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Abstract We present a code for solving the nonlinear force-free equations in spherical polar
geometry, with the motivation of modeling the magnetic field in the corona. The code is an
implementation of the Grad–Rubin method. Our method is applicable to a spherical domain
of arbitrary angular size. The implementation is based on a global spectral representation for
the magnetic field that makes no explicit assumptions about the form of the magnetic field
at the transverse boundaries of the domain. We apply the code to a bipolar test case with
analytic boundary conditions, and demonstrate the convergence of the Grad–Rubin method
and the self-consistency of the resulting numerical solution.

1. Introduction

Basic properties of the solar coronal magnetic field such as its strength, direction, and three-
dimensional structure, cannot be determined by observation at present, and this motivates
modeling of the coronal magnetic field. In the corona the pressure and gravity forces are
too weak above active regions to balance the magnetic (Lorentz) force (Metcalf et al., 1995;
Gary, 2001), therefore it is common to model the coronal magnetic field as force-free, i.e.
a magnetic field where the Lorentz force is equal to zero, and electric currents flow along
magnetic-field lines (Sturrock, 1994). Force-free models of the corona were reviewed by
Sakurai (1989) and Wiegelmann and Sakurai (2012).

A force-free magnetic field satisfies (Sturrock, 1994)

∇ × B = α(r)B, (1)

and

∇ · B = 0, (2)
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where the scalar field α(r) is related to the electric current density in the volume J by

J = α(r)B/μ0. (3)

Equations (1) and (2) require boundary conditions to determine a solution, and this defines
the force-free boundary value problem. The correct boundary conditions for a well-posed
formulation of the problem were outlined by Grad and Rubin (1958). In the Grad–Rubin
formulation the boundary conditions are the normal component of the magnetic field, Bn,
and the value of α over one polarity of the field in the boundary, i.e. values of α are specified
over points in the boundary where Bn < 0, or where Bn > 0. To model the coronal magnetic
field the boundary conditions are assumed at the photosphere and the model is solved in
the coronal volume. In theoretical studies the boundary conditions usually have an analytic
form (e.g. Régnier, 2009; Régnier, 2012), and in observation-based studies the boundary
conditions are typically derived from spectro-polarimetric observations of the photospheric
magnetic field (e.g. Schrijver et al., 2008; De Rosa et al., 2009, and see also the references
in Wiegelmann and Sakurai, 2012).

The force-free boundary value problem is nonlinear in the general case, where α is a
function of position. When α is constant, the equations are linear and closed-form analytic
solutions can be found (Nakagawa and Raadu, 1972; Alissandrakis, 1981). However, the
linear model is unphysical in that the solutions in general have unbounded energy in an
unbounded space (Alissandrakis, 1981). For the nonlinear problem, analytic solutions can
be found using the generating function method (Sturrock, 1994) for particular symmetries,
for example for rotational symmetry (Low and Lou, 1990). The general nonlinear problem
has no known analytic solution and must be treated numerically. For this purpose a number
of methods have been developed. These methods differ in their formulation of the boundary
value problem and their choice of solution method (for reviews see Wiegelmann (2008) and
Wiegelmann and Sakurai (2012)).

Most of the force-free methods in use solve the force-free equations in Cartesian geom-
etry, with the corona corresponding to the half-space z > 0 and the photosphere represented
by the z = 0 plane (Sakurai, 1981; Wu et al., 1990; Wheatland, Sturrock, and Roumeliotis,
2000; Wiegelmann, 2004; Wheatland, 2007; Valori, Kliem, and Keppens, 2005). This intro-
duces two problems into the modeling. The first problem is that the Cartesian approximation,
which assumes that the curvature of the Sun is negligible, becomes inaccurate when con-
sidering large regions on the Sun (Gary and Hagyard, 1990). Full-disk spectro-polarimetric
observations of the photospheric magnetic field are now available from the Helioseismic
and Magnetic Imager (HMI: Schou et al., 2012) onboard the Solar Dynamics Observa-
tory (SDO: Pesnell, Thompson, and Chamberlin, 2012). Coronal field modeling based on
these data must use spherical coordinates. The second problem concerns the assumption of
boundary conditions on the transverse boundaries of the Cartesian domain. In practice, the
infinite half-space is replaced by a finite numerical domain, meaning boundary conditions
are required on the top and side boundaries of the volume in addition to the z = 0 plane.
In general, ad hoc boundary conditions are used, such as assuming periodicity, or assuming
that no magnetic flux leaves the top or side boundaries. These boundary conditions are arti-
ficial and do not necessarily represent physical conditions in the corona. Spherical modeling
avoids this problem, because a spherical domain can encompass the entire corona with no
transverse boundaries, in which case ad hoc boundary conditions are not required.

Modeling the entire corona avoids the need for boundary conditions apart from those at
the photosphere, but introduces other difficulties. The description of the polar field presents
difficulties both observationally and numerically. The observational difficulties are two-fold.
Firstly, due to the Sun’s tilt, only one pole is observed from Earth at a time. Secondly,
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spectro-polarimetrically derived magnetic-field values may be inaccurate near the poles
where there may be significant unresolved mixed-polarity magnetic flux. This can lead to
partial cancellation of the polarization signal at each pixel. Quiet-Sun regions also contain
mixed polarity flux, but the problem is very likely to be worse close to the poles because of
line-of-sight effects. For these reasons the polar field is usually interpolated from observa-
tions at lower latitudes (e.g. Sun et al., 2011). The co-ordinate singularities in the spherical
polar system that occur at the poles also pose a problem for numerical methods. For finite
difference methods the coordinate poles require special treatment, and with spectral methods
specific grids are required to avoid problems (Boyd, 2001).

