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Abstract We introduce MEF-R, a generalization of the minimum energy fit (MEF; Long-
cope, Astrophys. J. 612, 1181, 2004) to a non-ideal (resistive) gas. The new technique re-
quires both vector magnetograms and Doppler velocities as input fields. However, in the
case of active regions observed only with the Michelson–Doppler Imager (MDI) onboard
the Solar and Heliospheric Observatory (SOHO) such as AR 9077, we have only access
to line-of-sight magnetograms. We reconstruct two-dimensional maps of the magnetic dif-
fusivity η(x, y) together with velocity components vx(x, y), vy(x, y), and vz(x, y) under
the linear force-free magnetic field approximation. Computed maps for vz(x, y) very well
match the Doppler velocities vr(x, y). We find the average value 〈η〉 ≈ 108 m2 s−1 with a
standard deviation of ≈1010 m2 s−1. Such high values of η(x, y) are to be expected at some
places since our magnetic diffusivity is actually eddy-diffusivity. Inside AR 9077, the maps
of η(x, y) do not resemble closely the maps from classical models of the magnetic diffusiv-
ity, but they are closer to η as a function of temperature than to η as a function of electric
current density.

Keywords Eddy-diffusivity · Magnetograms · Minimum energy fit · Photosphere ·
Velocity fields

1. Introduction

Observations and numerical simulations show that in solar active regions, flares are often
preceded by emerging sunspots (Ilonidis, Zhao, and Kosovichev, 2011) under the form of
vertical plasma motions (Bellot Rubio et al., 2001; Harra et al., 2012).

Various techniques have been proposed to reconstruct velocity vectors from any con-
secutive set of line-of-sight or vector magnetograms. The frozen-in-flux theorem (Alfvén,
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1942) is valid for a perfectly conducting fluid with no magnetic resistivity. Magnetic in-
duction B is frozen-in to the plasma and passively follows plasma motions v. To this date
and although it could have been theoretically possible, none of these techniques have been
used for resistive plasmas. Local correlation tracking (LCT) would work best if the line-
of-sight magnetic field B� is advected in a velocity field with a constant profile. How-
ever, such a field being not necessarily a solution of the magnetic induction equation, LCT
alone has been shown to be inconsistent with the equation of magnetic induction (Schuck,
2005). The method of inductive local correlation tracking (ILCT; Welsch et al., 2004;
Schuck, 2005) combines both. If vector magnetograms computed from the Stokes polarime-
try are used, the minimum structure reconstruction (MSR; Georgoulis and LaBonte, 2005)
addresses the 180◦ azimuth ambiguity (e.g. Metcalf et al., 2006) but does not work in the
case of rapidly varying local magnetic fluxes such as an emergence or submergence. As far
as the motions are restricted to horizontal directions, techniques using line-of-sight mag-
netograms are known to work, but to reconstruct vertical velocities vector magnetograms
should be used (Schuck, 2008). The differential affine velocity estimator (DAVE) for vec-
tor magnetograms (Schuck, 2008) finds a two-dimensional affine profile for all three com-
ponents of the photospheric velocity but does not need Doppler velocities. The minimum
energy fit (MEF; Longcope, 2004) with a reference background velocity vr (which could
possibly be taken from the Doppler velocity) is a self-consistent method that gives a unique
vector velocity field solution to the ideal magnetic induction equation. Due to the stabilizing
effect of strong magnetic fields, it is reasonable to have the total kinetic energy minimal in
active regions except during flares or during the emergence of an active region. A poloidal–
toroidal decomposition (PTD) of the magnetic field (Fisher et al., 2010) includes Doppler
velocity observations. Doppler velocities have to be taken into account as a constraint to
compute accurate electric fields and Poynting fluxes (Fisher, Welsch, and Abbet, 2012b).
Hybrid techniques are also proposed. A combination of MEF, LCT, and Doppler velocity
is best to reconstruct v and this is shown by using anelastic MHD (ANMHD; Fan et al.,
1999) test flows (Ravindra, Longcope, and Abbett, 2008). FLCT and DAVE (Welsch et al.,
2009) can be used to study photospheric flows and deduce energy fluxes to be compared
with soft X-ray flux data. ILCT and MEF (Santos, Büchner, and Zhang, 2008) have been
used to compute emerging/submerging flow as well as horizontal motions.

To test any algorithm, analytical solutions are useful but are very difficult to find. There-
fore, specific output data from numerical simulations of convection have been used instead.
For instance ANMHD (Fan et al., 1999) was used to compute solar-like anelastic convec-
tion (Lantz and Fan, 1999) but without the complexity of the photosphere. Most of the above
techniques were compared (Welsch et al., 2007) and have shown a performance comparable
to (but slightly lower overall than) MEF. It was found generally difficult to reconstruct vz

from vr (Georgoulis and LaBonte, 2005). A method like MEF (Longcope, 2004) may com-
pute vz, if it has some similarities with vr , starting from Bx,y,z(t) and Bx,y,z(t + dt) only if
vr is taken as a background vertical reference velocity.

To reconstruct a velocity field, MEF needs sequences of vector magnetograms. Such
measurements are now made at regular time intervals and high resolution by ground-based
observatories (e.g. the Vector Spectromagnetograph (VSM) from the Synoptic Optical Long-
term Investigations of the Sun (SOLIS; Keller et al., 2001) or the Near InfraRed Imaging
Spectropolarimeter (NIRIS; Cao et al., 2012) of the New Solar Telescope (NST) of the
Big Bear Solar Observatory (BBSO) and by instruments like the Spectro-Polarimeter of the
Solar Optical Telescope onboard Hinode (Kosugi et al., 2007) or the Helioseismic and Mag-
netic Imager (HMI; Schou et al., 2012) onboard the Solar Dynamics Observatory (SDO).

However, in this study of AR 9077, we used the line-of-sight magnetograms B� from the
Michelson–Doppler Imager (MDI; Scherrer et al., 1995) onboard Solar and Heliospheric
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Observatory (SOHO). In this case, the only way Bx , By , and Bz can be reconstructed from
B� alone is to use the force-free (FF) assumption.

The photosphere is a dynamic medium (DeRosa et al., 2009) and there is an interaction
between the Lorentz force in the lower corona and the magnetic field in the photosphere and
especially during flares (Fisher et al., 2012a). Nevertheless, except during the emergence of
an active region or during a flare, the magnetic field of the photosphere has been approxi-
mated as force-free (Moon et al., 2002; Tiwari, 2011) but this may be only true at 400 km
above the photosphere (Metcalf et al., 1995) or inside sunspots where the magnetic field is
the strongest (Tiwari, 2011). In this study, we have used the linear force-free approximation
(LFF; Nakagawa and Raadu, 1972), with the twist α as a free parameter taken from the lit-
erature (e.g. Régnier and Priest, 2007). Geometrical distortion due to sphericity of the solar
surface is a problem if the active region under study is located too far from the center of the
solar disk. But even if corrected (e.g. Welsch et al., 2009), part of the real value of Bz has
been lost in the projection.

There are several mechanisms to explain why the reconstructed vz is not vr . Here we
suppose that the magnetic field is not completely frozen-in to the plasma and that there
must exist an eddy magnetic diffusivity inside the photosphere and the chromosphere that
would be due to small scale fluctuations of unresolved current, temperature, or velocity.
Indeed, theoretical magnetic diffusivities (Ohmic, Hall, and ambipolar) in the photosphere
and chromosphere are in the range of η ≈ [103,106] m2 s−1 (e.g. Singh et al., 2011; Pandey
and Wardle, 2012, 2013) or even higher ηO ≈ 108 m2 s−1 (Abramenko et al., 2011; Cameron,
Vögler, and Schüssler, 2011) but are pixel-size dependent (Chae, Litvinenko, and Sakurai,
2008). Such high values are explained as turbulent or eddy magnetic diffusivity (e.g. Chae,
Litvinenko, and Sakurai, 2008) with a smallest resolved scale (the subgrid) as large as a solar
granule (Simon and Weiss, 1997). Higher values of the magnetic diffusivity would locally
produce stronger Joule heating (Spangler, 2009). Reconnection of the magnetic field lines
may occur not only in the corona but also in the chromosphere (Heggland, De Pontieu, and
Hansteen, 2009). This can be modeled by a critical value of the electric current of Jc ≈ 1.4×
10−3 A m−2 (Büchner, Nikutowski, and Otto, 2004), above which the magnetic resistivity
would sharply increase. In this case, ηeddy is due to small scale current instabilities (Lu, 1995;
Klimas et al., 2004; Uritsky and Klimas, 2005).

The purpose of this study is to reconstruct (vx , vy , vz) from (Bx , By , Bz) computed from
B� observed with SOHO/MDI under the assumption of the force-free condition and using
the resistive magnetic induction equation. Anomalous diffusivity ηeddy would be adjusted
locally so that vz be as close as possible to the observed Doppler velocity vr while vx and vy

be such that the total kinetic energy is minimal. In this sense, our method could be labeled
as a “Doppler-diffusivity matching” (DDM) technique. We have applied the new MEF with
resistivity (MEF-R method) to SOHO/MDI observations of AR 9077 on 14 July 2000 having
produced the X5.7 GOES X-ray class “Bastille” Day flare. It has been extensively studied in
the literature (see the Topical Issue, Solar Physics 204, 2001). A detailed study of horizontal
motions has shown that AR 9077 was in a highly sheared state and that the initiation of
the two-ribbon flare followed an episode of flux emergence (Liu and Zhang, 2001; Somov,
2007). The motion of the flare propagation together with the dynamics of this two-ribbon
system is best seen at 171 Å from TRACE (Transition Region and Coronal Explorer) data
(Aschwanden, 2008).

