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Abstract We present a comparative evaluation for automated filament detection in Hα so-
lar images. By using metadata produced by the Advanced Automated Filament Detection
and Characterization Code (AAFDCC) module, we adapted our trainable feature recogni-
tion (TFR) module to accurately detect regions in solar images containing filaments. We
first analyze the AAFDCC module’s metadata and then transform it into labeled datasets
for machine-learning classification. Visualizations of data transformations and classification
results are presented and accompanied by statistical findings. Our results confirm the reli-
able event reporting of the AAFDCC module and establishes our TFR module’s ability to
effectively detect solar filaments in Hα solar images.
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1. Introduction

The stream of solar data produced by NASA’s Solar Dynamics Observatory (SDO) mission
is larger than all previous solar missions combined (Pesnell, Thompson, and Chamberlin,
2011). Traditional human-based analysis methods would be overwhelmed by the massive
amount of potentially interesting SDO data (over 70000 images per day). Therefore, scien-
tists are forced to rely on automated tools to efficiently process and analyze this non-stop
data stream. The SDO Feature Finding Team (FFT; Martens et al., 2012) is currently devel-
oping over a dozen of such automated modules to detect specific types of solar phenomena.
Most of these are developed by specialized and independent teams responsible for only one
type of pre-determined phenomenon.

As part of the SDO FFT, our interdisciplinary research group at Montana State University
(Computer Science and Solar Physics) is developing a general purpose content-based image-
retrieval (CBIR) system for solar imagery based on the metadata produced by our trainable
feature recognition (TFR) module. Our CBIR system will allow users to explore the enor-
mous archives of solar data through image-based searches rather than traditional text-based
queries. This is a convenient and intuitive style of searching for images, because the user can
simply provide an image of interest without requiring any necessary information (metadata)
about the images being searched for. Not only does this make the solar image archives more
accessible to all levels of expertise, but it also facilitates the rapid discovery of new phenom-
ena that have unknown characteristics. No such method of discovery is currently available
for solar physics image archives.

In this paper we investigate the use of our TFR module as a comparative analysis tool
for other automated detection modules. We combine modules’ metadata with a variety of
machine-learning algorithms and evaluation techniques to create a supervised classification
model to detect a specific type of event. Because the initial development of the TFR module
occurred before the SDO launch, initial work was performed on image and event metadata
from the Transition Region And Coronal Explorer (TRACE) mission (Handy et al., 1999).
As the incorporation of new phenomenon-specific modules continues (from the SDO FFT
and elsewhere), we will have great opportunities to evaluate our effectiveness on new types
of events reported by other automated modules. Each module we analyze allows us to mea-
sure our ability to distinguish and detect that module’s specific event, and infer a potential
baseline ability within our entire fully developed CBIR system in the future. While there
is much more involved in creating an effective CBIR system, such as important invariant
decisions surrounding query and retrieval, like incorporating event size and location into the
definition of similarity, the fundamental ability to accurately detect an event of interest is an
important first step.

The benefits of this ongoing work are three-fold:

i) We gain detailed quantitative results about our (in-development) CBIR system’s effec-
tiveness at single-phenomenon detection (derived from the underlying TFR module).

ii) The SDO Mission gains additional analysis and verification of the other FFT modules’
results without investing in time-intensive human verification or the costly development
of alternative (and essentially duplicate) modules.

iii) The entire community gains more information and awareness about the SDO mission
and the interdisciplinary achievements of the FFT through open discussion and dissem-
ination of datasets, experiments, and results.
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1.1. Contributions

We present an extension of our CBIR building framework (Banda, 2011) with the creation
of additional components to facilitate comparative analyses using event metadata from au-
tomated detection modules. We report the first comparative evaluation results using the Ad-
vanced Automated Solar Filament Detection and Characterization Code (AAFDCC) module
developed by Bernasconi, Rust, and Hakim (2005). While the AAFDCC module is officially
part of the SDO FFT, it has been producing excellent results from ground-based observato-
ries (Hα images) for over ten years. These observatories capture only a few images each day,
making human verification of the AAFDCC results a practical task – a luxury most other
modules do not have. The availability of this large and already existing single-phenomenon
dataset, and the likelihood of highly accurate metadata from numerous human verification,
makes the AAFDCC module ideal for our preliminary investigations and allows us to estab-
lish a fairly confident benchmark for future module comparisons using SDO data.

The primary beneficiary of this work is the solar physics community. A standardized
(and independent) method of comparative evaluation will verify reporting effectiveness for
other automated modules. As human-based analysis of raw image data becomes increas-
ingly prohibitive, the event repositories will become predominantly populated by automated
findings, and these methods of data validation and comparative evaluation will become more
important than ever before. Furthermore, any improvements to FFT modules, including our
CBIR system, as a result of this work will directly enhance the quality of available tools
for the solar physics community. Our evaluations will also shed further light on the specific
image characteristics exclusive to solar imagery and solar events, contributing directly to the
image processing and computer vision subfields of computer science. Lastly, this work will
produce publicly available datasets (catalogs of event metadata) that others in the computer
science or solar physics communities can readily use for future research.

The rest of the paper is outlined as follows. Section 2 contains background material
relevant to the larger context of our work. Data preprocessing is described in Section 3,
and we present experiments and results in Section 4. Finally, in Section 5 we review our
conclusions and discuss directions for future work.