In this paper we outline an implementation of the Grad–Rubin method for solving the
nonlinear force-free model in spherical geometry. Our method is applicable both to the entire
Sun and to regions with restricted angular extent. Other methods for solving the force-free
model in spherical geometry have been developed. Wiegelmann (2007) presented a gener-
alization of the optimization method, and Amari et al. (2013) presented a finite-difference
implementation of the Grad–Rubin method. Our method differs from both of these and fea-
tures a new spectral method for computing the magnetic field based on an expansion of the
field in terms of global basis functions. This solution can be applied to a spherical region
of the corona of arbitrary angular size, in which case explicit assumptions about the mag-
netic field on the transverse boundaries of the spherical region are not required, even for a
spherical wedge with restricted extent. However, for the latter case we impose additional
constraints on the boundary conditions at the photosphere. Specifically, we assume that the
radial component of the field and the electric current density vanish at the photosphere out-
side the wedge. We present the application of our method to a simple test case with analytic
boundary conditions to demonstrate the convergence of the method and the self-consistency
of the solution.

This paper is structured as follows: In Section 2 we outline the specific form of the force-
free boundary value problem that we solve, and we outline the Grad–Rubin iteration method.
In Section 3 we present the details of our implementation of the Grad–Rubin method, in-
cluding the spectral solution for the magnetic field that is used. In Section 4 we describe the
test case that we used and show the results of applying the code to the test case. Finally, in
Section 5 we present a discussion of the results and a conclusion.

2. Theory

In this section we outline the two boundary value problems that we solve, and give a brief
description of the Grad–Rubin method. We consider solutions of the nonlinear force-free
Equations (1) and (2) in two domains. The first domain is the entire corona, and the second
is a spherical wedge of limited angular extent.

2.1. Boundary Value Problems

We first consider the domain �global, which is defined as the set of points with spherical
polar coordinates

�global =
{
(r, θ,φ) | r ∈ [R�,∞), θ ∈ (0,π),φ ∈ [0,2π)

}
, (4)

where θ is the polar angle, φ is the azimuthal angle, r is the radius, and R� is the radius of
the Sun. We refer to this domain as global because it covers a complete 4π steradians, and
its lower boundary is the entire photosphere.
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It is necessary to specify boundary conditions on the force-free equations at the pho-
tosphere. Following the prescription of Grad and Rubin (1958), the appropriate boundary
conditions are the radial component of B,

B · r̂|r=R� = Bn(θ,φ), (5)

and the force-free parameter

α|r=R� = α0(θ,φ) (6)

over one polarity of Bn, i.e. values of α0 are specified either where Bn < 0 or where Bn > 0.
It is also assumed that the magnetic field vanishes for large r , i.e.

lim
r→∞ B = 0. (7)

This asymptotic boundary condition matches that used by some Cartesian codes (Wheatland,
2007).

In some cases Bn and α0 may only be nonzero over a small range of θ and φ. In this
situation it is unnecessary to use a global domain. A more appropriate choice is

�wedge = {
(r, θ,φ) | r ∈ [R�,∞), θ ∈ [θmin, θmax], φ ∈ [φmin, φmax]

}
, (8)

i.e. a domain external to a sphere, but restricted in angular extent. We refer to this as a spher-
ical wedge. In principle, it is necessary to prescribe boundary conditions at the transverse
boundaries of this domain, but in Section 3 we explain how to obtain solutions for which
this is unnecessary. This approach assumes that Bn and α0 are zero everywhere outside the
domain �wedge.

Here we are using the Grad–Rubin boundary conditions, which assume α0 over a single
polarity of Bn, but observational data provides α0 over both (Landi Degl’Innocenti and Lan-
dolfi, 2004). This means that two possible solutions can in principle be found for a given
data set, corresponding to the two choices of polarity. If the data are consistent with the
force-free model, then the two solutions will be the same. However, in practice it is found
that the two solutions differ significantly (e.g. Schrijver et al., 2008). This may be attributed
to the departure of the photospheric field from the force-free state due to significant pressure
and gravity forces (Metcalf et al., 1995). Wheatland and Régnier (2009) presented a method,
based on an implementation of the Grad–Rubin method in Cartesian coordinates, for using
the data from both polarities to construct a single self-consistent force-free solution. Here
we present only the basic Grad–Rubin method, but in principle the Wheatland and Régnier
(2009) self-consistency procedure may be applied here also.

2.2. Grad–Rubin Iteration

The Grad–Rubin method is an iterative method for solving the nonlinear force-free equa-
tions (Grad and Rubin, 1958). The method has previously been implemented in Cartesian
coordinates (Sakurai, 1981; Amari, Boulmezaoud, and Mikic, 1999; Wheatland, 2007) and
in spherical coordinates (Amari et al., 2013). It replaces the nonlinear Equations (1) and
(2) with a pair of linear equations that are solved repeatedly in a sequence of iterations.
We denote a quantity after n Grad–Rubin iterations using a superscript in square brackets,
e.g. B[n]. One Grad–Rubin iteration may be written

∇α[n+1] · B[n] = 0, (9)

and

∇ × B[n+1] = α[n+1]B[n]. (10)
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Equation (9) updates the force-free parameter α in the volume subject to boundary condi-
tions on α. Equation (10) updates the magnetic field in the volume using the new α values
together with the magnetic field from the previous iteration subject to the boundary condi-
tions on the normal component of the field. Equations (9) and (10) are repeatedly solved
until the magnetic field B[n] and the force-free parameter α[n] converge at all points in the
volume. The iteration is initiated using a potential field B0 constructed from the boundary
conditions on Bn. We present the details of our method for solving Equations (9) and (10)
numerically in two spherical domains in Section 3.