The manuscript is organized as follows. In Section 2 we explain in detail the processing of
the data. In Section 3, we show that MEF alone does not produce vertical velocities matching
the observed Doppler velocities. In Section 4, we derive MEF-R, a generalization of MEF
to resistive plasmas. We start from the resistive induction equation and use the force-free
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Table 1 AR 9077 on 14 July
2000. Times (UT) are given at
which we computed v from B�

magnetograms recorded by
SOHO/MDI and Imaging Vector
Magnetograph at Mees
Observatory at Haleakala
(16:33 UT).

Time (UT) Time interval dt (s) Comment

00:00 – 01:39 5940 Start simulation

01:39 – 03:15 5760

03:15 – 04:51 5760

04:51 – 06:24 5580

06:24 – 08:00 5760

08:00 – 09:36 5760

09:36 – 10:30 3240

10:30 – 11:12 2520 Flare from 10:30 to 10:50 UT

11:12 – 12:48 5760 Thermalization phase

12:48 – 16:33 13500

16:33 – 20:48 15300

20:48 – 01:36 17280 End simulation

condition. In Section 5, we use MEF-R to study AR 9077 using SOHO/MDI magnetograms
and Dopplergrams. We discuss vertical velocity versus Doppler velocity, horizontal velocity
vector maps, and the meaning of the magnetic eddy diffusivity. In Section 6, we show that
the time evolution of Doppler velocity, magnetic diffusivity, and Poynting energy flux can
predict the flare. Finally, in the conclusion (Section 7), we discuss open questions and work
under way.

2. Data Preprocessing: AR 9077

To test MEF-R, we processed active region AR 9077. It has produced the “Bastille Day”
flare on 14 July 2000, an X5.7 GOES X-ray class flare that has been studied by several
authors (e.g. Chertok and Grechnev, 2005; Aschwanden, 2008).

We used moderate resolution (≈1.98 arcsec per pixel) line-of-sight full-disk magne-
tograms B�(t; t + dt) and Dopplergrams vr(t; t + dt) recorded with SOHO/MDI (Table 1).
The difficulty and the need of a complex processing have been emphasized by numerous
authors in the past. There are several processing steps to do. First, we extracted a square do-
main of area (386×386 Mm2) around the sunspot of maximal lifespan. Second, we removed
the bad pixels (e.g. X-ray or proton hits on the CCD). Third, we applied a local smoothing
over 3 × 3 points whenever necessary (bad pixels or missing data) (e.g. Fuhrmann et al.,
2011). Spherical distortion and projection effects have not been considered because AR
9077 was at latitude 17◦N and close enough to disk center at the times we consider. We
choose to crudely approximate photospheric fields as force-free (e.g. Moon et al., 2002;
Seehafer et al., 2007; Tiwari, 2011). Thus, vector magnetograms can be reconstructed
from the line-of-sight SOHO/MDI magnetograms B�, which we assumed to be equal
to Bz. We computed vector magnetograms (Bx,By,Bz) from Bz ≈ B� using a spec-
tral Fourier–Laguerre technique based on the linear force-free assumption (Nakagawa
and Raadu, 1972) in which α2 = (k2

x + k2
y − k2

z ) with kx = 2π/Lx , ky = 2π/Ly , and
kz = π/Lz. The value of α was chosen such that α = 〈B · ∇ × B〉/〈B · B〉 (〈 〉 rep-
resents the spatial average). The required mean value of the local twist (e.g. Hao and
Zhang, 2011) is taken as constant over the entire active region. We set for the entire
time sequence α ≈ −1.5 × 10−2 Mm−1, a realistic value (e.g. Sakurai and Hagino, 2003;
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Régnier and Priest, 2007). The components Bx(x, y) and By(x, y) of the horizontal mag-
netic field Bh are shown in Figure 1. The resulting vector magnetogram (Bx,By,Bz) is a
force-free and divergence-free field with ∇ · B/〈( ∂Bx

∂x
)2 + (

∂By

∂y
)2 + (

∂Bz

∂z
)2〉1/2 � 10−7 as in

Contopoulos, Kalapotharakos, and Georgoulis (2011). For all three components, the polarity
inversion lines can be seen near the center of the map (Figure 1).

The Doppler velocities vr are also from SOHO/MDI data archives and were extracted
over the same area on the solar disk. Because MDI uses the same Ni I 6768 Å line, both
Dopplergrams and magnetograms are observed at the same optical depth, very close to the
standard 5000 Å defining the altitude of the photosphere (e.g. Steffen, 2009). The motion of
the observer, the limb shift, as well as the Sun’s rotation have been removed using ‘standard’
models (Snodgrass, 1984; Snodgrass and Ulrich, 1990). But we did not process the data
as completely as in Schuck (2010). In particular, the p-mode oscillations have not been
removed. The p-modes could produce velocities up to a few hundred meters per second
(e.g. Hathaway et al., 2000). Furthermore, Dopplergrams were only available at 12:00 and
16:54 UT on 13 July 2000, 00:16, 06:11 and 10:30 UT on 14 July 2000 and 05:05 and
11:20 UT on 15 July 2000. A second-order time interpolation has been used to produce
Dopplergrams at the same times as available magnetograms (see Table 1).

The resulting maps have a grid size of 256×256 pixels corresponding to an area of about
500 × 500 arcsec2 or 386 × 386 Mm2 on the solar disk.

3. MEF Technique for Ideal MHD Alone

To compute photospheric velocities, MEF (Longcope, 2004) needs sets of vector magne-
tograms (Bx,By,Bz) taken at two consecutive times (t; t + dt). In the case of AR 9077, we
had no access to time sequences of vector magnetograms. Also, as explained below (Sec-
tion 4.1), we did not have enough information to compute the vertical derivatives of B .
Thus, although MEF would be valid for any magnetic field, we had to use the force-free
approximation μ0J = αB .

In this study, we have used the IDL version of MEF available at http://solar.physics.
montana.edu/dana/. To avoid divisions by zero during the computations using MEF,
|Bz| � 1 gauss (G) has been imposed locally as a minimum value except in the compu-
tations of 1/|Bz| where we impose |Bz| � 40 G. This empirical value has been set above
the noise (≈20 G) in our data. At the 11 times listed in Table 1, we computed veloci-
ties v and compared vz(t) with the Doppler velocity vr(t) observed with SOHO/MDI. We
found that without any reference velocity field u = 0, vz(t) is very different from vr(t) (not
shown). Even when using vr(t) as a background vertical velocity we find differences. As
an example, using MEF and 1000 iterations, we computed the vertical velocity vz between
08:00 and 09:36 UT, just before the flare. At this time, both Doppler and Zeeman shifts
are still reliable. The vector magnetogram (Bx,By,Bz) is shown as an average between
08:00 and 09:36 UT in Figure 1 and the corresponding Doppler velocity vr is displayed in
Figure 2(a). Although the minima are located at the right places, there are significant dif-
ferences between vr and MEF-computed vz (Figure 2(b)). The differences are quantified
by a scatter plot (Figure 2(c)). A quantitative global estimate of how close are two two-
dimensional (2D) spatial distributions A(x,y) and B(x, y) is given by their correlation coef-
ficient: C(A,B) = (�x,yA · B)/(�x,yA

2 · �x,yB
2)1/2. We found that C(vr, vz) ≈ 0.906 for

1 G � |B�| � 2500 G. If we separate a weak field contribution we obtain C(vr, vz) ≈ 0.909
for 1 G � |B�| � 200 G. Likewise if we separate a strong-field contribution we obtain
C(vr, vz) ≈ 0.805 for 500 G � |B�| � 2500 G. The high values of correlation coefficients

http://solar.physics.montana.edu/dana/
http://solar.physics.montana.edu/dana/
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Figure 1 Vector magnetograms (a) Bx(x, y), (b) By(x, y), and (c) Bz(x, y) ≡ B�(x, y) of AR 9077 on
14 July 2000. The magnetograms (a) and (b) were reconstructed from the line-of-sight magnetograms
(c) recorded by SOHO/MDI by using the linear force-free hypothesis (Nakagawa and Raadu, 1972) with
α ≈ −1.5 × 10−2 Mm−1 (Régnier and Priest, 2007). B has been averaged between 08:00 and 09:36 UT
and smoothed with a 3 × 3 pixels spatial filter. The grid size is 256 × 256 pixels. The area covered is about
500 × 500 arcsec2. The color scales range from −0.2 T to 0.2 T.