2. Background

Scientists have been acquiring and archiving satellite imagery of the Sun for over half a cen-
tury, and the stream of images has been virtually uninterrupted for the past 20 years. Like in
other domains, this data stream reflected the technology of the times, and it remained feasi-
ble for solar physicists to analyze images manually by identifying, labeling, and recording
solar phenomena found in each image. The desire for increased spatial and temporal reso-
lution – finer image detail and more frequent image capture – was first met with the 1996
launch of the ESA/NASA Solar and Heliospheric Observatory (SoHO; Domingo, Fleck,
and Poland, 1995) providing more frequent full-disk images, and then with the 1998 launch
of the TRACE providing more detailed partial-disk images (Handy et al., 1999). These ob-
servations (along with others) vastly increased the data stream and revealed the emerging
need to develop automated event detection methods which could replace traditional human
analyses.

Given the current data stream of SDO (approximately 1.5 TB per day), brute-force
human-based analysis is already quite impractical, and it will only get worse as future
data streams will likely be even larger. This work highlights the growing need for inter-
disciplinary work between solar physicists and computer scientists to provide efficient and
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automated algorithms for increasingly complex, large-scale data analysis, retrieval, and vi-
sualization. Furthermore, it emphasizes the importance and potential benefits of data mining
and machine learning to the future of solar physics.

2.1. A CBIR System for Solar Images

A CBIR system facilitates image-based searching of image archives through analyzing the
similarity of content within the images without the use of additional (text-based) metadata
tied to each image. This allows a user to simply provide an image of interest as the search
query and receive results of similar images in the archive, without any requirements of tex-
tual labels or domain expertise. CBIR systems have become very popular in domains with
large image archives and insufficient labeling methods, such as medical image analysis,
Earth sciences (geographic information systems; GIS), and online search contexts (e.g.,
Google image search). Here we focus on the trainable feature recognition (TFR) module
from our CBIR-related work, which uses supervised classification algorithms to identify
different types of solar phenomena that it is trained on. Features within images are distin-
guished by the properties inherent to the image data, and a CBIR system is based primarily
on the similarity of individual image representations (no metadata or event data). Often what
then emerges is the ability to find similar looking phenomena (events, objects, etc.) from
their intrinsically similar image parameter values. The first version of our solar CBIR sys-
tem went live on 1 January 2013, and can be accessed at http://cbsir.cs.montana.edu/sdocbir.
Several new versions are currently under research and development (Banda et al., 2014;
Schuh et al., 2013a).

In previous work, Banda and Angryk (2010a, 2010b) evaluated a variety of possible nu-
merical image parameters extracted from the raw image data, and the best ten were chosen
based on their efficient processing time and classification accuracy (Banda and Angryk,
2010a, 2010b). It is well known that the effectiveness of image parameters greatly depends
on the intrinsic characteristics of the images. Therefore, parameters were chosen that were
empirically well suited for solar images. Preliminary phenomena classification evaluation
was performed on human-labeled TRACE images to determine which image parameters
best represented the phenomena. However, classification accuracy was balanced with the re-
quirement of near real-time processing (parameter extraction from raw image data) as there
is no chance to simply “catch up” to this continuous data stream. So while other parameters
may have been more effective in classification results, they were still discarded if process-
ing time was orders of magnitude larger than the others. Table 1 lists our ten chosen image
parameters, and we direct the reader to Banda and Angryk (2010b) for more information on
the selection process. We use the popular method of grid-based image segmentation which
divides each image into smaller, equal-sized regions named cells. Image parameters are ex-
tracted from each individual cell, as shown in Figure 1.

2.2. Classification Algorithms

In general terms, classification algorithms attempt to find a hypothesis which best explains
a given set of labeled data observations. In the context of our TFR module, a classification
algorithm will build a classification model based on labeled training data in order to predict
the most accurate labels for unseen testing data. We selected Naïve Bayes (NB), Support
Vector Machines (SVM) with a linear kernel function, Decision Trees (C4.5), and Random
Forests (RF) as our four possible classifiers. Linear classifiers, such as NB and SVM, create
class separation through the linear combination of the data attributes. For example, suppose

http://cbsir.cs.montana.edu/sdocbir


A Comparative Evaluation of Automated Solar Filament Detection 2507

Table 1 List of extracted image parameters, where L stands for the number of pixels in our image cell, zi is
the i-th pixel value, m is the mean, and p(zi ) is the grayscale histogram representation of z at i. The fractal
dimension is calculated based on the box-counting method where N(e) is the number of boxes of side length
e required to cover the image cell. Labels are added for easier discussion.

Label Name Equation

P1 Entropy E = −∑L−1
i=0 p(zi ) log2 p(zi )

P2 Mean m = 1
L

∑L−1
i=0 zi

P3 Standard deviation σ =
√

1
L

∑L−1
i=0 (zi − m)2

P4 Fractal dimension D0 = lime→0
logN(ε)

log 1
ε

P5 Third moment (skewness) μ3 = ∑L−1
i=0 (zi − m)3p(zi )

P6 Fourth moment (kurtosis) μ4 = ∑L−1
i=0 (zi − m)4p(zi )

P7 Uniformity U = ∑L−1
i=0 p2(zi )

P8 Relative smoothness R = 1 − 1
1+σ2(z)

P9 Tamura contrast *Algorithm omitted, see Tamura, Mori, and Yamawaki (1978)

P10 Tamura directionality *Algorithm omitted, see Tamura, Mori, and Yamawaki (1978)

Figure 1 An example of our parameter extraction for a single cell in an image.

we have our ten parameters and two class labels (A and B), then a hypothesis could state:
“If (P1 × P2) ≥ x then class A, else class B.” In contrast, decision trees, such as C4.5 and
RF, split the data into disjoint subsets on one attribute (dimension) at a time until adequate
class separation has been achieved in the leaves of the tree. Here, an example hypothesis
could state: “If P1 ≥ x then if P2 ≥ y then class A, else class B.” The tree root tests P1,
which results in two leaves, one where P1 ≥ x and the other where P1 < x. Each of these
leaves now recurse independently performing further tests and splits. In our example, the
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Figure 2 Interpreting the results
of a confusion matrix for binary
classification.

one leaf now checks if P2 ≥ y, which branches into two new leaves, where all items are
labeled class A in one and B in the other.