3. Numerical Implementation

In this section we outline our implementation of the Grad–Rubin method in code. The Grad–
Rubin method requires an initial potential field, a method for solving Equation (9) to update
α, and a method for solving Equation (10) to update the magnetic field.

The numerical grid used is a spherical polar grid with Nr points in the r direction, Nθ

points in the θ direction, and Nφ points in the φ direction. The φ and r grids are uniformly
spaced. The θ grid is either a Gauss–Legendre grid or is uniform (Press et al., 2007). The
Gauss–Legendre grid is required to accurately represent the solution near the poles and is
only necessary for constructing solutions in the global domain. The grid is finite in the radial
direction, and has a maximum r value that we call Rmax.

3.1. Spectral Solution for the Potential Field

An initial potential field is calculated as a starting point for the Grad–Rubin iteration. We
used a spherical harmonic solution for the potential field. The spherical harmonics are global
basis functions, meaning they are orthogonal over the domain �global. It can be shown that,
in terms of spherical harmonics Ylm(θ,φ), the components of the potential field satisfying
the boundary condition Equation (7) at infinity are (Altschuler and Newkirk, 1969)

Br =
∞∑

l=0

l∑

m=−l

alm

(
R�
r

)(l+2)

Ylm(θ,φ), (11)

Bθ =
∞∑

l=0

l∑

m=−l

− alm

l + 1

(
R�
r

)(l+2)
∂Ylm(θ,φ)

∂θ
(12)

and

Bφ =
∞∑

l=0

l∑

m=−l

− imalm

l + 1

(
R�
r

)(l+2)
Ylm(θ,φ)

sin θ
, (13)

where the coefficients alm are given by

alm =
∫ 2π

0

∫ π

0
Bn(θ,φ)Y ∗

lm(θ,φ) sin θ dθ dφ, (14)

and where i2 = −1. These equations are complex valued and the physical magnetic field is
the real part. Equations (11) – (14) can be obtained from the well-known potential source-
surface solution (Altschuler and Newkirk, 1969) by considering that solution in the limit
where the source surface is located at infinity.
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In practice, the series must be truncated after a finite number of terms. We truncate the
series at a finite l value that we call L, i.e. we perform the summation over all the spherical
harmonics with l ≤ L and |m| ≤ l. This approach results in a truncation error in B that is
position independent (Boyd, 2001). The series is a Fourier series in φ, so it is natural to
choose L to correspond to the Nyquist frequency (Boyd, 2001),

L = π

�φ
, (15)

where �φ is the uniform spacing of points in φ. In practice, the right-hand side of Equa-
tion (15) is rounded to the nearest integer.

Equations (11) – (14) provide the magnetic field at all points in the global domain �global.
The solution in the restricted domain �wedge can be found by evaluating the global solution
only at points contained in �wedge. This allows the solution in �wedge to be found without
assuming specific boundary conditions on the transverse boundaries of �wedge. Since we
assume that Bn is zero outside �wedge, the integral in Equation (14) need only be computed
over the restricted domain.

Tóth, van der Holst, and Huang (2011) reported the nonconvergence of the spectral se-
ries given by Equations (12) – (13). The nonconvergence results in erroneous magnetic-field
values (particularly near the poles) for large L. The problem occurs because the numeri-
cal grid used by Tóth, van der Holst, and Huang (2011) is not sufficiently dense near the
poles to accurately represent the rapid variation of the spherical harmonics. For calculations
in �global we use a Gauss–Legendre grid that accurately represents the spherical harmonics
near the poles (Boyd, 2001). For calculations in �wedge, we use a uniform grid in θ , which
is rotated such that the region of interest is isolated from the poles, and does not encounter
this problem.

The Gibbs phenomenon (ringing produced in representing discontinuous changes) is a
problem for all spectral methods (Boyd, 2001). The problem is significant when spectral
potential field solutions are calculated from observational data (Tóth, van der Holst, and
Huang, 2011). Including more terms in the series improves the situation but does not elimi-
nate the problem. It is important to note this particular caveat when applying and interpreting
results produced by spectral methods. It should be noted that finite-difference methods also
become inaccurate at locations with steep gradients in the field that is represented.

A parallel code is used to sum the spectral series. The coefficients alm are calculated
using Equation (14), and then Equations (11) – (13) are evaluated with the sums performed
using partial sums, i.e. each series is broken into a number of subseries, each of which
is summed independently, and then the final result is obtained by adding the partial sums.
The parallel implementation is written for a distributed memory multiprocessor. The method
uses a combination of the Message Passing Interface (MPI) (Snir, Otto, and Huss-Lederman,
1998) and OpenMP (Chandra et al., 2001) and is described in Appendix B.

