considering these results.

From the observations presented in the previous sections, it is apparent that during the
period under study, solar-wind source regions on the solar surface can last for multiple solar-
rotation periods; however, a given source does not eject material with constant properties on
time scales of even a few days, in agreement with Mason et al. (2009). This suggests possible
sources of error in solar-wind analysis techniques that assume a constant propagation speed
over the entire CIR. The fitting technique that we have used in this study will be particularly
susceptible to this, as we are attempting to simultaneously fit multiple time—elongation pro-
files that will in reality (with previously mentioned speed variations on time scales of one or
two days) actually be travelling at different speeds. Perhaps by relaxing some of these as-
sumptions, it might be possible to improve the reliability with which transient arrival times at
1 AU can be ascertained, thereby improving space-weather predictive capabilities. Work has
been conducted by Lugaz and Kintner (2013) investigating the effects of drag on solar-wind
transients, and Sheeley et al. (1997) have considered acceleration through a coronagraph
field of view, and if this effect could be folded into estimates of solar-wind transients seen
in STEREO/HI results, this might be further improved.

It has been seen that rotation after rotation, a given source region appears to drift across
the surface of the Sun. This could be a real effect; however, it is more likely that the rotation
rate being used to represent these source regions is incorrect. Assuming that the only factor
affecting this rotation rate is the latitude of the source region, then it should be possible to
ascribe each source region its own individual rotation rate. However, it does not appear that
ascribing an average solar-rotation period (as we have done) is reliable when considering
time scales of a solar-rotation period. To establish a more exact rotation rate, images of
the solar disc taken from, e.g. STEREO, the Solar and Heliospheric Observatory (SOHO),
and the Solar Dynamics Observatory (SDO) could be used to find the position (and hence
latitude) of the source region.

6. Conclusion

Having established evidence for CIR-related solar-wind transients in STEREO/HI-A J-maps
and identified and analysed such features from 2007 —mid-2010, we found that it was possi-
ble to improve the estimates of their kinematic properties. It was found that fast solar-wind
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source regions can persist for multiple solar rotations; however, the properties of the mate-
rial ejected from them are not a constant over these time scales and can vary noticeably over
a matter of days. It was thus suggested that a more thorough examination of the transient
acceleration profiles might allow for better fitting. It was noted that it is difficult to find a
characteristic solar-rotation rate for these source regions and the assumption that some stan-
dard rotation rate can be used for multiple source regions is not necessarily valid, but this
could be improved by using images of the solar disc to find a location of a source region on
the Sun and use this to estimate its location and thus its particular rotation rate. By consider-
ing a significant number of CIR-related features, it was confirmed that solar-wind transients
associated with CIRs seem to travel at or very close to the slow solar-wind speed.
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