The Naïve Bayes classifier (Domingos and Pazzani, 1997) is surprisingly accurate in
many applications and executes very fast, making it an ideal candidate for training on the
massive number of images expected in the SDO repository. SVMs (Vapnik, 1995) have
gained tremendous popularity in recent years due to their ability to maximize separation
functions, which is said to improve the overall classifier accuracy on new data that it was
not trained on. The main concern with applying SVMs to large-scale data is their slower
training process, but we include them in our analysis for a more thorough comparison. The
C4.5 classifier (Quinlan, 1986) is one of the most popular decision tree classifiers in the
machine-learning community, and since it takes a greedy approach (i.e., making the locally
optimal choice at each step), it is also quick to compute. The RF classifier (Breiman, 2001),
although slower to train, uses randomization to avoid local optima from poor greedy choices,
providing a much more robust prediction than C4.5. It essentially creates many independent
decision trees (hence a “forest”) and then uses a majority voting strategy to choose the best
label based on the independent predictions of all trees in the forest.

A confusion matrix (or truth table) represents the possible outcomes of predicting a class
label for a data instance. Since we have only two possible values for our class label (binary
classification), there are four possible outcomes for each prediction by our classifiers. The
four-element confusion matrix is shown in Figure 2, where each column of the matrix is
the predicted class label by our classifier and each row is the actual class label, derived
from the AAFDCC module. In our case the filament label is the Positive class and the non-
filament label is the Negative class. Therefore, the four regions represent: true positive (TP),
a filament cell labeled correctly as a filament; false negative (FN), a filament cell labeled
incorrectly as a non-filament; false positive (FP), a non-filament cell labeled incorrectly as
a filament; and true negative (TN), a non-filament cell labeled correctly as a non-filament.
Among other things, we report the classification accuracy and precision statistics, which
have standard definitions defined by this matrix as

Accuracy = TP + TN

TP + FP + FN + TN
, (1)

Precision = TP

TP + FP
. (2)

2.3. Data Acquisition

All images were obtained in FITS format (Pence, 1999) from the publicly available Big
Bear Solar Observatory (BBSO) FTP archive (http://www.bbso.njit.edu/). We downloaded

http://www.bbso.njit.edu/
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a matching list of 523 images previously obtained and analyzed by the AAFDCC module
developers, spanning almost two years from 15 July 2000 to 4 July 2002. We chose this
date range to match previous work that compared to an earlier human-made list of filaments
(Bernasconi, Rust, and Hakim, 2005; Pevtsov, Balasubramaniam, and Rogers, 2003). Al-
though these papers were both focused on determining chirality of filaments, rather than
just detection, the efforts provided additional scrutiny over these images and their identi-
fied filaments. Unfortunately, Pevtsov, Balasubramaniam, and Rogers (2003) did not record
the subset of images used during this time frame, and therefore we cannot easily make a
direct comparison to it. Although not further analyzed in our study, we note that the com-
parative work of Bernasconi, Rust, and Hakim (2005) showed superior results for the FFT
module over the traditional human-based identification of Pevtsov, Balasubramaniam, and
Rogers (2003). We also note several algorithms for filament detection have been developed
in recent years (Gao, Wang, and Zhou, 2002; Shih and Kowalski, 2003; Qu et al., 2005;
Fuller, Aboudarham, and Bentley, 2005), but we chose to use one specific module with a
well known and available dataset for our preliminary investigations.

After establishing the image dataset, we received the corresponding event metadata pro-
duced by the AAFDCC module. The module has been developed to produce several types
of metadata output, including: a text file containing attributes of each discovered filament,
a binary bitmap mask for each image showing each filaments’ location and area on the solar
disk, and a VOEvent file to submit to the heliophysics event knowledgebase (HEK) for each
filament event detected. We chose to use the text-based filament attribute results files during
development as they offer more detailed information than the HEK events, including many
attributes that describe the rough physical characteristics of each filament.

The filament data is in the form of tabular ASCII files (one file for each image), with each
row representing a filament detected by the module. We focus on the Cartesian coordinate
(x, y) offset of filament center from sun center, average filament angle (with respect to the
horizontal equator), and length of filament (in thousandths of solar radii), as these attributes
are used to create our labeled datasets. We also require the use of several FITS header at-
tributes (metadata attached to each image) to normalize each image to the same dimensions
as the AAFDCC module reports on – namely: the solar disk center (in pixel coordinates)
and the solar disk width.

2.4. Data Verification

Before processing the above mentioned data attributes, we first have a look at the collection
of values present in the dataset. This serves as a data integrity verification, and a personal
sanity check, so that we can be more confident when relying on this module to derive labels.