3.2. Field-Line-Tracing Solution for the Current-Update Step

To solve Equation (9) we employ the field-line-tracing method that has been used in Grad–
Rubin implementations in Cartesian coordinates (Amari, Boulmezaoud, and Mikic, 1999;
Wheatland, 2007), and in spherical coordinates (Amari et al., 2013). According to Equa-
tion (9), α[n+1] is constant along magnetic-field lines. The field-line-tracing method deter-
mines α[n+1] in the volume by tracing the field line threading each grid point until it crosses
the lower boundary, and the value of α0 at the crossing point in the boundary is assigned to
the grid point. The field line is traced in the forward direction if boundary values for α0 are
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chosen where Bn < 0, and is traced in the backward direction if boundary values for α0 are
chosen where Bn > 0. Points in the volume connected to field lines that leave the domain
through the outer boundary r = Rmax are assigned α[n+1] = 0 at the point in the volume. In
addition, points in the volume threaded by field lines that leave the transverse boundaries of
�wedge are assigned α[n+1] = 0 at the point in the volume. The tracing is performed using
fourth-order Runge–Kutta integration (Press et al., 2007), and trilinear interpolation is used
to determine B[n] at points along the field line that do not coincide with a grid point.

3.3. Spectral Solution to Ampere’s Law for the Field-Update Step

To solve Equation (10) we use a spectral solution. The magnetic field is decomposed into
the sum of a potential field and a nonpotential field, i.e.

B[n+1] = B0 + B[n+1]
c , (16)

where B[n+1]
c satisfies

∇ × B[n+1]
c = J[n+1], (17)

with

J[n+1] = α[n+1]B[n]/μ0, (18)

and where B0 is the potential field matching the boundary conditions on Bn calculated using
the method of Section 3.1. It is only necessary to update B[n+1]

c at each iteration as B0 does
not change. Also, since B0 satisfies the boundary conditions on the normal component of
the field at r = R�, it follows that

B[n+1]
c

∣∣
r=R� = 0, (19)

and from Equation (7) we require

lim
r→∞ B[n+1]

c = 0. (20)

Equations (19) and (20) define the boundary conditions on B[n+1]
c .

We use a spectral solution to Equation (17) that is analogous to the spherical harmonic
solution for the potential field. We express B[n+1]

c as a series using the vector spherical har-
monics (Morse and Feshbach, 1953), i.e.

B[n+1]
c =

∞∑

l=0

l∑

m=−l

B
(1)
lm (r)Ylm + B

(2)
lm (r)� lm + B

(3)
lm (r)�lm, (21)

where Ylm, � lm, and �lm are the complete set of orthogonal vector basis functions defined
by

Ylm = Ylmr̂, (22)

� lm = r∇Ylm√
l(l + 1)

, (23)

and

�lm = r × ∇Ylm√
l(l + 1)

. (24)

These functions are mutually perpendicular, i.e.

Ylm · � lm = Ylm · �lm = � lm · �lm = 0, (25)
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and orthonormal, e.g.
∫ π

0

∫ 2π

0
Ylm(θ,φ) · Y∗

l′m′(θ,φ)dθ dφ = δll′δmm′ , (26)

where δlm is the Kronecker delta1. The vector spherical harmonics have previously been
applied to magnetostatic problems (e.g. Barrera, Estévez, and Giraldo, 1985; Dennis and
Quartapelle, 1985), but have not been used in this context.

The spectral coefficients B
(i)
lm with i = 1,2,3 are determined by the distribution of cur-

rents in the volume and by the boundary conditions. We show in Appendix A that for the
problem at hand the spectral coefficients for the magnetic field are

B
(1)
lm =

√
l(l + 1)

r

[
−Rl

�

(
R�
r

)l+1

I0 + I2(r) + I3(r)

]
, (27)

B
(2)
lm = 1

r

[
Rl

�

(
R�
r

)l+1

I0 − lI1(r) + (l + 1)I2(r)

]
, (28)

and

B
(3)
lm = rJ

(1)
lm√

l(l + 1)
, (29)

where

I0 = μ0

2l + 1

∫ ∞

R�
s1−lJ

(3)
lm (s)ds, (30)

I1(r) = μ0

2l + 1

∫ r

R�
s

(
s

r

)l+1

J
(3)
lm (s)ds, (31)

and

I2(r) = μ0

2l + 1

∫ ∞

r

s

(
r

s

)l

J
(3)
lm (s)ds. (32)

The coefficients J
(i)
lm are the spectral coefficients of the current distribution defined by

J
(1)
lm (r) =

∫
J[n+1] · Y∗

lm d�, (33)

J
(2)
lm (r) =

∫
J[n+1] · �∗

lm d�, (34)

and

J
(3)
lm (r) =

∫
J[n+1] · �∗

lm d�, (35)

where J[n+1] is the volume current density defined by Equation (18). The spectral solution is
computed in three steps: i) J

(i)
lm is computed from J[n+1] using Equations (33) – (35); ii) spec-

tral coefficients for the magnetic field are computed from Equations (27) – (29); iii) the
spectral series is summed to a maximum order L. A parallel summation method is used,
as described in Appendix B (the method is described for the potential field calculation, but
the same approach is also used for the nonpotential component of the field).

1A similar integral relation applies for �lm and �lm.
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The integrals I0, I1, and I2 [Equations (30), (31), and (32)] are evaluated using the trape-
zoidal rule. The integrals are expressed in such a way as to avoid numerical overflow for
high values of l. Although the integrals in Equations (30) and (32) are written as extending
to infinite radius, in the numerical solution the maximum radius is Rmax, and an error is in-
troduced by this approximation if J[n+1] �= 0 at r = Rmax. Therefore it is necessary to make
Rmax sufficiently large to encompass all the significant currents.

4. Application to Test Cases

In this section we apply our code to two test cases with analytic boundary conditions to
demonstrate the method. We establish the convergence of the method and quantify the self-
consistency of the solution.

