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Abstract We study the temperature of electrons advected with the solar wind to large solar
distances far beyond 1 AU. Almost nothing is known about the thermodynamics of these
electrons from in-situ plasma observations at these distances, and usually it is tacitly as-
sumed that electrons, due to adiabatic behaviour and vanishing heat conduction, rapidly
cool off to very low temperatures at larger distances. In this article we show, however, that
electrons on their way to large distances undergo non-adiabatic interactions with travelling
shocks and solar-wind bulk-velocity jumps and thereby are appreciably heated. Examining
this heating process on an average statistical basis, we find that solar-wind electrons first
cool down to a temperature minimum, which depending on the occurrence frequency of
bulk velocity jumps is located between 3 and 6 AU, but beyond this the lowest electron
temperature again starts to increase with increasing solar distance, finally achieving tem-
peratures of about 7 × 104 K to 7 × 105 K at the location of the termination shock. Hence
these electrons are unexpectedly shown to play an important dynamical role in structuring
this shock and in determining the downstream plasma properties.

1. Introduction

Unfortunately, little is known about the thermal behaviour of solar-wind electrons at so-
lar distances beyond 3.5 AU, up to where in situ plasma observations still are available (see
Pilipp et al., 1987; Feldman et al., 1975; Scime et al., 1994). Obviously, however, solar-wind
electrons even within this distance range seem to behave differently from what is expected
from classical transport theories such as that presented by Spitzer (1969). For instance, the
classical heat-conduction flow by electrons is obviously strongly suppressed, although sur-
prisingly enough, electrons are, nevertheless, not cooling off with increasing distance, as
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could be expected in an adiabatic case (see Scime et al., 1994). As explained by Chashei
and Fahr (2000) and Chashei, Fahr, and Lay (2001), the observationally supported magni-
tude of the electron heat-conduction flow can, however, be obtained, if one takes into account
that electrons transported beyond the electric potential of the coronal polarisation field have
truncated Maxwellian distribution functions with an underpopulation in the sunward part of
the super-escape-velocity branch.

In this article we consider in addition to the energy-processing of electrons at travelling
shocks only an electron-cooling process due to the conservation of the electron magnetic
moment in the comoving solar-wind frame with decreasing magnetic-field magnitudes at
increasing solar distances. We do this because we are mainly interested with conditions of
the solar-wind plasma at large solar distances (≥10 AU). Here competing processes such as
Whistler-wave turbulence generation due to electron heat conduction instability as discussed
by Scime et al. (1994) or Gary et al. (1994) no longer play a role, because the electron heat
flow rapidly falls off as r−3, and hence this process does not compete with our magnetic-
cooling process beyond 10 AU.

On the other hand, other wave–electron interaction processes such as pitch-angle scat-
tering or energy diffusion can be neglected as well at larger distances. This has to do with
the fact that both processes are determined by diffusion coefficients (see Schlickeiser, Dung,
and Jaeckel, 1991; Achatz et al., 1993) in the form

Dμμ,vv ∼
[

I+(�e
vμ

)

v|μ| + I−( �e
vμ+2vA

)

|vμ + 2vA|
]
, (1)

which require turbulence power [I+(�e
vμ

)] at the electron gyrofrequency [�e]. However, as
we have discussed in Chashei and Fahr (2000), there is not enough advected power arriving
at larger distances to make this process effective.

On the other hand, the self-driven turbulence generated by pick-up ions at larger dis-
tances, although it contains substantial free energy, appears to be unable to create resonances
with electrons at k-vectors/frequencies. As shown by Chashei, Fahr, and Lay (2005) or Fahr
and Fichtner (2012), there is simply a power cut-off already at frequencies far below the
electron gyrofrequency (i.e. six orders of magnitude) or the plasma frequency (i.e. eight
orders of magnitude).