Figure 3 shows four filament attributes provided by the AAFDCC module. First, notice
the expected distributions of filament center pixel locations (as offsets of solar disk center).
Since the BBSO images are 2048 × 2048 pixels, we can see the offsets from center appro-
priately range between ± 1024 pixels. Notice the hot spots of filament activity seen in the
y-axis ranges representing the solar active region belt at that time, and the evenly distributed
x-axis values – both of which confirm the common assumptions of filament occurrence.

The filament length is displayed in a log-based scale, as the distribution has a very long
right tail – the non-transformed values (in thousandths of solar radii) have a minimum of
19, maximum of 1195, and median of 80. The distribution of the filament lengths appears
like a power law with negative coefficient in the logarithm of the filament length, a new
result as far as we know, with perhaps significant implications for models of the formation
of filaments (Martens and Zwaan, 2001). Finally, notice the bi-modal distribution of filament
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Figure 3 Analysis of selected attributes from the AAFDCC module metadata.

angle average, which conforms to the valid range of ±90◦, and seems to indicate a strong
preference towards horizontal and vertical filament inclination. This interesting finding may
also constitute a significant constraint on models for the evolution of solar filaments, but
a more thorough investigation is required to relate the results to prior work (Martin and
Alexander, 2009). As we will discuss in the next section, the worst case for our label creation
is 45◦ angles, which results in the largest and noisiest rectangular boxes. However, we can
clearly see the lowest frequency of values occurs near ±45◦, indicated by the vertical red
lines, and this largely mitigates problem.

We also analyze the necessary FITS header attributes in a similar manner, shown in
Figure 4. The top two charts display the histogram of values given for the solar disk
center (x and y pixel coordinates), with a red line inserted at the absolute image center
(1024 pixels). Both attributes appear normally distributed, but we can see that the Sun cen-
ter is on average slightly lower left from the actual image center. A side-by-side boxplot of
center coordinate values is also shown, and indicates very similar distributions. Finally, we
present a histogram of solar disk width. The distribution is bi-modal with highest frequen-
cies at the extreme values, which is expected due to yearly cycles as the Earth travels around
the Sun in an elliptical path.

3. Data Preprocessing

We perform several data transformation steps on the images and events. First, the image files
were uncompressed and converted to TIFF format. The advantage of TIFF is direct pixel-
based image data which can easily be accessed and manipulated by standard computer vision
techniques. It is also a more compact (but still lossless) file format than FITS, resulting in
identical images of about half the file size.
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Figure 4 Analysis of values found in FITS header keywords.

Table 2 The total number and
size of cells created for the three
grid sizes.

Grid size
(in cells)

Total cells
(per image)

Cell size
(in pixels)

16 × 16 256 128×128

32 × 32 1024 64×64

64 × 64 4096 32×32

3.1. Labeling Methods

The most important step in our process is transforming the raw images and metadata into
usable data for our TFR module. This involves segmenting the images by a rectangular grid
into smaller pieces, or image cells, and defining a class label for each cell indicating whether
it is a filament or non-filament. By varying the number of rows and columns (equally) in the
segmentation grid, we established three levels of granularity: 16 × 16, 32 × 32, and 64 × 64
cells per image, shown in Table 2. For each grid size, the parameter values are extracted from
each image cell and stored individually as a parameter vector containing the ten numerical
values from Table 1. We then add a class label to each parameter vector based on whether
or not the cell is within a filament region determined by the AAFDCC module’s metadata.

Imposing a fixed grid structure is a common approach to discretizing raster-based data
into manageable vector-based objects. It is also well known that this process is inherently
noisy because of the data-independent grid placement (Shekhar and Chawla, 2003). In our
case perhaps only a portion of an image cell shows presence of a filament, or vice versa. No
matter which label is assigned to the cell, it will be partially incorrect, and training/testing
will suffer. We note that this problem will always be present because of the blob-shaped
events overlaying a fixed grid of cells. So while more exact event labels (such as bitmap
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Figure 5 An example BBSO Hα image with overlaid data attributes used to create three labeling methods.
Each filament has a small center labeled region (yellow box), and a larger est-MBR region (blue box) based
on the filament size and angle. The third label method (sub-MBR) uses a combination of these two regions,
by removing all the est-MBR filament cells which are not center filament cells to reduce the noise from these
boundary regions.

masks) might mitigate (but not eliminate) these issues, our initial investigation focuses on
general event descriptions that can be generalized across many modules and event types.

We explore three labeling methods based on the filaments’ centers, an estimated min-
imum bounding rectangle (MBR) which roughly contains the blob-shaped filament, or a
combination of the two, respectively named: center, est-MBR, and sub-MBR. Figure 5 shows
an example of these labeling methods which we will discuss in detail in the following sub-
sections.

3.1.1. Label: Center

The center method is the simplest labeling approach based on only the center coordinates
of each filament, derived from the AAFDCC module’s solar disk center position, and the
center offsets given for each filament. We create square regions 1/10th the width and height
of a cell around each filament center, shown in yellow in Figure 5.

Rather than just marking cells that contain the exact center points, we use sufficiently
small boxes for better representation of filaments whose centers were too close to the cell
edge. Through empirical observations we found these neighboring cells to also predomi-
nantly contain filaments. Therefore, by labeling them all in this manner it not only helped
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reduce noise between classes, but it also allowed us to gather more cells for the much more
scarce filament class label.

3.1.2. Label: Est-MBR

The second method is our estimated minimum bounding rectangle (MBR), est-MBR, which
roughly places a rectangle box around each filament, shown as blue rectangles in Figure 5.
The box dimensions are derived from the length and angle of each filament with respect
to the solar disk size and assumed horizontal axis. The angle measurement, however, is an
average angle over the entire filament and may not always extrapolate well when applied
to the filaments total length. Also, if the angle is close to horizontal or vertical, the derived
box will be quite narrow. For example, consider a highly curved filament, whose angle may
average to near horizontal, but whose length (because of curvature) extends the box far
beyond than the filament’s actual area, such as #13 in Figure 5.