4.1. Two Bipolar Test Cases

The first test case is a simple model with analytic boundary conditions, representing the
field due to a bipolar active region with Gaussian sunspots calculated in the global domain
�global. A small nonzero patch of α is included around one of the spots. The second test
case has the same boundary conditions, on a smaller spatial scale, and the field is calculated
in a restricted domain �wedge. For each test case we demonstrate the convergence of the
Grad–Rubin iteration, and we measure the self-consistency of the solution by verifying that
the Lorentz force in the model corona is zero, i.e. that the electric current is parallel to the
magnetic field.

For both test cases, the boundary conditions on the magnetic field are

Bn(θ,φ) = Bs

(
e−s2

1/σ 2 − e−s2
2 /σ 2)

, (36)

where Bs is a scale constant that is chosen such that max(|Bn|) = Bs, and σ is a parameter
that determines the size of the spots. The two functions s1 and s2 are distances to the centers
of each spot as measured on the sphere, and may be written

si(θ,φ) = R� tan−1

[√
(sin θ sin�λ)2 + (sin θi cos θ − cos θ sin θi cos�λ)2

cos θi cos θ + sin θ sin θi cos�λ

]
, (37)

where �λ = φi − φ, and with (θ1, φ1) being the coordinates of the center of the spot with
positive polarity, and with (θ2, φ2) being the coordinates of the center of the spot with nega-
tive polarity. For the boundary conditions on α0 we consider an isolated spot with a locally
constant value of α around the center of the positive spot, i.e.

α0 =
{

� Bn ≥ Bth,

0 0 < Bn < Bth,
(38)

where � is a constant, and Bth is a threshold value. Note that the boundary conditions on
α0 are only defined over one polarity of Bn (as per the Grad–Rubin formulation). We have
chosen to define α0 over the positive polarity of Bn, i.e. where Bn > 0.

It is known that force-free fields can be unstable when

αsLs > 1 (39)

(Molodensky, 1974), where αs is a characteristic value for α, and Ls is the characteristic
scale length. For the bipolar test case we take the scale length to be the distance along the



1162 S.A. Gilchrist, M.S. Wheatland

Table 1 Parameters used for the bipolar test cases involving the domain �global (case 1), and the wedge-
shaped region �wedge (case 2). Distances are quoted in units of the solar radius, and magnetic-field strengths
are relative to the scale constant Bs. Units are given in square brackets.

Case σ [R�] Ls [R�] � [R−1� ] αsLs Bth [Bs ]

1 0.1 0.35 3 1.05 0.75

2 0.02 0.035 30 1.05 0.75

photosphere between the two spots, and we take αs = �. For both test cases we choose these
values such that

αsLs = 1, (40)

corresponding to a current matching the approximate maximum.

4.2. Measures of Convergence

To measure the convergence of the iteration we employ two metrics. The first is the total
magnetic energy at each iteration n,

En = 1

2μ0

∫ ∣∣B[n]∣∣2
dV, (41)

where the integral is over the entire computational volume. We expect the energy to con-
verge to a fixed value with Grad–Rubin iteration. The second metric is the average absolute
difference in the magnetic field at successive Grad–Rubin iterations,

Amean = 〈∣∣B[n] − B[n−1]∣∣〉, (42)

where 〈. . .〉 denotes the average over the computational volume. We expect Amean to ap-
proach zero with repeated iteration.

To measure the self-consistency of the solution, we consider the maximum angle between
J and B. The angle is defined by

θmax = max

[ |J[n] × B[n]|
|B[n]||J[n]|

]
, (43)

where the maximum is calculated over all grid points.
We also examine the self-consistency qualitatively by drawing the field lines of B[n] and

streamlines of the current density J[n]. For an exact force-free solution we expect that these
two sets of field lines will coincide corresponding to θmax = 0. This provides quite a stringent
test, because the error in the paths of the field lines is the result of the local truncation error
in the solution integrated along the paths, which is in general greater than the local error.

4.3. Test Case One: The Bipole in the Global Domain

The first test case described in Section 4.1 considers a bipolar active region covering a
significant fraction of the photosphere. This region provides a test for the method in the
domain �global. The parameters used for this test are shown in Table 1, and the dimensions
of the grid are summarized in Table 2. We performed 40 Grad–Rubin iterations starting
from a potential field. The computation took approximately 15 minutes on a computer with
an eight-core CPU.
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Table 2 Size of the grids used
for test cases. Both the physical
sizes and the sizes of the
numerical grids are shown.

Case Domain Nr Nθ Nφ Lon
[degrees]

Lat
[degrees]

Rmax
[R�]

1 �global 128 64 128 360 180 6

2 �wedge 64 64 64 20 20 1.2

Figure 1 Energy (in units of the energy of the potential field E0) as a function of iteration number. The left
panel shows E/E0 for the first test case in the global domain �global, the right panel shows the same for
the second test case, involving a calculation in the domain �wedge. In both cases the energy converges to an
approximately constant value after about six iterations.

Figure 2 The average absolute change in the field, Amean, as a function of iteration number for the first test
case (left panel) and the second test case (right panel). The vertical scale is logarithmic.