The electron heat flux is known to be non-classical (i.e. it does not follow a Spitzer–
Härm Fourier law), but drops off much more rapidly with distance. At small solar distances
the so-called strahl–configuration of the electron distribution function is responsible for this
behaviour, but this configuration, which originates from Coulomb-differentiations above the
solar corona, drives instabilities and disappears at larger solar distances where it transforms
into a pitch-angle-isotropic core–halo distribution (see, e.g., McComas et al., 1992) with
an electron heat flux there falling off as r−2.36, instead of r−3.08 at smaller distances (Scime
et al., 1994). We start our considerations with electron conditions at distances beyond 10 AU,
where these strahl-induced instabilities have stopped operating.

At such distances beyond 10 AU, up to now only cooling processes were envisioned to
operate on solar-wind electrons, and thus it was expected that electrons will soon cool down
to fairly low temperatures, so that their thermal pressures no longer play a dynamical role. In
this article, however, we discuss processes of solar-wind electrons that react to the passage
of solar-wind bulk velocity jumps in the form of travelling shocks. As we show, they thereby
gain substantial amounts of thermal energy, so that it turns out that they are heated to increas-
ing temperatures at larger distances, i.e. they undergo a temperature minimum and beyond
that show increasing temperatures with increasing distances. This substantially changes the
picture of distant solar-wind electrons and may mean that finally electrons indeed play an
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important role in the dynamics of the distant solar wind near and beyond the termination
shock.

2. The Downstream Centre-of-Mass Bulk System

For a shock with an inherent electric potential of ��, the bulk velocities of protons and
electrons change according to

e�� = 1

2
M

(
U 2

1 − U 2
p2

)
(2)

and

−e�� = 1

2
m

(
U 2

1 − U 2
e2

)
, (3)

respectively. Here m and M are electron and proton masses, and the suffixes 1 and 2 char-
acterise upstream and downstream quantities.

The resulting downstream momentum flows thus are given by

Fe2 = mne2U
2
e2 (4)

and

Fp2 = Mnp2U
2
p2. (5)

The centre-of-mass (COM) bulk flow velocity [U2,COM = U ∗
2 ] derived from both these

above momentum flows is derived from the following equation:

F ∗
2 = Mnp2U

2
p2 + mne2U

2
e2 = 2n∗

2

(
m + M

2

)
U ∗2

2 , (6)

where n∗
2 denotes the common density of electrons and protons in the COM-frame.

In all systems the particle number flow should be conserved, i.e. identical, and thus one
finds

2n1U1 = 2n∗
2U

∗
2 = ne2Ue2 + np2Up2, (7)

yielding

MUp2 + mUe2 = 2

(
m + M

2

)
U ∗

2 , (8)

and finally

U ∗
2 = 1

m + M
(MUp2 + mUe2). (9)

Inserting from Equation (1) the above result for Ue2, one then finally finds

U ∗
2 =

MUp2 + m

√
M
m

(U 2
1p − U 2

2p)

m + M
≈ U2p

(
1 + m

M

√
M

m

(
s2

p − 1
))

= U2p

(
1 +

√
s2

p − 1

1840

)
, (10)

where sp = U1p/U2p is the proton compression ratio at the shock, clearly showing that the
centre-of-mass bulk flow velocity [U ∗

2 ] is essentially identical to U2,p.
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3. The Process of Overshooting Electrons at Travelling Shocks

In a recent article on the MHD shock structure (Fahr, Siewert, and Chashei, 2012) we have
shown that the unavoidable electron overshooting into the downstream plasma frame is a
highly important physical process that eventually leads to strong electron heating, to en-
tropy generation, and to high compression ratios. Starting from the consideration of a shock
potential step [��] associated with the deceleration of the proton bulk velocity from its
upstream to its downstream value, we find that electrons from just this potential jump simul-
taneously get, at the first moment, an accelerating velocity kick.

As we have shown in Fahr, Siewert, and Chashei (2012), the initial overshoot velocity
of the electrons (i.e. differential velocity with respect to the downstream bulk flow) in the
downstream region is given by

δUe =
∣∣∣∣U2 − U1

√
1 + M

m

(
1 − 1

s2

)∣∣∣∣, (11)

where U1,2 are the centre-of-mass plasma bulk velocities at the upstream and downstream
side of the shock, respectively.