Furthermore, notice that est-MBR labeling can contain many cells that should be labeled
non-filament because the natural blob-shaped filaments do not translate well to rectangular
regions. Similarly, we notice that center labels contain many should-be-filament-labeled
cells – especially with smaller cell sizes where the center captures less of the actual filament.
It should be clear that even with exact filament MBRs the transformation to grid-based cells
will inevitably produce some incorrectly labeled cells.

3.1.3. Label: Sub-MBR

Our final labeling method, sub-MBR, attempts to minimize the number of noisy cells by first
labeling the center cells as filaments, and then removing (“subtracting”) the rest of the est-
MBR cells from the dataset. It should be clear that almost all cells within the center regions
are filaments, and that most of the cells outside of est-MBR are non-filaments (again #13
in Figure 5 is a counter example). Therefore, we use the est-MBR label as an indicator of
(at least a part of) a region of cells that may contain erroneous labels. By simply discarding
these cells that have a higher likelihood of being labeled incorrectly, we expect to reduce
ambiguity between class labels and thereby increase classifier accuracy.

3.2. Dataset Creation

Regardless of labeling method we finish by labeling all cells “remove” which are outside
of a 75◦ heliocentric area of interest, shown as a circular ring in green on the edge of the
solar disk in Figure 5. This is done to match the preprocessing step taken by the AAFDCC
module, with a justification that the edges of the solar disk are too distorted for proper chiral-
ity determination – and technically, filaments are not observed (instead called prominences)
beyond the solar disk (Bernasconi, Rust, and Hakim, 2005). We chose to perform this pro-
cedure last to catch bounding boxes which may have erroneously extended beyond the area
of interest. Figure 6 shows the difference in cell labels over all nine variations of the dataset
for a magnified region of interest from the previously shown full-disk image in Figure 5 –
with the region’s original metadata shown at scale on the top for reference.

Finally, we save each cell’s parameter vector as a data instance in ARFF format
(defined at: http://www.cs.waikato.ac.nz/ml/weka/arff.html) used by the popular and open
source machine-learning software WEKA (Hall et al., 2009). All cells labeled “remove”
are now discarded entirely, leaving a binary class label of either filament or non-filament.
Because of proper data randomization during experiments, we include two identification

http://www.cs.waikato.ac.nz/ml/weka/arff.html


2514 M.A. Schuh et al.

Figure 6 An example of all possible cell labels used to train the classifiers. The region of interest is shown to
scale at the top, displaying the metadata used to derive the labels. The grid size increases from top to bottom
and label methods are from left to right as center, est-MBR, and sub-MBR. The cell labels’ class is indicated
by its outline color: filament (yellow), non-filament (green), and remove-from-dataset (blue).

attributes for each cell: file name and cell index, so that we can trace each cell back to its
proper place in a specific image. These values are placed in the front of the parameter vector,
whereas the label is traditionally placed at the end. For example, consider the cell highlighted
in Figure 1, and assuming it contains a filament, we have the parameter vector cell4,3 =
〈image-name, 50, 4.4309, 33.8157, 13.9262, 1.2423, 5.1317, 31.1156, 0.0645, 0.0002,

2.9546,0.0014,filament〉.
The identification attributes are removed prior to training and testing so that they do

not influence any outcomes, such as learning that a certain cell index is prone to filaments.
Figure 7 shows the distribution of data instances for each variation of our dataset.
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Figure 7 The total number of each type of cell label prior to final dataset creation. The label types are shown
over all three grids and label methods, including total number of cells.

4. Experiments and Results

4.1. Overview

The focus of our experiments is to determine how well our trainable feature recognition
(TFR) module can learn to detect solar filaments, based on metadata created by the Ad-
vanced Automated Solar Filament Detection and Characterization Code (AAFDCC) module
(Bernasconi, Rust, and Hakim, 2005). The TFR module is part of a larger framework previ-
ously developed by the SDO FFT at Montana State University to create a general purpose
CBIR system for solar image archives (Banda, 2011). Before describing the setup, we first
mention several important assertions.

The AAFDCC module has been extensively developed over ten years for the specific
purpose of detecting and analyzing filaments in Hα, and we do not expect to – or intend to –
out-perform it with our general purpose CBIR framework and its recent adaptation for these
experiments. Note that we focus only on the detection of filaments in single images, and we
do not perform filament-specific analysis (such as determining chirality), or attempt to track
filaments over time or merge broken filament segments – all of which the AAFDCC module
now does. We do, however, still gain valuable information as regards our ability to detect fil-
aments while also independently analyzing and validating the automatically reported results
of the AAFDCC module.

It is important to reiterate that we have no equivocally true labels to verify whether or not
an event (in this case a filament) actually exists in a specified region of an image. This is an
inherent problem with solar physics imagery, as even human-based labels can contain biased
results (Bernasconi, Rust, and Hakim, 2005). Therefore, we cannot simply evaluate accuracy
objectively, e.g., the module reported 92 % of all existing filaments in the dataset, because
the true set of filaments is unknown. Instead, we have to assume truth in the AAFDCC
module-based labels that are used to train and evaluate our TFR module. This means that,
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Figure 8 The accuracy and timing (in seconds) results of random over-sampling (ROS) and random under-
sampling (RUS) methods for dataset class balancing.

for example, if we reported 100 % detection accuracy, then what we are really saying is that
we recognized exactly the filaments reported by the AAFDCC module, and no others – even
if others exist, or some do not.