The left panel of Figure 1 illustrates the energy (in units of the energy of the poten-
tial field E0) as a function of iteration number. The energy converged to an approximately
constant value after about six Grad–Rubin iterations. The left panel of Figure 2 shows the
absolute average change in the field, Amean, as a function of iteration number. The scale on
the y-axis is logarithmic. This figure shows that Amean decreases exponentially before be-
coming roughly constant. The behavior of the two metrics E/E0 and Amean establishes the
convergence of the Grad–Rubin procedure for this case.
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Figure 3 Field lines (blue) and streamlines of current density (red) for test case one. The left panel is after
the first Grad–Rubin iteration. The right is after 40 Grad–Rubin iterations. In the left panel there is a clear
difference between the two sets of lines, and in the right the two sets of lines coincide, indicating that a
force-free solution has been found. The discrepancy between the two sets of lines is due to the interpolation
of field values between grid points necessary to draw the lines (see the discussion in Section 4.3).

Figure 4 The maximum angle between J and B over the solution domain as a function of iteration number.
The left panel shows θmax for the first test case in �global, the right panel shows θmax for the second test case
in �wedge. The vertical scale is logarithmic.

We also demonstrate the self-consistency of the numerical solution. Figure 3 shows the
field lines of B (in blue) and the streamlines of J (in red). The left panel shows the results
after one Grad–Rubin iteration. In this panel there is a significant discrepancy between the
two sets of lines. The right panel shows the field lines after 40 Grad–Rubin iterations. In this
case the two sets of lines almost coincide, indicating that the numerical solution is close to
being force-free. Some discrepancy is observed for long field lines because of the need to
interpolate values of J and B between grid points in order to draw field lines. At each grid
point J × B is very small (as discussed below), but higher values are obtained between grid
points when J and B are interpolated. The field lines that show the largest discrepancy occur
close to the boundary separating zero and nonzero values of α0, where the interpolation is
least accurate.

The left panel of Figure 4 shows θmax as a function of iteration number. After the first iter-
ation the maximum angle between J and B is approximately 20 degrees, and θmax decreases
approximately exponentially over the 40 iterations to a final value of order 10−3 degrees.
This confirms that a force-free solution is found.
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Figure 5 Field lines (blue) and streamlines of current density (red) for test case two. The left panel is after
the first Grad–Rubin iteration. The right is after 40 Grad–Rubin iterations. In the left panel there is a clear
difference between the two sets of lines, and in the right the two sets of lines coincide, indicating that a
force-free solution has been found. The discrepancy between the two sets of lines is due to the interpolation
of field values between grid points necessary to draw the lines (see the discussion in Section 4.3).

4.4. Results for Test Case Two: The Bipole in the Restricted Domain

The second test case described in Section 4.1 considers the bipolar test case in the domain
�wedge. We chose a domain that spans 20◦ in latitude and 20◦ in longitude. The size and
the dimensions of the numerical grid are summarized in Table 2. In this case, the separation
between the spots is an order of magnitude smaller than for the first test case, therefore
we increased αs by an order of magnitude so that the product Lsαs matches test case one.
This provided a bipole with the same amount of twist. The parameters for this test case are
summarized in Table 2. We again applied 40 Grad–Rubin iterations, which took 1.6 hours
to run on a computer with an eight-core CPU.

The right panel of Figure 1 shows the energy (in units of the energy of the potential field
E0) as a function of iteration number. The energy converges to a constant value after approx-
imately four Grad–Rubin iterations. The right panel of Figure 2 shows Amean as a function
of iteration number. The scale on the y axis is logarithmic, and the figure shows that Amean

decreases approximately exponentially, to a final value of the order of machine precision.
The behavior of E/E0 and Amean as a function of iteration confirm the convergence of the
Grad–Rubin iteration procedure.

The left panel of Figure 5 shows the field lines of the magnetic field and the streamlines
of the current density after the first iteration (left panel) and after the last iteration (right
panel). The magnetic field is shown in blue and the current density in red. In the left panel
there is a clear difference between the two sets of lines, and in the right panel the two sets of
lines closely coincide, indicating that a force-free solution is found. Some disagreement is
observed between the two sets of lines for longer field lines; this is explained in Section 4.3.

The right panel of Figure 4 shows θmax as a function of iteration number. After the first
iteration the maximum angle between J and B is approximately 20 degrees, and θmax de-
creases approximately exponentially with iteration, to a final value of the order of 10−9

degrees.
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5. Discussion and Conclusion

We presented an implementation of the Grad–Rubin method (Grad and Rubin, 1958) for
solving the force-free boundary value problem in spherical polar geometry with the aim
of modeling the solar coronal magnetic field. The method is applicable to either the entire
corona or a wedge with restricted angular extent.

We applied our code to two test cases with analytic boundary conditions, representing a
current-carrying bipole, to demonstrate the convergence of the Grad–Rubin iteration and the
self-consistency of the final numerical solution. For the first case we computed a solution
in a domain that encompassed the entire corona, and in the second we computed a solution
in a spherical wedge. We found that in both cases the Grad–Rubin iteration converged, and
the resulting solution is force free to a very good approximation, by which we mean that the
angle between J and B is small.

The bipolar test case we considered is simple, but served to illustrate the basic correctness
of the method. We were unable to identify a suitable exact analytic equilibrium with which
to test the code. The Low and Lou (1990) field has often been used for testing force-free
codes (Amari, Boulmezaoud, and Mikic, 1999; Wiegelmann, 2007), but it proved difficult
to reproduce this solution without imposing analytic boundary conditions on an outer shell
located at a finite radius from the photosphere. Using the asymptotic boundary condition de-
fined by Equation (7) requires a very large domain to encompass all the significant currents
for the Low and Lou (1990) problem. Hence it is difficult to calculate accurate solutions
without resorting to the use of exact boundary conditions at a finite outer shell. The lack of
an exact analytic test case means that we cannot determine how the numerical error scales
as a function of grid resolution. We also note that our test case has smooth boundary condi-
tions. In practice, we expect observational data to contain significant gradients, in particular
due to noise that is present in the data. The effect of the Gibbs phenomenon produced by the
spectral method applied to these steep gradients has not yet been investigated.