This formula clearly shows that according to the mass ratio [m/M = μe,i = 1/1840] the
resulting overshoot velocity is as high as

δUe =
∣∣∣∣U2 − U1

√
1 + M

m

(
1 − 1

s2

)∣∣∣∣ ≈ (U1/s)

∣∣∣∣1 −
√

M

m

(
s2 − 1

)∣∣∣∣ ≥ 43U1. (12)

While it is interesting to note that the ratio of the electron overshoot energy [Et,e] and
the kinetic energy [Ekin,i] of the downstream ion bulk flow is given by

Et,e

Ekin,i
=

1
2me(U1

√
mp
me

)2n2,e

1
2 mpU

2
2 n2,i

= s2 (13)

and thus is purely given by the compression ratio, we did, however, show that in an electron–
proton MHD shock just this resulting compression ratio [s] itself strongly depends on elec-
tron pressure. This is why one can also write the overshoot velocity in the form

δUe(μe,i ) =
∣∣∣∣U2 − U1

√
1 + 1

μe,i

(
1 − 1

s2

)∣∣∣∣ =
∣∣∣∣U2 − U2

√
s2 + 1

μe,i

(
s2 − 1

)∣∣∣∣. (14)

This overshoot phenomenon not only plays a role at standing shocks, for instance at the
solar-wind termination shock, but is also relevant at travelling shocks such as bulk-velocity
jumps in the supersonic solar wind. Therefore we examined the influence on electrons that
such travelling shocks might have.

4. Travelling Solar-Wind Shocks Influencing Electrons

In a previous article (Fahr, Siewert, and Chashei, 2012) we have developed a theoretical
description of travelling solar-wind bulk velocity jumps that process ions to higher energies.
It was shown there that this process can be formulated as a velocity-space diffusion process
that helps to energise ions while they are advected outwards with the solar wind to larger
distances. Here we return to this process with the aim to analogously apply it to electrons.
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As in Fahr, Siewert, and Chashei (2012), we thus simply obtain the change in time of the
electron distribution function [fe] due to jump-induced velocity diffusion in the following
form: (

∂fe

∂t

)
jump

= − 1

v2

∂

∂v

[
�Uδe

2L
v2 ∂

∂v

(
v2fe

)]
, (15)

where �U is the average magnitude of the bulk velocity jump and L the average distance
between such jumps, i.e. the typical characteristics of the chain of consecutive jumps. Here
δe means a diffusion coefficient with an electron-specific magnitude, which we derive below
in its concrete form.

First we now expand the above term into two parts by writing(
∂fe

∂t

)
jump

= − 1

v2

∂

∂v

[
�Uδe

2L
v4 ∂

∂v
fe

]
− 1

v2

∂

∂v

[
�Uδe

2L
2v3fe

]
. (16)

Here the second term (
∂f

∂t
)jump,2, due to its conformal shape, can be taken together with

the magnetic cooling term (
∂f

∂t
)jump,3, first derived by Fahr (2007) and subsequently studied

in the frame of a general ion phase-space transport equation by Fahr and Fichtner (2011).
Then one obtains(

∂f

∂t

)
jump,2

+
(

∂f

∂t

)
jump,3

= 1

v2

∂

∂v

[
v3U

r
fe − �Uδe

2L
2v3fe

]

=
(

U

r
− �Uδe

L

)
1

v2

∂

∂v

[
v3fe

]
. (17)

Since we are aiming now specifically at describing the electron temperature, we multiply
the whole transport equation above by (m/3K)v4 dv and integrate over velocity space. Then
one finds (

∂Te

∂t

)
jump,2,3

=
(

U

r
− �Uδe

L

)
m

3K

∫
v2 ∂

∂v

[
v3fe)

]
dv, (18)

which after partial integration leads to(
∂T

∂t

)
jump,4

= −
(

U

r
− �Uδe

L

)
2m

3K

∫
v4fe dv = −2

(
U

r
− �Uδe

L

)
· Te. (19)

Clearly, heating overcomes cooling when

UL

�Uδe
≤ r. (20)

On the other hand, from the first term in the full transport equation we obtain(
∂Te