4.2. Class Balancing

There are nine total datasets created by the combination of three grid sizes and three label
methods, and each experimental run starts with one of these initial datasets. We first ran-
domized the data and balanced the number of data instances in each class to avoid a biased
classification model, as there are far fewer cells labeled as filament than non-filament. With
highly skewed class sizes, the classifier may find that the best training strategy simply ig-
nores the smaller class. For example, if 90 % of the data was labeled non-filament, then a
classifier could simply say everything has a non-filament label, and achieve 90 % accuracy.
Obviously this level of accuracy is a false assurance of our prediction abilities. Therefore, we
explored the typical choices of random over-sampling (ROS) and random under-sampling
(RUS) to balance the dataset (Japkowicz, 2000), where ROS randomly duplicates instances
of the rarer (less frequent) class to match the number of instances in the abundant (more
frequent) class, and RUS randomly removes instances from the more frequent class until it
matches the size of the less frequent class.

While over-sampling was generally capable of producing better results, it was more so
because of repetitive training on identical cells, some copies of which could have been
present in both train and test sets, than simply having a larger dataset. Also, under-sampling
produces the smallest dataset possible, while retaining the important – and fully unique –
set of filament cells, which drastically decreases memory requirements and run times during
experimentation. Figure 8 shows the classification accuracy percentage and running time in
seconds (to build the model and evaluate it) for all four classifiers and all three label types
on the 32 × 32 grid. Regarding memory requirements, the 32 × 32 grid with the center label
method, for example, produced over 12 times more non-filament cells than filament cells
(roughly 300 000 vs. 25 000). While this results in an over-sampled dataset of 600 000 in-
stances, the under-sampled set is only 50 000 instances, or about 8 % of the size of the
over-sampled set and less than one-sixth (16.67 %) the size of the original (unbalanced)
dataset. The final dataset sizes (after RUS) are given in Table 3, where each class is exactly
half of the total instances reported (i.e., balanced).
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Table 3 Total data instances for
each dataset variation after all
preprocessing.

Label 16 × 16 32 × 32 64 × 64

Center 41 038 44 760 45 080

Est-MBR 62 426 130 278 320 478

Sub-MBR 41 038 44 760 45 080

Figure 9 The classifier average accuracy results for each type of experimental run.

4.3. Comparative Evaluation

We evaluate all nine datasets over four different classification models to analyze the 36
unique combinations of grid sizes, label methods, and classifiers. Since this is an overview
of how well each combination might work, and not how we can best fine-tune a classifier for
a specific grid or label method, we use the default settings (provided by WEKA) for the fol-
lowing four classifiers: NB, J48 (WEKA’s version of the C4.5 decision tree), RF, and SVM.
While many other options exist, these four are quite commonly used by the machine-learning
community.

Each unique combination was evaluated 12 times and the results were averaged for statis-
tical reporting. Each evaluation began with an initial dataset, before being balanced (RUS),
and then randomly separated into a standard two-thirds training set and one-third testing set.
Randomization occurs during both operations (for each new run) to ensure there is no bias
in the order or selection of non-filament cell instances in the dataset.

We record the statistics: accuracy, TP, FP, FN, TN, run time (in seconds), precision, and
the ROC (receiver operating characteristic) curve – all of which can be found in full detail
in the Appendix.

First we present the average accuracy of each unique combination, shown in Figure 9. In
general, we can see that the est-MBR label performs the worst over each grid size, and the
sub-MBR label performs slightly better than the center, which was expected. While Naïve
Bayes is less accurate overall, the other three classifiers perform similarly, with Random
Forests being the most accurate in most cases. The best accuracy of 84.2 % was achieved
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Figure 10 Run time (log seconds) for each classifier over grid size and label type.

Figure 11 The average accuracy and time (in seconds) results of all four classifiers aggregated over each
type of grid and label.

on the 64×64 grid using the sub-MBR labels and the RF classifier. Also, a noteworthy result
of 82.7 % was recorded in the same scenario but while using the center labels. In most
cases, the J48 classifier was very closely behind RF. Again, we recall that “accuracy” here
refers to an agreement with the AAFDCC module metadata, and not an absolute indisputable
accuracy.

Figure 10 presents the time taken (in seconds) to train and test each classifier. The time
scale is logarithmic, and it is clear that the est-MBR labels take significantly more time to
evaluate. Not surprisingly, the classifiers took much longer on the larger datasets created
from finer grid segmentation. Note that the fastest classifier in all cases was NB, and the
slowest was RF or SVM.

The general effects of grid size and label method are better shown when we aggregate
the accuracy and run time of the classifiers together. Presented in Figure 11, we can see
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Figure 12 An example of visualizing the confusion matrix results on an image.

that as the grid size increases, est-MBR accuracy declines while the other two label methods
increase similarly in accuracy. This makes sense, because there will be more cells labeled
incorrectly and subsequently trained on with the est-MBR method. We also note that the
difference of performance between the center and sub-MBR methods shrinks as we increase
the grid size, from: 2.7 % to 1.5 %.

4.4. Visualizing the Results

While the previous experiment gave us an excellent indication of our ability to detect fila-
ments, we now visually explore how well we actually distinguish filaments in the segmented
images. We display each tested image and outline cells for three outcomes:

i) The classifier labeled the cell filament, and so did the AAFDCC module.
ii) The classifier labeled the cell a filament, but the AAFDCC module did not.

iii) The classifier did not label the cell as a filament, but the AAFDCC module did.