We note that the code took 1.6 hours to run for the test case in the spherical wedge, for a
grid with 643 points. By comparison, the calculation in the global domain took 15 minutes
for a 128 × 64 × 128 grid. The difference in speed occurs because the spherical harmonics
must be summed to large orders when �φ is small. In the first case L = 64 and in the second
case L = 567. In practice it may not be necessary to use an L value of a given size for all
values of r . We expect that as the field becomes smoother with increasing r , higher-order
terms may be ignored and a reduction in L as a function of r may increase the speed of the
code. We also expect that it may be possible to increase the speed of the code by improving
details of the technique used for calculating the nonpotential field. These improvements will
be implemented in future work.

As mentioned in Section 3.1, Tóth, van der Holst, and Huang (2011) reported the non-
convergence of the spherical harmonics spectral series for large L, for the calculation of
potential field models. The grid used by Tóth, van der Holst, and Huang (2011) is uniform
in cos θ . However, near the poles, the associated Legendre polynomials are rapidly varying
functions of cos θ , and the rapid variations are not accurately represented on the given grid.
This results in the nonconvergence of the series. For our calculations in �wedge, we used a
grid uniform in θ . Tóth, van der Holst, and Huang (2011) reported that such a grid does
not cause convergence problems. Furthermore, the region considered in Section 4.4 is suf-
ficiently isolated from the poles that convergence problems are unlikely to occur regardless
of the grid used. When considering larger regions that cannot be isolated from the poles,
or for calculations in �global, we used a Gauss–Legendre grid that is dense at the poles and
accurately represents the rapid variations in the associated Legendre polynomials.
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Other developments to the code are also planned. At present, the code uses a uniform
grid in r , but this could be changed to a nonuniform grid. A nonuniform grid is expected to
be more efficient because the grid can be chosen to be dense close to the photosphere where
the magnetic field is structured on small scales, and sparse far from the photosphere where
the field is smooth. At present the method assumes the asymptotic boundary condition Equa-
tion (7), but this could be changed to accommodate boundary conditions at an outer “source
surface” analogous to the potential source-surface model. Finally, the method currently only
uses α0 over a single polarity, which is probably problematic when using observational data
because of the inconsistency of the data with the force-free model (Schrijver et al., 2008).
In future work we will modify our method to implement the self-consistency procedure of
Wheatland and Régnier (2009).

The method and code outlined in this paper are designed for application to solar data, but
we have not yet attempted this. In future work we will test the code on vector magnetogram
data derived from observations by the Helioseismic and Magnetic Imager onboard the Solar
Dynamics Observatory (SDO/HMI). The SDO/HMI instrument provides data for the whole
solar disk, which demands spherical modeling. We hope to be able to develop the code pre-
sented here into a practical tool for modeling of the coronal magnetic field from SDO/HMI
data, and for application to other, future data sets.

Acknowledgement S.A. Gilchrist acknowledges the support of an Australian Postgraduate Research
Award.

Appendix A

In this appendix we derive Equations (27) – (29) using vector spherical harmonics.
For any magnetic field it is possible to introduce a vector potential, A, related to the

magnetic field by

∇ × A = B. (44)

In the Coulomb gauge,

∇ · A = 0, (45)

in which case the vector potential is given by the vector Poisson equation (Jackson, 1998),

∇2A = −μ0J. (46)

The boundary conditions on A enforcing the boundary conditions on B given by Equa-
tions (19) and (20) are

A × r̂ = 0, (47)

and

lim
r→∞ A = 0, (48)

respectively.
We can solve Poisson’s equation by expanding A in terms of a set of orthonormal basis

functions, which reduces the partial differential equation to a system of ordinary differential
equations for the series coefficients. The vector spherical harmonics provide a natural set
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of basis functions in spherical polar coordinates (Morse and Feshbach, 1953). The vector
potential can be written in terms of these functions as

A =
∞∑

l=0

l∑

m=−l

A
(1)
lm Ylm + A

(2)
lm � lm + A

(3)
lm �lm, (49)

where A
(i)
lm are the spectral coefficients with i = 1,2,3. By substituting Equation (49) into

Equation (46) and using the orthonormality of the basis functions, it can be shown that A
(3)
lm

satisfies the second-order linear inhomogeneous equation

d2A
(3)
lm

dr2
+ 2

r

dA
(3)
lm

dr
− l(l + 1)

r2
A

(3)
lm = −μ0J

(3)
lm , (50)

where

J
(3)
lm =

∫ π

0

∫ 2π

0
J · �lm sin θ dφ dθ. (51)

Equation (50) has a general solution related to the boundary conditions on A, and a particular
solution, determined by the source terms J

(3)
lm . The solutions can be found analytically using

the method of variation of parameters (Zwillinger, 1989). This gives

A
(3)
lm (r) = −Rl

�

(
R�
r

)l+1

I0 + I1(r) + I2(r), (52)

where

I0 = μ0

2l + 1

∫ ∞

R�
s1−lJ

(3)
lm (s)ds, (53)

I1(r) = μ0

2l + 1

∫ r

R�
s

(
s

r

)l+1

J
(3)
lm (s)ds, (54)

and

I2(r) = μ0

2l + 1

∫ ∞

r

s

(
r

s

)l

J
(3)
lm (s)ds. (55)