∂t

)
jump,1

= −(m/3K)

∫
v4 dv

1

v2

∂

∂v

[
�Uδe

2L
v4 ∂

∂v
fe

]

= −�Uδe

2L

m

3K

∫
v2 ∂

∂v

[
v4 ∂

∂v
fe

]
dv. (21)

One can integrate the remaining expression by parts to obtain(
∂Te

∂t

)
jump,1

= −�Uδe

2L

m

3K

[∫
∂

∂v

[
v6 ∂

∂v
fe

]
dv − 2

∫
v5 ∂fe

∂v
dv

]
. (22)

If the function fe, as in the case of ions, falls off as v−5, then the first part disappears,
and one is left with
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(
∂Te

∂t

)
jump,1

= −�Uδe

L

m

3K

[∫
v5 ∂fe

∂v
dv

]

≈ 5
�Uδe

L

m

3K

[∫ v∞

v0

1

v
dv

]

= 5m�Uδe

3KL

[
ln(v∞) − ln(v0)

]
. (23)

Without deeper knowledge of the resulting electron distribution function [fe], i.e. specif-
ically the lower and upper velocity borders, one cannot evaluate this expression here in more
detail. Instead, we derive below an explicit form of the heating term from a slightly different
basis.

5. Conversion of the Overshoot Velocities into Thermal Energy

The electrons that overshoot from the upstream side of the shock are expected first to act like
an injection of electrons with high speeds to the downstream plasma bulk. This, however,
generates an unstable plasma condition, creating waves that convert the overshoot kinetic
energy into thermal energy. We therefore consider the Buneman instability in the down-
stream plasma frame of electrons, which moves with high speed relative to protons, thereby
acting as instability drivers.

In principle, the modified two-stream instability as studied by Scholer and Matsukiyo
(2004) also has to be considered in competition with the Buneman instability, which is
studied here. The relative efficiency of these two instabilities is strongly related to the
upstream Mach numbers of the shock and to the upstream electron β-value. For electron
plasma β-values below β = 8πPe1/B

2
1 = 0.02, which characterise the conditions of travel-

ling shocks considered here, at least in the foot ramp of the shock, the Bunemann instability
is clearly dominant, however.

The downstream electron overshoot speed is equal to

U2e = U2ps
{
1 + (M/m)

[
1 − (

1/s2
)]}1/2

, (24)

and the differential speed [�U2] of electrons relative to protons is equal to

�U2 = U2e − U2p = U2p
{
s
[
1 + (M/m)

[
1 − (

1/s2
)]]1/2 − 1

}
(25)

≈ U2p

[
(M/m)

(
s2 − 1

)]
1/2 ≈ u2ps(M/m)1/2, (26)

which in most cases is much higher than the thermal speeds of electrons vth,e and pro-
tons vth,p, hence fulfilling the relation �U2 > vth,e � vth,p. These jump-induced conditions
are similar to those of a plasma with an electric current, where the Buneman instability is
triggered (see Alexandrov, Bogdankevich, and Rukhadze, 1984; or Chen, 1984). Owing to
the above inequalities, this instability is strong; its highest growth rate corresponds to the
resonance condition (k�U2) = ωpe (see Alexandrov, Bogdankevich, and Rukhadze, 1984;
Chen, 1984) and is given by

γmax =
√

3

4
(m/2M)1/3ωpe, (27)

where ωpe is the electron plasma frequency, k and �U2 are the wave-vector of the distur-
bance and the vector of the relative electron-proton speed. According to Equation (27), the
typical growth period of the instability is of the order of 10−3 seconds for typical values
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of plasma density n ≈ 10−1 cm−3 at solar distances of about 10 AU. Landau-damping of
these oscillations at protons is very weak under these conditions and can be neglected in our
subsequent considerations. The Landau-damping at electrons is described by the decrement
(Alexandrov, Bogdankevich, and Rukhadze, 1984; Chen, 1984)

γLe =
√

π

8
ωpe

(
ωpe

k‖vthe

)3

exp
[−1.5 − (ωpe/k||vthe)