These three outcomes directly correspond to the confusion matrix results of TP, FP, and
FN, respectively. The TN cells – the classifier and AAFDCC module agree the cell does
not contain a filament – were ignored here for a cleaner visualization, and because many
of these should-be-tested cells are missing from an image (due to under-sampling), which
would make the results less clear.

An example of our visualization is shown in Figure 12 for the RF classifier on the 32×32
grid. The same image and region of interest from Figure 6 are shown again, with the three
columns representing each labeling methods. We can see that in all three cases the major-
ity of cells are correctly classified (green – TP), but the est-MBR labels have many more
incorrectly labeled cells (red – FN, and blue – FP) almost all of which are in ambiguous
and noisy areas of filament regions. A great example of the power of a supervised classi-
fier can be seen for the filament in the bottom left of the cut-out region (again #13 from
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Figure 13 The classification accuracy and time (in seconds) over several parameter subsets.

Figure 5). Recall the poor est-MBR label of this filament (Figure 6), and notice the results
of testing our classifier. We can see that two cells are labeled FN because our label says
those are filament cells, even though they are clearly not. Similarly, two cells are labeled
FP because our labels says those are non-filament cells, even though they clearly are. Note
that all four of these cells negatively impact our current measure of classification accu-
racy.

4.5. Attribute Evaluation

It is important to investigate which attributes (parameters) work best for different kinds
of solar events as well as different types of solar imagery. If we can reduce the attributes
needed for each classifier, then we can better streamline our TFR module when tackling
many simultaneous events at once in the future.

Evaluation was performed identical to the full comparative evaluation, except we chose
a different subset of attributes instead of varying the grid size and label method. All evalua-
tions were performed on the 64×64 grid with the center labeling method. We first re-run the
evaluation with all attributes as our initial benchmark, and then we try each attribute indi-
vidually, before trying several promising subsets. The attribute subsets were chosen through
empirical evidence from their individual results as well as through several attribute evalua-
tion ranking methods provided by WEKA, which list the attributes in order of importance
towards distinguishing the two classes. These methods included: Information Gain, CfsSub-
setEval, and Principal Component Analysis. Note that all of these methods allowed us to
chose attributes independently of any domain expertise or knowledge of which attributes
might be more promising. While expert knowledge could potentially help these decision
processes, we focus on the automated/non-expert solution guided by the machine-learning
community.

The accuracy results for these subsets are presented in Figure 13. Included is a subset of
poorly performing attributes, showing that even when combined, parameters 2 and 9 do not
work well in this classification task. However, we find a high level of accuracy can still be
achieved when using only four parameters (1, 3, 8, and 10). This elimination of 60 % of the
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parameters results in an accuracy of 79.6 %, compared to the original 82.7 %, a reduction of
only 3.1 %.

5. Conclusion and Future Work

This work is the first attempt to establish a comparative evaluation environment for au-
tomated event detection modules. We have shown validation of the AAFDCC module
(Bernasconi, Rust, and Hakim, 2005) over a two year span of images. Furthermore, our
TFR module successfully used this metadata to achieve a classification accuracy of over
82 %, using only center labels and a single (J48) decision tree classifier with no algorithmic
tuning or domain expertise. We also find that we can achieve a quite similar accuracy using
only a handful of the original attributes, meaning more computationally efficient training
and detection of filaments within our module. The success of this work provides the mo-
tivation to fully realize a comparative evaluation framework for automated event detection
modules based on our SDO FFT TFR module.

The next step involves extending our work to larger datasets and other events. We plan to
first re-evaluate our filament detection abilities with the AAFDCC module’s HEK reported
metadata over the entire 10 years of module operation for a fully comprehensive look at
solar filaments in the automated reporting age. After that we will move on to other SDO FFT
modules and events, such as active regions, coronal holes, and sunspots. In preparation for
this future work, we recently published an initial six month dataset containing over 15 000
SDO images and 24 000 region-based event labels from six automated SDO FFT modules
(Schuh et al., 2013b).

We also plan to approach open research topics in spatial/temporal classification and eval-
uation, primarily motivated by our ongoing discussion of filament #13 throughout this paper.
By incorporating spatial knowledge of image cell neighborhoods, we could further mitigate
the negative effects of erroneous labeling. For example, the penalty for mis-classifying a
cell that has neighbors of each class type could be less than that of mis-classifying a cell
amongst neighbors of all one type. In other words, if we erroneously label a single cell a
filament in the middle of a quiet sun (non-filament) region, this would be a “worse” er-
ror than if the cell happened to be adjacent to an actual filament. Furthermore, this spatial
knowledge can be included in the classifier itself (especially given complementary domain
knowledge), weighting its prediction decision before we even evaluate the outcome. For ex-
ample, it would be nearly impossible for a single cell to be an active region if all neighbor
cells were labeled as a coronal hole. Both of these applications contribute to active areas of
research in computer science.
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Appendix

The appendix contains the complete tabulated results for the discussed experiments. The
summarized charts and insights were gathered from this data.
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Table 4 Complete attribute evaluation results. Note we do not try every possible combination of attributes,
as discussed in the text. The first column denotes the set of attributes used for the evaluation.