The spectral coefficients B
(1)
lm and B

(2)
lm can be determined from Equation (52) as follows:

Taking the curl of the vector spherical harmonics leads to the following identities:

∇ × [
Flm(r)Ylm

] = √
l(l + 1)

Flm(r)

r
�lm, (56)

∇ × [
Flm(r)� lm

] = −
(

d

dr
+ 1

r

)
Flm(r) �lm, (57)

and

∇ × [
Flm(r)�lm

] = √
l(l + 1)

Flm(r)

r
Ylm +

(
d

dr
+ 1

r

)
Flm(r)� lm, (58)

where Flm(r) is a function of r . Since B = ∇ × A, it follows that

B =
∞∑

l=0

l∑

m=−l

√
l(l + 1)

A
(3)
lm (r)

r
Ylm +

(
d

dr
+ 1

r

)
A

(3)
lm (r)� lm

+
[√

l(l + 1)
A

(1)
lm (r)

r
−

(
d

dr
+ 1

r

)
A

(2)
lm (r)

]
�lm. (59)
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The spectral coefficients are then given by

B
(1)
lm = √

l(l + 1)
A

(3)
lm (r)

r
, (60)

and

B
(2)
lm =

(
d

dr
+ 1

r

)
A

(3)
lm (r), (61)

where we use the fact that the vector spherical harmonics are orthonormal. By substituting
Equation (52) into Equations (60) and (61), we find that

B
(1)
lm =

√
l(l + 1)

r

[
−Rl

�

(
R�
r

)l+1

I0 + I2(r) + I3(r)

]
, (62)

and

B
(2)
lm = 1

r

[
Rl

�

(
R�
r

)l+1

I0 − lI1(r) + (l + 1)I2(r)

]
. (63)

It is possible to determine B
(3)
lm by finding A

(1)
lm and A

(2)
lm in the same manner as for A

(3)
lm , and

evaluating the expression in Equation (59) for the coefficients of �lm. However, a simpler
approach is to apply Equation (58) to Ampere’s law ∇ × B = μ0J. This yields

B
(3)
lm = rJ

(1)
lm√

l(l + 1)
, (64)

where

J
(1)
lm =

∫ π

0

∫ 2π

0
J · Ylm sin θ dφ dθ. (65)

Appendix B

In this appendix we outline a parallel method for evaluating the sums in Equations (11) –
(13). The method of summing the spectral series is important because it determines the
speed of the computation. Also, a high-resolution grid requires a high-order L, in which
case the memory required to compute the spectral solution becomes large (depending of
the implementation). In the following we present a method for summing the series that is
fast and uses memory efficiently. The procedure is described for the Br component of the
potential field. A similar approach is used for the other components of the potential field and
for the nonpotential field.

B.1 Parallel Summation of the Spectral Series

The following procedure for computing Br follows a prescription in Press et al. (2007). Here
we briefly outline the method and describe a parallel implementation.

The spectral series for Br can be written as

Br =
L∑

m=−L

gm(r, θ)eimφ, (66)
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where the auxiliary function gm(r, θ) is defined as

gm(r, θ) =
L∑

l=|m|
alm

(
R�
r

)l+2

P̃ m
l (cos θ), (67)

and where the spherical harmonics Ylm are written as a product of a normalized-associated
Legendre polynomial P̃ m

l (x) and the complex exponential. In our method we first compute
the auxiliary function using Equation (67), and then determine Br using Equation (66).

This procedure can be implemented in parallel by partitioning the sum in Equation (66)
into N partial sums that are computed independently. We define the partial sum

Fn =
mn∑

m=−mn

gm(r, θ)eimφ, (68)

where

mn = nL/N. (69)

The complete solution is then

Br =
L∑

n=0

Fn. (70)

Each Fn can be computed independently, allowing trivial parallelism. Most high-perform-
ance computer clusters consist of a series of nodes, with each node containing several pro-
cessors with a shared memory space. Our code distributes the computation of Fn among
such nodes using the Message Passing Interface (MPI) (Snir, Otto, and Huss-Lederman,
1998). The computation of Fn at each node is parallelized across the processors on the node
using OpenMP (Chandra et al., 2001).

B.2 Memory Requirements

It is important to consider the memory required to store gm(r, θ) as an array. Since the
integrand in Equation (14) is real, the coefficients with m < 0 contain the same information
as those with m > 0 (Press et al., 2007). Therefore, it is necessary only to store coefficients
with m ≥ 0, and there are (L + 1)L/2 such coefficients. Therefore an array storing gm(r, θ)

has L(L+ 1)NrNθ/2 elements for a grid of size Nr ×Nθ ×Nφ . The associated memory use
may prove problematic for L ∼ 1000. A grid of size Nr = 128, Nθ = 256, and Nφ = 512
requires ≈100 Mb to store Br using double-precision floating point numbers, and ≈1 Gb
to store gm(r, θ). The memory requirements for gm(r, θ) can quickly become larger than a
few gigabytes, a typical size for total memory on current desktop computer hardware.

The partial summation method reduces the memory requirements because the array gm is
split among the nodes. If the series is split into N partial sums, then the memory requirement
for each node is ∼1/N of that needed to store the entire array. The partial summation
method can also be used to conserve memory with only a single node. In this case each
partial sum is computed sequentially. This way only part of the spectrum gm is computed
for each partial summation. Again, this method reduces the memory requirements by a factor
∼1/N compared with a single serial summation.
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