Figure 2 (a) Doppler velocity
vr (t) in AR 9077 recorded by
SOHO/MDI on 14 July 2000.
The Sun’s rotation has been
removed. (b) vz(t) as computed
using MEF with vr (t) as a
background vertical velocity. The
time interval is 08:00 – 09:36 UT
and the grid size is 256 × 256
pixels in both panels. Panel (c)
shows the scatter plot between
vz(t) and vr (t).

here are mostly due to the global minimization process of MEF and do not reflect local dif-
ferences. As noted by Ravindra, Longcope, and Abbett (2008), Doppler velocity observa-
tions alone could conflict with the conservation of magnetic flux. We have made the hypoth-
esis that these differences are due to the fact that the magnetic field is not simply frozen-in
to the plasma and have generalized MEF to include a magnetic diffusivity (MEF-R). Due to
the size of a pixel in our data (see below, 1 pixel ≈1500 km), one cannot expect η to be a
collisional diffusivity but a turbulent or eddy diffusivity.

4. MEF-R: A Generalization of the MEF Technique to Resistive Plasmas

In the following, we locate the photosphere at the origin of the vertical coordinate z = 0 in
Cartesian geometry. Each vector quantity observed or computed at the photospheric level
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has a vertical component, normal to the photospheric plane, subscripted with “z” and a
horizontal component subscripted with “h”.

4.1. Resistive Induction Equation

The non-ideal or resistive induction equation is used here to describe the behavior of the
photospheric magnetic field B and its time evolution

∂B

∂t
= ∇ × [

(v × B) − η(∇ × B)
]

= ∇ × [
(v × B) − ημ0J

]
, (1)

where η = η(x, y; t) is the magnetic diffusivity and is a function of space and time,

η(x, y) = 1

μ0σ
, (2)

σ being the conductivity. A consistent velocity flow can be derived, as in the case of non-
resistive ideal MHD, by considering the vertical component of the non-ideal equation of
magnetic induction (Equation (1))

∂Bz

∂t
= [∇ × (v × B)

]
z
− (∇ × ημ0J )z

= ∇h · [(vzBh − Bzvh) + η(ẑ × μ0J h)
]
. (3)

Here we suppose that the discrepancies between vz as computed by MEF and Doppler ve-
locity vr observed by SOHO/MDI are due to the fact that the magnetic field is not frozen-in
to the plasma flow but there is also a magnetic diffusivity η(x, y). This may be only partially
true since we did not have access to the vertical derivatives of the magnetic field outside of
the FF assumption, but η(x, y) would not be a collisional magnetic diffusivity.

As noticed by Longcope (2004), it would be impossible to solve the resistive induc-
tion equation in a single plane. Indeed, the second term on the right-hand side of Equation
(3) includes vertical spatial derivatives of first order for Bh. In order to approximate these
derivatives, one must rely on data from at least two planes at different vertical heights at and
above the photosphere, all at the same time tj . Quantities such as Jx and Jy , or simply J h,
could be computed since we suppose that the magnetic field at the photospheric level is a
force-free field.

4.2. Unknown Scalar Potentials

Helmholtz’s theorem allows for a differentiable vector function going to zero fast enough as
r goes to infinity to be expressed as the sum of the gradient of a scalar function and the curl
of a potential vector (e.g. Griffiths, 2007). This approach was used by Longcope (2004) to
rewrite Equation (3) in terms of two scalar potentials φ and ψ for an ideal MHD (η = 0).
Here we use Helmholtz’s theorem to decompose a vector function including a resistive term,

F = (vzBh − Bzvh) + η(ẑ × μ0J h). (4)

The magnetic fields considered in this study are not bounded and could not be so, even
locally, because they are force-free (Brownstein, 1994). However, as mentioned above,
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Helmholtz’s theorem does not require a bounded domain to be valid. In the general case
of α = α(x, y) = μ0Jz/Bz, the differentiability of the vector function F is not always sat-
isfied if η �= 0 as its second term in Equation (4), η(ẑ × μ0J h), cannot be differentiated
where Bz is 0. The problem arises from the force-free approximation of B as the horizontal
current density J h depends on the inverse of Bz. As in the case of MEF (Section 3), we
used a threshold so that |Bz| � 40 G everywhere on the photospheric plane. Thus, with ev-
ery condition satisfied, applying Helmholtz’s theorem to the vector function in Equation (3)
yields

F = (vzBh − Bzvh) + η(ẑ × μ0J h) = ∇hφ + ∇h × ψ ẑ = ∇hφ + ∇hψ × ẑ. (5)

The formalism introduced in Equation (5) leads to the same result for both resistive and
ideal forms of the induction equation as we rewrite Equation (3) in terms of φ and ψ , i.e. a
Poisson equation for φ,

∂Bz

∂t
= ∇h · (∇hφ + ∇hψ × ẑ)

= ∇2
hφ. (6)

Mathematically, φ has the form of the electrostatic potential arising from a charge distri-
bution given by ∂Bz

∂t
whereas ψ is a potential function generating the solenoidal part of the

electric field (Longcope, 2004). The same method can therefore be applied to the solution
of Equation (6) for φ, i.e. reversing the Laplacian operator and using φ = 0 as a boundary
condition for all points that are not in the active region interior (Longcope, 2004) or, in our
study, at the border of the computational domain.

4.3. The Minimum Energy Fit

By rearranging the terms in Equation (5), the horizontal velocity vh can be written as a
function of φ, ψ , vz, and η,

vh = [vzBh − ∇hφ − ∇hψ × ẑ + η(ẑ × μ0J h)]
Bz

. (7)

There are an infinite number of solutions for vh as the formalism introduced in Equation
(5) results in the resistive induction equation being satisfied regardless of the field ψ . As
for ideal MHD, the minimization of a penalty function guarantees a unique solution for
vh. It is expected that inside an active region where the magnetic fields are strong the total
kinetic energy would be reduced. Thus, we use the same energy-like functional W previously
introduced for the MEF, the only difference being that it is also a function of a third field,
η(x, y), as a result of Equation (7)

W ≡ W {ψ,vz, η} =
∫

M

L

{
x, y,ψ,

∂ψ

∂x
,
∂ψ

∂y
, vz,

∂vz

∂x
,
∂vz

∂y
, η,

∂η

∂x
,
∂η

∂y

}
dx dy

= 1

2

∫

M

|vh − uh|2 + |vz − uz|2 dx dy

+ λ

∫

M

∣
∣∣
∣∇h

(
η
|μ0J |

Bz

)∣
∣∣
∣

2

dx dy, (8)
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where M is a region of the photosphere and uh and uz are the components of the reference
flow u that v tries to fit. For example, Doppler velocity could be used as a reference vertical
velocity uz. This possibly ill-posed problem is treated in MEF-R with a Tikhonov regu-
larization (Tikhonov, 1963) that maximizes correlation between neighboring points (x, y).
Here λ is a Lagrange multiplier set to 0.4 px2 in the case of the Spheromak (Section 4.5).

Minimization of the functional W in terms of ψ , vz, and η is made using a set of three
Euler–Lagrange equations involving the Lagrangian L,

∂L

∂vz

−
d ∂L

∂vzx

dx
−

d ∂L
∂vzy

dy
= 0, (9)

∂L

∂ψ
− d ∂L

∂ψx

dx
−

d ∂L
∂ψy

dy
= 0, (10)

∂L

∂η
− d ∂L

∂ηx

dx
−

d ∂L
∂ηy

dy
= 0, (11)

where we set vzx ≡ ∂vz

∂x
, vzy ≡ ∂vz

∂y
, ψx ≡ ∂ψ

∂x
, ψy ≡ ∂ψ

∂y
, ηx ≡ ∂η

∂x
, ηy ≡ ∂η

∂y
. Since ∂L

∂ψ
= ∂L

∂vzx
=

∂L
∂vzy

= ∂L
∂ηx

= ∂L
∂ηy

= 0, the above equations can be reduced to

∂L

∂vz

= Bh · (vh − uh)

Bz

+ (vz − uz) = 0, (12)

−d ∂L
∂ψx

dx
−

d ∂L
∂ψy

dy
= ∇h ·

[
ẑ

Bz

× (vh − uh)

]
= 0, (13)

∂L

∂η
= (ẑ × μ0J h) · (vh − uh)

Bz

= 0. (14)

With the use of vector identities, one finds that ψ , vz, and η must satisfy the following three
coupled Euler–Lagrange equations:

vz = B2
z uz + Bh · [∇hφ + ∇hψ × ẑ + Bzuh − η(ẑ × μ0J h)]

|B|2 , (15)

∇h ·
( ∇hψ

B2
z

)
= ∇h ·

[
ẑ × (vzBh − ∇hφ − Bzuh + η(ẑ × μ0J h))

B2
z

]
, (16)

η = (ẑ × μ0J h) · (∇hφ + ∇hψ × ẑ + Bzuh − vzBh)

|μ0J h|2 . (17)

In the case of a resistive plasma, we obtain the same solutions as in the case of an ideal
plasma, with the additional term η on the right-hand side. These equations stand for any
magnetic field B; no restriction has been made on B . However, if the magnetic field B is
a force-free field, it is parallel to the current density J so that (ẑ × μ0J h) · Bh = 0. In this
case, the above Euler–Lagrange equations (Equations (15) and (17)) have a vanishing term
and can be written as

vz = B2
z uz + Bh · (∇hφ + ∇hψ × ẑ + Bzuh)

|B|2 , (18)
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∇h ·
( ∇hψ

B2
z

)
= ∇h ·

[
ẑ × (vzBh − ∇hφ − Bzuh + η(ẑ × μ0J h))

B2
z

]
, (19)

η = (ẑ × μ0J h) · (∇hφ + ∇hψ × ẑ + Bzuh)

|μ0J h|2 , (20)

where for numerical reasons, a lower limit of |μ0J h| must be imposed here. In 64-bit com-
puting, we set it to 10−12 N A−1 m−2.