Atts Acc TP FN FP TN Time ROC PRE

1 0.668 0.337 0.163 0.169 0.331 26.520 0.73 0.67

2 0.511 0.258 0.241 0.249 0.253 28.800 0.52 0.51

3 0.693 0.350 0.151 0.156 0.343 26.100 0.75 0.69

4 0.624 0.265 0.235 0.141 0.359 19.560 0.66 0.63

5 0.596 0.303 0.198 0.206 0.294 26.880 0.64 0.6

6 0.582 0.296 0.205 0.213 0.286 27.240 0.62 0.58

7 0.659 0.336 0.166 0.175 0.323 24.780 0.71 0.66

8 0.741 0.381 0.119 0.140 0.360 19.740 0.81 0.74

9 0.530 0.268 0.231 0.239 0.263 28.860 0.55 0.53

10 0.750 0.362 0.137 0.113 0.388 21.360 0.82 0.75

2, 9 0.559 0.303 0.196 0.245 0.255 31.980 0.58 0.56

1, 3 0.769 0.403 0.096 0.135 0.366 27.540 0.83 0.77

8, 10 0.758 0.391 0.109 0.133 0.367 25.680 0.82 0.76

1, 3, 8 0.778 0.410 0.090 0.133 0.368 30.060 0.84 0.78

1, 3, 10 0.788 0.414 0.085 0.127 0.374 29.820 0.85 0.79

1, 3, 8, 10 0.796 0.420 0.083 0.121 0.376 29.820 0.86 0.8

All 0.827 0.432 0.068 0.105 0.395 32.940 0.89 0.83

Table 5 Comparative evaluation results for all dataset variations. The three grid sizes are separated by a
horizontal line, and presented in order of: 16 × 16, 32 × 32, and 64 × 64. Time is given in seconds, and the
receiver operating characteristic (ROC) and precision (PRE) are averaged over both classes.

Box Model Acc TP FN FP TN Time ROC PRE

Center NB 0.625 0.406 0.095 0.281 0.218 2.160 0.683 0.645

Center J48 0.738 0.400 0.100 0.161 0.339 7.140 0.771 0.742

Center SVM 0.725 0.367 0.132 0.143 0.358 11.700 0.725 0.725

Center RF 0.738 0.402 0.096 0.166 0.336 18.300 0.798 0.743

Est-MBR NB 0.631 0.405 0.094 0.275 0.225 2.580 0.688 0.651

Est-MBR J48 0.731 0.372 0.127 0.142 0.359 11.700 0.773 0.731

Est-MBR SVM 0.720 0.362 0.137 0.143 0.358 23.700 0.720 0.720

Est-MBR RF 0.727 0.389 0.110 0.163 0.338 29.220 0.792 0.730

Sub-MBR NB 0.643 0.408 0.091 0.266 0.235 1.860 0.708 0.664

Sub-MBR J48 0.765 0.401 0.100 0.135 0.365 6.960 0.799 0.767

Sub-MBR SVM 0.752 0.378 0.121 0.127 0.374 12.300 0.752 0.752

Sub-MBR RF 0.774 0.413 0.086 0.140 0.361 16.920 0.841 0.777
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Table 5 (Continued)

Box Model Acc TP FN FP TN Time ROC PRE

Center NB 0.669 0.393 0.107 0.223 0.276 4.980 0.736 0.679

Center J48 0.777 0.411 0.087 0.136 0.365 9.780 0.824 0.780

Center SVM 0.767 0.392 0.109 0.125 0.375 15.720 0.767 0.767

Center RF 0.779 0.421 0.081 0.141 0.358 21.780 0.839 0.783

Est-MBR NB 0.635 0.388 0.112 0.252 0.248 7.500 0.697 0.647

Est-MBR J48 0.709 0.344 0.156 0.135 0.366 27.420 0.764 0.710

Est-MBR SVM 0.702 0.340 0.159 0.138 0.362 101.760 0.702 0.703

Est-MBR RF 0.687 0.366 0.134 0.178 0.321 77.640 0.751 0.689

Sub-MBR NB 0.685 0.397 0.103 0.212 0.287 4.560 0.757 0.694

Sub-MBR J48 0.801 0.414 0.085 0.114 0.387 9.360 0.849 0.803

Sub-MBR SVM 0.789 0.398 0.102 0.109 0.391 14.280 0.789 0.789

Sub-MBR RF 0.804 0.424 0.075 0.120 0.381 20.460 0.871 0.807

Center NB 0.758 0.383 0.116 0.126 0.376 17.280 0.825 0.759

Center J48 0.825 0.422 0.077 0.098 0.403 21.300 0.879 0.826

Center SVM 0.822 0.415 0.084 0.094 0.407 23.400 0.822 0.822

Center RF 0.827 0.432 0.068 0.105 0.395 32.940 0.889 0.829

Est-MBR NB 0.641 0.297 0.204 0.155 0.345 24.960 0.694 0.643

Est-MBR J48 0.671 0.288 0.212 0.117 0.383 71.520 0.727 0.678

Est-MBR SVM 0.667 0.294 0.206 0.127 0.373 536.460 0.667 0.671

Est-MBR RF 0.636 0.338 0.162 0.203 0.298 249.360 0.696 0.637

Sub-MBR NB 0.772 0.384 0.116 0.112 0.388 15.480 0.840 0.772

Sub-MBR J48 0.841 0.423 0.076 0.084 0.417 19.680 0.894 0.841

Sub-MBR SVM 0.837 0.419 0.080 0.083 0.418 20.580 0.837 0.837

Sub-MBR RF 0.842 0.434 0.064 0.093 0.409 30.000 0.907 0.844
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