To see the physical meaning of Equation (17) or (20), we can use Ohm’s Law,

E = −(v × B) + ημ0J , (21)

in which we can separate horizontal and vertical components using the Helmholtz decom-
position (e.g. Equation (5)),

Eh = −ẑ × [
(vzBh − Bzvh)

] + ημ0J h

= ∇hφ × ẑ − ∇hψ, (22)

Ez = vh · (ẑ × Bh) + ημ0Jz. (23)

Equation (14) together with vector identity A · (B × C) = B · (C × A) = C · (A × B) are
combined with Equation (17). We then use Equation (22) to obtain

η = μ0J h · Eh

|μ0J h|2 + (Bzuh − vzBh) · (ẑ × μ0J h)

|μ0J h|2 . (24)

Multiplying Equation (23) for the vertical component Ez by μ0Jz and summing with Equa-
tion (24) gives

η = μ0J · E
|μ0J |2 + μ0J · (v × B)

|μ0J |2

= μ0J · E
|μ0J |2 − v · (μ0J × B)

|μ0J |2 . (25)

Equation (25) could have been found using the scalar product of the generalized Ohm’s law
(Equation (21)) with μ0J .

In the context of the eddy diffusivity model, the difference between the two terms in
Equation (25) represents the transport of magnetic flux from processes other than the re-
solved v × B electric field. The above derivation is relevant to any magnetic field B . If,
however, B is a force-free field, J × B = 0 so that the last term of Equation (25) vanishes
and we have

η = μ0J · E
|μ0J |2 . (26)

The physical meaning of this equation is the same as in the case of a non-force-free magnetic
field without considering the work done by the magnetic force. Rewriting Equation (25)
leads to

J · E = η|μ0J |2
μ0

− J · (v × B). (27)

Using the generalized Ohm’s law (Equation (21)) and the magnetic flux conservation (Equa-
tion (1)), we obtain
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J · E = η|μ0J |2
μ0

− J · (v × B)

= − B

μ0
· ∂B

∂t
− ∇ · P

= −1

2

∂B2

∂t
− ∇ · P , (28)

where P ≡ 1
μ0

(E × B) is the Poynting vector and Equation (28) is the differential form
of the Poynting theorem (e.g. Griffiths, 2007). As a consequence, we can express η as a
function of the Poynting vector,

η = μ0J · E
|μ0J |2 + μ0J · (v × B)

|μ0J |2

= μ0

|μ0J |2
[
−1

2

∂(
|B|2
μ0

)

∂t
− ∇ · P

]
+ μ0J · (v × B)

|μ0J |2 . (29)

In the case of a force-free magnetic field, one obtains

η = μ0J · E
|μ0J |2

= μ0

|μ0J |2
[
−1

2

∂(
|B|2
μ0

)

∂t
− ∇ · P

]
. (30)

4.4. Boundary Conditions for Magnetic Diffusivity η(x, y)

MEF takes boundary conditions in the form of a mask canceling values of φ(x, y) and
vz(x, y) at pixels on the border of the domain that includes the active region, ∂AR. In
MEF-R, we use a Hann window over eight grid points on the sides of the computational
domain for all quantities except for the magnetic diffusivity η(x, y). This produces an effi-
cient mask, takes the whole area into consideration, and is compatible with the computation
of vector magnetograms (Nakagawa and Raadu, 1972). Equations (18) and (20) are mini-
mization forms of W according to vz and η. Solving Equation (20) for η is done in the same
way as solving Equation (18) for vz.

4.5. Testing MEF-R: The Spheromak

Spheromaks are plasmas with internal magnetic fields but strong internal electric currents.
They resemble a bipolar active region with twisted flux (Longcope, 2004). Due to finite
magnetic diffusivity, they relax (Taylor, 1974) toward a state of minimal magnetic energy
while conserving global magnetic helicity (Bellan, 2000). The consequence is that the mag-
netic field in the relaxed state is force-free (Bellan, 2000). Since the Spheromak is a closed
system, the relaxed magnetic field is a linear force-free field (Woltjer, 1958). The relaxation
process itself redistributes the current locally by reconnection processes (Garcia-Martinez,
2012) and is equivalent to the effect of eddy magnetic diffusivity. The latter would vanish
when the system has reached the relaxed state but there would be still remaining uniform
resistivity.
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To create an analytical test for MEF-R we proceeded as follows. We use the magnetic
vector field (Bx,By,Bz)(x, y, z; t + dt/2) from the Spheromak (Bellan, 2000) and an ex-
ternal velocity field (vx, vy, vz)(x, y, z; t + dt/2) oriented in a single direction of space. We
solved numerically the resistive magnetic induction equation (Equation (1)),

∂B

∂t
= ∇ × [

(v × B) − η(∇ × B)
]
,

using a second-order finite differences numerical discretization in space and a second-
order leapfrog time-marching. This gives (Bx,By,Bz)(x, y, z; t, t + dt). Next, we used
MEF-R with (Bx,By,Bz)(x, y, z; t, t + dt) and vr = vz(x, y, z; t + dt/2) to compute
(vx, vy, vz)(x, y, z; t +dt/2) and η(x, y; t +dt/2). We can then compare (vx, vy, vz)(x, y, z;
t + dt/2) (Figure 3(b)) and η(x, y; t + dt/2) (Figure 3(c)) with the original models.

As the test case Spheromak is purely analytical, we work in pixels (px) and dt units. The
Spheromak has a radius a = 20 px and its center is located at rc(t) = (xc(t), yc(t), zc(t)) =
(0,0,−3) px. The generating flow is given as v(t + dt/2) = 4 cos (35◦)ex + 4 sin (35◦)ey +
4ez with |v(t + dt/2)| ≈ 5.6 px dt−1 (Figure 3(a)) and corresponds to a uniform translation
of the Spheromak center along a constant direction (Longcope, 2004). A uniform mag-
netic diffusivity has been set to η(x, y; t + dt/2) = 10 px2 dt−1. In Figure 3(a), we see only
v⊥x, v⊥y , and v⊥z extracted from

v⊥ = v − [
(v · B)/B2

]
B,

the component of v perpendicular to the magnetic field lines. The vertical velocity field of
the Spheromak vz(t +dt/2) (Figure 3(a)) is similar to the MEF-R inferred flow vz(t +dt/2)

(Figure 3(b)). The inferred horizontal components of v are somehow different, however
(see vectors in Figures 3(a) and 3(b)). This is a consequence of the decay of kinetic energy
W during the MEF-R iterative process. If we define the kinetic energy of the Spheromak
numerically as

W = �x,y

[
v2

x + v2
y + (vz − uz)

2
]

and take the reference velocity uh = 0 and uz = v⊥z, we find the kinetic energy of the
generating flow W0(t + dt/2) ≈ 23540 px2 dt−2 to be greater than the kinetic energy of
the perpendicular component of the generating flow W⊥(t + dt/2) ≈ 15045 px2 dt−2 as
expected, the latter being itself greater than the kinetic energy of the inferred final state
Wf(t + dt/2) ≈ 976 px2 dt−2,

Wf < W⊥ < W0·
Our translation of the Spheromak is not a state of minimal kinetic energy and MEF-R,
searching a flow of minimal kinetic energy, is not supposed to produce an inferred velocity
matching exactly the initial flow.

Equation (14) predicts that in the absence of a horizontal reference flow uh = 0, the in-
ferred horizontal velocity vh should be perpendicular to (ẑ × μ0J h). In other words, under
the LFF assumption, MEF-R predicts that the minimal kinetic energy configuration of v will
be such that vh and Bh are parallel. However, neither the generating flow, the perpendicu-
lar component of the generating flow, nor the reference flow would have their horizontal
component being parallel to Bh.

How MEF-R predicts the magnetic eddy diffusivity at time (t + dt/2) is shown in Fig-
ure 3(c). The mean value of the inferred magnetic diffusivity is almost unchanged with
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〈η〉 ≈ 9 px2 dt−1 although it is not uniform with a standard deviation of 12 px2 dt−1. In Fig-
ure 3(c) we superimposed the field lines of (ẑ × μ0J h) above the map of η(x, y; t + dt/2).
We see that MEF-R distorts the magnetic diffusivity along these lines as can be seen from
Equation (17).

4.6. Statistics of the Results

Finally, to have a global measure of the performance of MEF-R in the Spheromak test case,
we computed the correlation coefficients between vs

⊥x,y,z of the Spheromak and v⊥x,y,z in-
ferred from MEF-R. We found

C
(
vs

⊥x, v⊥x

) ≈ 0.285, C
(
vs

⊥y, v⊥y

) ≈ 0.137, C
(
vs

⊥z, v⊥z

) ≈ 0.571.

The mean 〈〉 and standard deviation σ [ ] of the difference between the Spheromak and
inferred velocities are also computed. We found

〈
vs

⊥x − v⊥x

〉 ≈ 2.108 px dt−1,
〈
vs

⊥y − v⊥y

〉 ≈ 1.906 px dt−1,

〈
vs

⊥z − v⊥z

〉 ≈ 1.529 px dt−1,

and

σ
[
vs

⊥x − v⊥x

] ≈ 1.541 px dt−1, σ
[
vs

⊥y − v⊥y

] ≈ 1.412 px dt−1,

σ
[
vs

⊥z − v⊥z

] ≈ 1.735 px dt−1.

The correlation and accuracy are higher for the vertical component of velocity as expected
with MEF-R although the standard deviation is also slightly higher. A global measurement
of the velocity differences in terms of vectors would give a lower value but with the same
standard deviation,

〈∣∣vs
⊥
∣
∣ − |v⊥|〉 ≈ 3.471 px dt−1, σ

[∣∣vs
⊥
∣
∣ − |v⊥|] ≈ 1.762 px dt−1.

The distribution of the relative orientations between the two vector fields is given by 〈vs
⊥ ·

v⊥〉 ≈ 3.392 px2 dt−2 with standard deviation σ [vs
⊥ ·v⊥] ≈ 6.201 px2 dt−2. A better estimate

is given by the average dot product of the normalized perpendicular velocities 〈 vs⊥·v⊥
|vs⊥||v⊥| 〉 ≈

0.959 which follows the Cauchy–Schwarz inequality (Schrijver et al., 2006) and indicates
that the two fields are mostly parallel. The results are not as good for the resistivity. The
correlation coefficient, mean, and standard deviation of the difference between true and
inferred values of the resistivity η are

C
(
ηs, η

) ≈ 0.243,
〈∣∣ηs

∣
∣ − |η|〉 ≈ 6.134 px2 dt−1, σ

[∣∣ηs
∣
∣ − |η|] ≈ 7.752 px2 dt−1,

with extremal values of the resistivity about 10 times greater (Figure 3(c)).
These results only reflect the fact that the external velocity and magnetic diffusivity we

imposed for the relaxed Spheromak are rather arbitrary and not consistent with a state of
minimal kinetic energy as previously defined. More statistics are computed (e.g. Schrijver
et al., 2006) and a comparison with the case when we not only impose uz but also ux and uy

are given in Tables 2 and 3 (Appendix A).
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Figure 3 Testing MEF-R using the Spheromak at given time t + dt/2 with a generating flow as a uniform
velocity field v(t + dt/2) = 4 cos (35◦)ex + 4 sin (35◦)ey + 4ez . Here we show a cut in the plane z = −3 px.
2D vectors show the x- and y-components and the gray scale refers to the z-component. The Spheromak
being closed, a circle is set to delimit the boundary. (a) The perpendicular components of the generating
flow, (v⊥x, v⊥y)(x, y) (vectors) and v⊥z(x, y) (gray scale). (b) How MEF-R reconstructs the velocity field
(vx , vy)(x, y) (vectors) and vz(x, y) (gray scale). (c) Magnetic diffusivity ηeddy(x, y) as reconstructed by
MEF-R (gray scale). Field lines of (ẑ × μ0Jh) are superimposed. MEF-R distorts ηeddy along these lines
(see Equation (17)).

5. Data Processing Using MEF-R: AR 9077

In MEF, vr can be used as a vertical background velocity. In MEF-R, we precisely adjust the
magnetic diffusivity so that vz is as close as possible to vr . We want to compute both v(x, y)

and η(x, y). Whenever we had to compute 1
Bz

, the vertical component Bz(x, y) was further
thresholded, |Bz(x, y)|� 40 G, to avoid dividing by zero or computer round-off values. This
value is chosen to be above the noise (≈20 G in our data).

5.1. Testing MEF-R: Numerical Convergence

Numerical simulations of reconnection processes in the lower corona have been done with
a variable magnetic diffusivity η(J ) as an explicit function of current density J (e.g. Chen
and Shibata, 2000; Otto, 2001) or η(ved) varying with electron velocity ved (Miyagoshi and
Yokoyama, 2004). However, to our knowledge no code simulating convection up to the
photosphere and using the variable η(x, y) is currently available. This is left for future work.
Nevertheless, we did check numerically that the solution was indeed a unique solution to the
magnetic induction equation. In Figure 4(a) we display the scaled residuals of the vertical
component of the magnetic induction equation (Equation (3)). Here we have rescaled the
residuals by the standard deviation of the variable ∂Bz

∂t
. Scales range from −10.7 to 11.2

with a mean value at 0.00239 and standard deviation of 0.9296. The convergence process
itself is shown in Figure 4(b). The kinetic energy scale here is in (px dt−1)2 (see Table 4
in Appendix B). The convergence is nearly obtained at 400 iterations. After 1000 iterations
there is no significant improvement in the convergence.
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Figure 4 (a) Map of the scaled residuals of the vertical component of equation of conservation of magnetic
flux (Equation (3)) corresponding to the time interval 08:00 – 09:36 UT of 14 July 2000 in AR 9077. Residuals

have been rescaled by the standard deviation of the variable ∂Bz
∂t

. (b) Convergence curve of the MEF-R.

Kinetic energy scale here is in (px dt−1)2.

Figure 5 (a) Doppler velocity
vr (t) in AR 9077 recorded by
SOHO/MDI on 14 July 2000.
The Sun’s rotation has been
removed. (b) vz(t) as computed
using MEF-R with magnetic
diffusivity η(x, y; t) so that
vz(t) ≈ vr (t). The time interval
is 08:00 – 09:36 UT and the grid
size is 256 × 256 pixels in both
panels. Panel (c) shows the
scatter plot between vertical
velocity vz(t) computed using
MEF-R and Doppler velocity
vr (t). Panel (d) compares
histograms of vz(t) and vr (t).

5.2. Vertical Velocity Versus Doppler Velocity

As expected, after 1000 iterations of MEF-R, we found that vz(t) is very close to Doppler
velocity vr(t) (Figures 5(a) and 5(b)), in particular inside the active region. This is to be
compared with Figure 2 where vz(x, y) was computed using MEF for a non-resistive ideal
gas. There are still differences, however, as can be seen on a scatter plot (Figure 5(c)) due to
iterative noise amplification by MEF-R of uncorrected bad pixels on the two vector magne-
tograms we used. This can be quantified using the histograms of vz(x, y; t) and vr(x, y; t)
plotted in Figure 5(d) and occurs mostly for the highest values of velocity |vz(x, y; t)| al-
though due to the minimization process vz is slightly smaller than vr . The correlation co-
efficients are C(vr, vz) ≈ 0.9937 for 1 G � |B�| � 2500 G, with a weak field contribu-
tion C(vr, vz) ≈ 0.9939 for 1 G � |B�| � 200 G, as good as its strong-field contribution
C(vr, vz) ≈ 0.9909 for 500 G � |B�| � 2500 G.
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Figure 6 Velocity vector field
(vx, vy) in AR 9077, 14 July
2000 between times 08:00 and
09:36 UT, computed with MEF-R
after 1000 iterations using vector
magnetograms and Doppler
velocities from SOHO/MDI.
Scales range over [0:200] m s−1.
At strong-field locations spirals
are rotating counterclockwise.
The area is 500 × 500 arcsec2.

5.3. Horizontal Velocity

To compute vh(x, y) we have used Equation (7). In Figure 6 we show the horizontal ve-
locity vector field (vx, vy) computed with MEF-R using vector magnetograms and Doppler
velocities between 08:00 and 09:36 UT. The use of a flat field constructed from |vh(x, y)|
as done for temperature T (Potts and Diver, 2009) would produce a cleaner and smoother
picture. In the active region where (Bx,By,Bz) is strong the velocity is weaker, as expected
given the stabilizing property of the magnetic field. Outside of the active region, the physics
is more complex and, as noted by Longcope (2004), it is unlikely that we have computed
the real velocity field.

An animation1 depicting the evolution of the velocity fields shows that before the flare
(e.g. 08:00 – 09:36 UT), there is extra vertical activity and little horizontal motions, with
|vz| being much larger than |vh|. Quantitatively, the velocity vectors are mostly oriented
vertically, with a maxima of ≈916 m s−1, a mean value of ≈286 m s−1 and a standard
deviation of ≈121 m s−1. The maximal horizontal velocity is ≈199 m s−1, the mean is
≈18 m s−1, and the standard deviation is ≈23 m s−1.

It is the opposite at the time of the flare (10:30 – 11:12 UT). The motions are mostly
horizontal and more chaotic, whereas vertical motions are more equally distributed and more
coherent (not shown). During this lapse of time, the maximum value of the vertical velocity
is ≈594 m s−1, the mean value is ≈121 m s−1, and the standard deviation is ≈81 m s−1.
The maximum value of the horizontal velocity is ≈628 m s−1, the mean is ≈38 m s−1, and
the standard deviation is ≈56 m s−1.

In this animation, at the time of the flare, chaotic flows occur everywhere in the active
region and it is unclear whether it occurs mostly in the sunspots or around the polarity
inversion lines. Note that the absorption line Ni I 6768 Å used to measure both Doppler
and Zeeman shifts in SOHO/MDI could be perturbed by a strong flare and thus Doppler
velocities and magnetic field values might not be accurate during a flare (e.g. Babin and
Koval, 2007).

1Supplementary material available at: http://www.astro.umontreal.ca/~benoit/MEF-R.

http://www.astro.umontreal.ca/~benoit/MEF-R
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Figure 7 Histogram of the
magnetic diffusivity η(x, y) in
AR 9077, 14 July 2000,
08:00 – 09:36 UT, compared with
a Gaussian of the same variance.
Exponential wings are the
signature of intermittency. Log
scale is used in the vertical axis.
Mean value is ≈108 m2 s−1

(vertical line). Standard deviation
is σ ≈ 1010 m2 s−1.
|η(x, y)| � 2 × 1010 m2 s−1 are
due to noise.

5.4. Computation of the Magnetic Diffusivity

The values of eddy magnetic diffusivity η(x, y) are sparse but can equally be positive or neg-
ative (see below) with a mean value of ≈108 m2 s−1 and standard deviation of ≈1010 m2 s−1

(Figure 7). These values can be much larger than the largest values computed from magne-
tograms by Chae, Litvinenko, and Sakurai (2008) using a generalization of the nonlinear
affine velocity estimator of Chae and Sakurai (2008) and a pixel size of about 2 arcsec
(1400 km). Negative extrema of η(x, y) may be partly due to noise in the data. Indeed, their
amplitude could be reduced by using higher resolution data. In this case, they are unphysi-
cal. But some of the negative values of the diffusivity in Figure 8(a) are in strong magnetic
field regions, where the relative error in field measurements is expected to be low. At these
places, the action of negative eddy diffusivity would be to concentrate rather than disperse
flux (e.g. Petrovay, 1994). Such an explanation has been given in the case of a theoretical
dynamo (Zheligovsky, Podvigina, and Frisch, 2001).

Locally, high values of turbulent diffusivity are considered greater than 106 m2 s−1 for the
photosphere (e.g. Abramenko et al., 2011) but values of 2.5 × 108 m2 s−1 have been inferred
(Simon and Weiss, 1997) with a pixel of the size of a granule or larger. In fact, η(x, y) could
be even higher in the lower corona (Wu et al., 2000) and the chromosphere (Miyagoshi and
Yokoyama, 2004; Heggland, De Pontieu, and Hansteen, 2009).

The values of ηmin and ηmax are of the order of what we expect here for numerical-
grid diffusivity dr2 dt−1 ≈ 3.9 × 108 m2 s−1, although below these values the value of the
magnetic diffusivity is likely distorted.

The normalized histogram or probability distribution function of the magnetic diffusivity
η(x, y) between 08:00 and 09:36 UT is displayed on Figure 7 (solid line). It is different
from a Gaussian distribution of the same variance (dashed line) but displays exponential
wings characteristic of intermittency. The standard deviation is σ ≈ 1010 m2 s−1. At the start
of a flare, the temperature distribution is observed to be chaotic (e.g. Veronig et al., 2006).
Since magnetic diffusivity depends on temperature (Spitzer, 1962), it is expected that the
variance of the magnetic diffusivity will also increase. This is what we see at 10:30 UT, the
time of the flare, and at 12:48 UT, at the beginning of the thermalization phase (see below
in Section 6).

The map of the magnetic diffusivity is shown in Figure 8(a). Spiral structures can be seen
at the location of sunspots where there are strong unipolar magnetic fields. These spirals
rotate counterclockwise in AR 9077 (Figure 8(a)). The direction of rotation of these spirals
is related to the sign of the average twist α. In an active region in the southern hemisphere
where α would be positive, we predict that these spiral features would rotate clockwise. The
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physical mechanism of the observed hemispheric distribution of active region helicity has
been proposed to be due to the action of the Coriolis force on a rising �-shaped flux tube
originating deep inside the convection layer below an active region (Sakurai and Hagino,
2003).

For numerical reasons, |J h| � 10−3 A m−2 must be used in the computation. This lower
threshold value roughly equals the noise level in our data. Moreover, to better focus on the
active region itself and to reduce discretization effects involving terms in 1/Bz (Longcope,
2004) we have used a threshold value of |Jz| � 10−2 A m−2 in the computation of Equa-
tion (20). Such values of |Jz| are observed at resolutions of 2.5 arcsec at the photosphere
within sunspots (e.g. Krall et al., 1982; Deloach et al., 1984).

As can be seen in Equations (20) and (25), ηeddy is also a function of J and thus can be
compared to η(|J |) (Otto, 2001). The peaks of η(x, y) (Figure 8(a)) are located at the same
places where photospheric currents are maximal (Figure 8(c)) and temperatures are minimal
(Figure 11(b)) and where spiral centers are often located (Figures 6 and 8(a)). In fact, mag-
netic diffusivity in the photosphere and chromosphere can also be modeled as a function of
temperature (Spitzer, 1962; Kumar, Kumar, and Uddin, 2011), η(T ) = c 108T −3/2 (m2 s−1)

where c ≈ 5 is a constant (Figure 8(d)). Here we used the continuum intensity also mea-
sured by SOHO/MDI with the flat field corrected (Potts and Diver, 2009) to derive T

(Solanki, Walther, and Livingston, 1993). We found that η(T ) and η(|J |) are correlated
with C(η(|J |), η(T )) ≈ 0.88 for 100 G � |B�| � 2000 G and especially for the strongest
magnetic fields 1000 G � |B�| � 2000 G with C(η(|J |), η(T )) ≈ 0.98. But ηeddy does not
well correlate with neither η(T ) nor η(|J |). For 100 G � |B�| � 2000 G, we computed
C(ηeddy, η(|J |)) ≈ 0.41 and C(ηeddy, η(T )) ≈ 0.56. This is expected because the eddy dif-
fusivity is not related to (molecular) resistivity but reflects the unresolved physics inside the
subgrid.

To better understand the negative values of ηeddy, we have computed the correspond-
ing map of angles between J and E (Figure 8(b)). A positive η occurs where angles are
smaller than 90◦ whereas negative η is for angles greater than 90◦ and η = 0 corresponds to
90◦ between J and E. Here ηeddy, J , and E are eddy quantities representing macroscopic
statistical effects, not actual processes.

5.5. The Meaning of η: Subgrid Eddy-Diffusivity

If magnetic diffusivity is small enough so that the velocity-dependent term is dominant in
the generalized Ohm’s law, we have

E = −(v × B) + η0μ0J

≈ −(v × B), (31)

as in Longcope (2004). In such a case the MEF-R algorithm is able to compute vz very close
to vr (Figure 5). But there are several places where the magnetic diffusivity takes negative
values (Section 5.4). We have therefore to understand the physical meaning of ηeddy(x, y).

If the apparent diffusive effects of unresolved velocities are much greater than the ad-
vective transport of flux by velocities that can be resolved, then the electric field E can be
modeled by resistivity only, namely

E = −(v × B) + ηeddyμ0J

≈ ηeddy μ0J . (32)
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Figure 8 (a) Eddy diffusivity ηeddy(x, y) in AR 9077, 14 July 2000, computed with MEF-R using
our modeled vector magnetic field and Doppler velocities at 08:00 and 09:36 UT. (b) Map of the an-
gles between the vectors J and E. (c) Magnetic diffusivity as a function of current density J = |J |,
η(J ) = k(J 2 − J 2

c )1/2S(J − Jc) m2 s−1 (Otto, 2001). (d) Magnetic diffusivity as a function of tempera-
ture T , η(T ) = c 108T −3/2 m2 s−1 (Spitzer, 1962).

Making the scalar product of both sides of Equation (32) with J , we find an expression for
ηeddy,

J · E ≈ μ0ηeddy|J |2. (33)

However, since we consider only force-free magnetic fields, J and B are parallel and we
have a strict equality instead of an approximation. We can now write ηeddy as

ηeddy = J · E
μ0|J |2 . (34)

Equation (34) is equivalent to Equation (26) that we derived from Euler–Lagrange formalism
for η within the force-free approximation and η is thus a magnetic turbulent diffusivity
η ≡ ηeddy. The sign of ηeddy depends locally on the angle between the vectors J and E. If
the magnetic field is not force-free, the solution is given by Equations (15), (16), and (17)
whereas if the magnetic field is a force-free field it is given by Equations (18), (19), and
(20). The relative orientation between J and E would be different in the two cases but the
physical meaning of J · E � 0 has to be understood as a statistical macroscopic effect.

To reconstruct an exact velocity field, one would need to involve the conservation of total
energy and momentum (Fisher et al., 2010), i.e. to solve the full set of 3D MHD equations.
However, in MEF-R we only use the vertical component of the magnetic induction equation.
Using Equations (7) and (15) it can be shown that (v −u) ·B = 0, a result which the original
MEF algorithm also yields. Splitting the velocity v into two components, one parallel to the
magnetic field (v‖) and one perpendicular to the magnetic field (v⊥), it can be shown that
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0 = (v − u) · B
= [

(v⊥ − u⊥) + (v‖ − u‖)
] · B

= (v‖ − u‖) · B, (35)

which implies that if the reference flow u has a component parallel to the magnetic field B ,
then the inferred flow will be such that v‖ = u‖. Therefore, unless the parallel component v‖
is provided through a reference flow, both MEF and MEF-R can only provide the component
of the velocity which is perpendicular to the magnetic field (v⊥).

In this study, we have made the assumption that the observed Doppler velocity is entirely
due to either ideal electric fields or to magnetic eddy diffusivity. Flux tubes are examples
of loci where the plasma flows parallel to the magnetic field |(v × B)| ≈ 0 and resistivity
is negligible. This is only partially the case at the photospheric level. It is, however, mostly
the case in sunspots where the field lines are almost vertical. There, parallel flows would
most contribute to the Doppler shift. If the vector magnetic fields are correctly oriented,
MEF should be able to reproduce vz ≈ vr but only by using externally specified flow field
(u‖x, u‖y ). It is when and where the flow cannot be perpendicular that MEF cannot adjust vz

to vr . And this could be the case because we made a further assumption by using force-free
magnetic fields. If the vector magnetic field is incorrectly oriented, a DDM technique might
be unable to match vz with vr unless it utilizes some eddy diffusivity to do so. In this case,
it would be spurious eddy diffusivity.

A simple subgrid model of turbulent diffusivity in the case of isotropic turbulence
has been proposed by Smagorinsky (1963) and later generalized to magnetic diffusivity
(Theobald, Fox, and Sofia, 1994). In this case, ηsg = Ce dr2|J | is based on the hypothesis
that the effect of subgrid current fluctuations is similar to eddy magnetic diffusivity (e.g. Lu,
1995; Otto, 2001; Klimas et al., 2004) that can be activated only if |J |� Jc (Figure 8(c)).

5.6. Spiral-like Structures and the Force-Free Assumption

The magnetic diffusivity η is characterized by the presence of various patterns including
spiral-like structures (Figure 8(a)). As per Equation (14), with uh = 0, the minimization of
the energy functional over the magnetic diffusivity η(x, y) results in vh and (ẑ × μ0J h)

being perpendicular, namely

(ẑ × μ0J h) · vh = 0. (36)

This implies that the resulting horizontal velocity vh must be parallel to the horizontal cur-
rent density J h, as both vector quantities are non-zero. Since the horizontal magnetic field
Bh is parallel to J h under the force-free approximation, we conclude that vh and Bh must
also be parallel.

Mathematically, the expression of the magnetic diffusivity η under the force-free approx-
imation given by Equation (20) can locally be interpreted as the scalar component of the
projection of the Helmholtz decomposition vector (∇hφ + ∇hψ × ẑ) on the rotated density
current vector (ẑ × μ0J h), normalized by |μ0J h|,

η = (∇hφ + ∇hψ × ẑ) · (ẑ × μ0J h)

|μ0J h|2

= 1

|μ0J h|
[
(∇hφ + ∇hψ × ẑ) · (ẑ × μ0J h)

|μ0J h|
]
. (37)

Here, (ẑ×μ0Jh)

|μ0Jh| is a unit vector.
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Figure 9 (a) Streamlines of rotated horizontal current density vector field (ẑ × μ0Jh) together with vectors
of inferred horizontal velocity vh in AR9077, 14 July 2000, 08:00 – 09:36 UT, displayed over the map of
magnetic eddy diffusivity η(x, y). (b) An enlargement of the area near the center of the domain.

For a non-zero magnetic diffusivity, we expect the resulting map to be reminiscent of the
structure of (ẑ × μ0J h) (Figure 9(a)). The vectors of vh, Bh, and J h, as formulated within
the LFF assumption, are found to be perpendicular to the streamlines of (ẑ × μ0J h) inside
the photospheric plane. The streamlines of (ẑ × μ0J h) outline spiral-like structures on the
map of the magnetic diffusivity (Figure 9(b)). This suggests that, as a result of Equation (37),
spiral-like features seen in the maps of (ẑ × μ0J h) and consequently of η(x, y) might be
artifacts of the LFF approximation used to reconstruct the magnetic field of AR 9077.

6. Time Evolution: Catching the Flare

The time evolution of active region AR 9077 can be well traced using the time series
of various physical quantities we can compute using MEF-R (Figure 10). Here 〈 . 〉
denotes an average over the entire area. Shortly before the flare (10:30 UT) there is
a break in the motion of the plasma followed by a sharp upward motion just before
and during the flare (Figure 10(a)). Observations as well as numerical simulations sug-
gest the existence of such precursors in flaring active regions (Falchi and Mauas, 2002;
Alexander, 2006; Ilonidis, Zhao, and Kosovichev, 2011; Archontis and Hood, 2012). Us-
ing semi-empirical models, Falchi and Mauas (2002) have shown that such motions of the
chromosphere are needed to reproduce the time evolution of Si I 3905 Å and Ca II K line
profiles. E and J are oriented in the opposite directions only during the flare, i.e. during a
large scale reconnection event (Figure 10(b)). Similar to the vertical velocity, the turbulent
magnetic diffusivity η (Figure 10(b)) decays before the flare and strongly increases at the
time of the flare. This is seen also in both models η(J ) (Otto, 2001) and η(T ) (Spitzer, 1962)
(Figures 10(b) and 10(c)). Observations of active regions have shown that photospheric mag-
netic fields may change significantly during flares (Sudol and Harvey, 2005) and thus must
respond to coronal field restructuring (Wang and Liu, 2010). The scale of those changes
increases with the flare intensity. In X-class flares, abrupt field changes with amplitudes up
to 450 G have been detected (Petrie and Sudol, 2010).

The Poynting vector becomes almost vertical and directed upward during and just after
the flare as can be seen when comparing the time evolution of 〈|P |〉 and Pz (Figure 10(d)).
It has been seen in active regions that upward Poynting flux corresponds to flux emergence
and not global plasma motion (Fan et al., 2011). Observations of Poynting flux across the
photosphere in emerging active regions found similar values Pz � 104 W m−2 (e.g. Liu and
Schuck, 2012). Data-driven numerical simulations of the emergence of a flux tube have
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Figure 10 (a) Doppler velocity 〈vr 〉 observed with SOHO/MDI (red solid line with circles), the vertical
velocity 〈vz〉 computed with MEF-R (blue dashed line with triangles), and X-ray flux recorded by GOES 8 in
the 1.0 – 8.0 Å channel (green dashed line) in AR 9077, on 14 July 2000. (b) Mean eddy magnetic diffusivity
〈η〉 computed by MEF-R (solid line with circles, scale on the left axis) and the mean angle 〈E,J 〉 (dashed
line with triangles, scale on the right axis). (c) Models of the magnetic diffusivity function; 〈η(J )〉 (solid line
with circles) and 〈η(T )〉 (dashed line with triangles). (d) Poynting flux 〈|P |〉 and its z-component 〈Pz〉. The
arrows indicate the time of the flare (10:30 UT) in all the panels.

produced upward-directed vertical Poynting flux ≈106 W m−2 with a steep increase during
emergence to ≈107 W m−2 on average over the area of the active region (Chen et al., 2014).
Here, the vertical component of the Poynting flux Pz is slightly oriented upwards on aver-
age except at the time of the flare where it is strongly upwards (Figure 10(d)). The peaks
of |P |, T, and η(J ) are found at the same places where Bz is also maximal (not shown).
If the photospheric resistivity is due to electric currents this would mean that at least part
of the photospheric temperatures are due to Joule heating. But this is not the case with our
supergranular turbulent magnetic diffusivity. Most of the energy flux radiated at the photo-
spheric level is located in areas close to sunspots as displayed in a map of the modulus of the
Poynting vector |P | (Figure 11(a)). At these places, the temperature is lower (Figure 11(b)).

7. Conclusions

When using the force-free field approximation, the MEF technique does not produce vertical
velocity fields close to the observed Doppler velocities even given a reference background
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Figure 11 (a) Modulus of the
Poynting flux |P | at the
photospheric level in AR 9077,
14 July 2000, 08:00 – 09:36 UT.
(b) Temperature map from
continuum intensity recorded by
SOHO/MDI. Scales range over
[4000:6000] (K).

vertical velocity field. To address this point, we have supposed that, at least for a large
scale (>1.5 Mm), the photospheric magnetic field is not frozen-in to the plasma motions
but that there must exist a magnetic eddy diffusivity term in the equation of magnetic flux
conservation. We generalized the theory of MEF (Longcope, 2004) to include a resistive
term in Ohm’s Law.

Although our formulation is valid for any magnetic field B , we had to limit our algorithm
to the particular case of force-free magnetic fields. There are two reasons for that. The
first reason is that, in the case of AR 9077, we had only access to SOHO/MDI line-of-
sight magnetograms that we identify with the vertical component of the magnetic field. The
second reason is that MEF-R needs the vertical derivatives of the magnetic field components
and here too the force-free hypothesis was a way of solving the problem.

But the force-freeness of the photosphere is now questionable (Liu, Zhao, and Schuck,
2013) and DDM would overcompensate by creating a spurious eddy diffusivity. The rea-
son is that parallel flows (|(v × B)| ≈ 0) might contribute to the Doppler shift while being
unrelated to either the diffusivity or the ideal electric field.

The algorithm could not be tested by comparison with other techniques because all of
them, although they are able to process non-force-free vector magnetograms, are written for
ideal MHD. Neither could we access local maps of observations of the magnetic diffusivity
on the photosphere. But we used the analytical solution of the Spheromak (Bellan, 2000)
and verified that MEF-R partly reconstructs the input fields in the induction equation.

We focused on the particular active region AR 9077 on 14 July 2000 and used line-of-
sight magnetograms together with Doppler velocities as recorded by SOHO/MDI. Although
we removed the differential rotation of the Sun and the limb effect, there is still a slight
distortion effect due to sphericity. However, the effect would be small because on 14 July
2000, AR 9077 was close to the center of the solar disk. We indeed found that MEF-R gives
a very good match between the computed vz and the observed vr . However, we found that
our computed magnetic diffusivity η(x, y) is in fact a turbulent diffusivity ηeddy(x, y) that
could take negative values at some places. Nevertheless, on average over the whole area,
most of the time we found positive and realistic values for ηeddy, in particular near the active
region. The spatial distribution of ηeddy(x, y) is not well correlated with a model based on
temperature η(T )(x, y), but the correlation is still better than with a model based on a critical
current density η(|J |)(x, y). The correlation coefficients here are less than 0.41 and are valid
for strong magnetic fields (100 G � |B�| � 2000 G). Nevertheless, an interesting result is
that ηeddy(x, y) maps display spiral structures near the loci of strongest unipolar magnetic
field. However, such structures might be the result of the linear force-free assumption that
was used to reconstruct the vector magnetograms of AR 9077.

If anomalous Doppler broadening observed in spectral lines of the photosphere is due
to microturbulent velocities, we could then predict a 2D spatial correlation with the high
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values of our inferred eddy diffusivity. Such a correlation would validate our model. For this
purpose, we are currently using high resolution SOLIS/VSM spectral datacubes.

A generalization of the method to non-force-free magnetic fields is straightforward and
under way but the problem of the first order vertical derivatives still needs to be solved. The
divergence-free condition on the magnetic field together with the Zeeman effect measured in
spectropolarimetric observations of two lines Fe I 6301.5 and 6302.5 Å formed at different
depths (Bommier et al., 2011) may be the key to this problem. In any case, at least to test the
whole process, it is possible to use the 3D output of a radiative MHD simulation including a
given model of the magnetic diffusivity (e.g. Abbett, 2007; Abbett and Fisher, 2012) for at
least in the upper part of Sun’s convection zone including the photosphere and data driven
by magnetograms and Doppler velocities (Vincent, Charbonneau, and Dubé, 2012).

Acknowledgements Alain Vincent is supported through NSERC Individual Research Grant. Computa-
tions have been done with a modified version of MEF (Longcope, 2004). We have used the IDL graphics
system and SAO Image DS9 from the Smithsonian Astrophysical Observatory. In this study, we have used
SOHO/MDI data archives (http://soi.stanford.edu/data/) as well as Solar Monitor (http://www.solarmonitor.
org/). We thank Frédérique Baron, Léonie Petitclerc, and Benoît Rolland for their initial contributions to data
processing. Finally, we thank the anonymous reviewer for her/his constructive remarks.

Appendix A: Figures of Merit for the Spheromak Test

Statistical quantities are computed to test the accuracy of MEF-R in the Spheromak case.
Only the perpendicular components of velocity are considered here. Given two 2D spatial
scalar fields F(x, y) and f (x, y), we have computed the following quantities (e.g. Schrijver
et al., 2006): the coefficient of correlation,

C = [
�x,yF

s(x, y) · f (x, y)
]/[

�x,yF
s(x, y)2�x,yf (x, y)2

]1/2
,

the normalized error,

EN = �x,y

∣
∣f (x, y) − F s(x, y)

∣
∣/�x,y

∣
∣F s(x, y)

∣
∣,

and the mean error,

EM = 1

N
�x,y

[∣∣f (x, y) − F s(x, y)
∣∣/∣∣F s(x, y)

∣∣].

Here EM and EN are measures of differences between the two scalar fields. The ratio of
“energies”,

ε = �x,yf (x, y)2/�x,yF
s(x, y)2

is a measure of how well the model estimates the quadratic norm of the field. The “Cauchy–
Schwarz inequality”,

CCS = 1

N
�x,y

[
F s(x, y) · f (x, y)

]/[∣∣F s(x, y)
∣∣∣∣f (x, y)

∣∣]

is a dimensionless measure of the relative orientation between the two vector fields. In the
above formulas F s(x, y) is an “exact” analytical Spheromak scalar field and f (x, y) is the
corresponding scalar field inferred from MEF. N is the number of grid points in (x, y).

http://soi.stanford.edu/data/
http://www.solarmonitor.org/
http://www.solarmonitor.org/
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Table 2 Various statistics to test
the accuracy of MEF-R in the
Spheromak case. The coefficient
of correlation C, normalized
error EN, mean error EM, ratio
of “energies” ε, and
Cauchy–Schwarz inequality (e.g.
Schrijver et al., 2006) are shown
here for each component of the
velocity and for the resistivity.
Only the perpendicular
component of velocity is
considered here. For comparison
purposes, the case where all three
components (ux,uy,uz) are
taken as background velocities is
shown in the right column.

(vs⊥x
, v⊥x) uz ux,uy,uz

C 0.2849 0.49079

EN 0.9251 0.70102

EM 1.6586 1.50043

ε 0.0175 0.27333

CCS 0.3911 0.94217

(vs⊥y
, v⊥y) uz ux,uy,uz

C 0.1375 0.6107

EN 0.8664 0.5842

EM 1.3520 1.3586

ε 0.0426 0.3513

CCS 0.2619 0.9251

(vs⊥z
, v⊥z) uz ux,uy,uz

C 0.5708 0.5741

EN 0.6517 0.6582

EM 1.9979 1.6309

ε 0.3464 0.3102

CCS 0.9591 0.9761

(ηs, η) uz ux,uy,uz

C 0.2434 0.4999

EN 0.7928 0.6836

EM 1.7928 1.6836

ε 0.7237 0.4002

CCS 0.4047 0.9693

The coefficient of correlation C, normalized error EN, mean error EM, and ratio of “en-
ergies” ε are shown in Table 2 for each component of the velocity and for the resistivity.
In Table 3 we display the mean and standard deviation of the difference between scalar or
vector velocity fields corresponding to the “exact” Spheromak and MEF-R-based fields. In
both Tables 2 and 3 we have compared two cases. First (left column), we impose uz only as
a background velocity. Second (right column), we impose all three components (ux, uy, uz).

Appendix B: Conversion of Units

In MEF, time and space units are dt = t2 − t1 and pixels (px). Conversion formulas to SI units
are listed in Table 4. Here B is the magnetic induction, t is the time, v is the velocity, E is
the electric field, P is the Poynting flux, μ0 is the magnetic permeability, I and J are the
current and the current density, φ and ψ are electric potentials, η is the magnetic diffusivity,
n is the number of gridpoints in each direction of 2D space, dt is the time between two
consecutive magnetograms, L is the size of the area under study, and px stands for the size
of a ‘pixel’.
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Table 3 Various statistics to test the accuracy of MEF-R in the Spheromak case. Mean and standard de-
viation of (i) the angle distribution between “exact” Spheromak and MEF-R-based velocity vectors, (ii) the
difference between scalar or vector fields corresponding to “exact” Spheromak and MEF-R-based fields, and
(iii) the difference between magnetic diffusivities based on the “exact” Spheromak and MEF-R. Only the
perpendicular components of velocity are considered here. For comparison purposes, the case where all three
components (ux,uy,uz) are taken as background velocities is shown in the right column.

uz ux,uy,uz

〈vs⊥ · v⊥〉 3.39238 6.86488 px2 dt−2

σ [vs⊥ · v⊥] 6.20118 11.0127

〈|vs⊥| − |v⊥|〉 3.47194 2.99564 px dt−1

σ [|vs⊥| − |v⊥|] 1.76250 2.26999

〈vs⊥x
− v⊥x 〉 2.10845 1.52082

σ [vs⊥x
− v⊥x ] 1.54141 1.64542

〈vs⊥y
− v⊥y 〉 1.90684 1.35509

σ [vs⊥y
− v⊥y ] 1.41212 1.43074

〈vs⊥z
− v⊥z〉 1.52915 1.56027

σ [vs⊥z
− v⊥z] 1.73518 1.70398

〈|ηs| − |η|〉 6.13462 6.83447 px2 dt−1

σ [|ηs| − |η|] 7.75257 5.73199

Table 4 Conversion factors from MKSA to MEF.

Quantity MEF MKSA Conversion factor from MKSA to MEF

B G T 104

L px m (n L−1)

t dt s dt

v px dt−1 m s−1 (n L−1) dt

E G px dt−1 T m s−1 104 dt (n L−1)

P kg dt−3 kg s−3 dt3

μ0 px G2 dt2 kg−1 m T2 s2 kg−1 108 (n L−1) dt−2

μ0J G px−1 T m−1 104 (L n−1)

J kg G−1 dt−2 px−2 kg T−1 s−2 m−2 10−4 dt2 (L2 n−2)

φ,ψ G px2 dt−1 T m2 s−1 104 dt (n2 L−2)

η px2 dt−1 m2 s−1 dt (n2 L−2)

I kg G−1 dt−2 kg T−1 s−2 10−4 dt2
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