2
]
, (28)

where k‖ is the component of k parallel to the magnetic field. Taking into account the con-
dition �U2 > vthe � vthp, one can see that at the initial stage of the instability, Landau-
damping is exponentially weak. This is the reason why the nonlinear stage of the instabil-
ity develops very fast and leads to plasma stratifications on very small scales, i.e. scales
lS ≈ �U2/ ωpe. An interaction between electron plasma bunches and oscillating electric
fields then results in electron braking and proton acceleration. During this process the rela-
tive speed �U2 will decrease, and in line with this Landau-damping given in Equation (28)
becomes increasingly important. This finally leads to electron heating and, in turn, to an
additional deceleration and heating of electrons.

This scenario can be called an instantaneous temporal relaxation. It occurs when the
shock front can be considered as infinitesimally thin. In the opposite case of an extended
shock front structure, however, a spatial scenario takes place in which the relaxation to the
stable state is instead a continuous process acting at the instability threshold [γmax = γLe]
along the whole effective length of the shock-induced electric potential jump. The full elec-
tron speed [U2e] is not fully achieved in this spatial scenario, because the work of the electric
potential on electrons is continuously transferred to electron heating. This is slightly simi-
lar to the case previously considered by Verscharen and Fahr (2008) for the parallel MHD
shock. The final stage of the instability for both scenarios is the motion of protons and
heated electrons with one and the same speed U ∗

2 equal to the downstream bulk speed, but
with electrons that appear to be much more heated than at a classical Rankine–Hugoniot
shocks.

6. Buneman Instability in the Presence of a Magnetic Field

Now we consider the effect of the solar-wind magnetic field on the Buneman instability in
the downstream plasma. We do not investigate the instability in detail, but only consider the
effect of the downstream magnetic field on the growth rate near its highest value. As shown
above, at the initial stage of the instability, the approximation of a cold plasma is valid. For
simplicity we assume below that the k-vectors of the disturbances are located in the plane
(B̃, Ũ2e,i), and only have kz- and kx -wavevector components. In this case the dispersion
equation corresponding to the Buneman instability can be written in the following form
(Alexandrov, Bogdankevich, and Rukhadze, 1984):

k2
xε⊥ + k2

z ε‖ = 0, (29)

where ε⊥ and ε‖ are the components of the cold plasma dielectric tensor with

ε⊥ = 1 −
∑ ω2

pa

[(ω − k · ua)2 − ω2
Ba]

(30)

and

ε‖ = 1 −
∑ ω2

pa

(ω − kua)2
. (31)
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The α-indices correspond to electrons and protons, and ωpa and ωBa are plasma frequen-
cies and cyclotron frequencies, respectively. In the reference frame moving with protons we
find from Equations (30) and (31) the dispersion relation

ω2
pe cos2 θ

[
(ω − k · �U2)

−2 + m

M
ω−2

]
+ ω2

pe sin2 θ

{[
(ω − k · �U2)

2 − ω2
Be

]−1

+ m

M

[
ω2 − ω2

Bi

]−1
}

= 1, (32)

where k = (k sin θ,0, k cos θ), and �U2 is the downstream electron speed relative to protons,
the direction of �U2 in general does not coincide with the direction of the external magnetic
field (only for a parallel shock). Below we introduce the notation � = (ω − k · �U2) and
consider the dispersion equation (32) at the condition of the highest growth rate of the dis-
turbance, i.e. at ω � k · �U2 ≈ ωpe; the inequality corresponds to the aperiodic type of in-
stability and the equality corresponds to the resonant condition. We represent Equation (32)
in the form

ω−2
pe = (�2 − ω2

Be cos2 θ)

�2(�2 − ω2
Be)

+ m

M

(ω2 − ω2
Bi cos2 θ)

ω2(ω2 − ω2
Bi)

. (33)

In the zeroth order of the value (ω/�), Equation (33) evaluates to
(
�2 − ω2

Be cos2 θ
)
�−2

(
�2 − ω2

Be

)−1 = F(�) = ω−2
pe , (34)

and in first order to

ω(dF/d�) + (m/M)
(
ω2 − ω2

Bi cos2 θ
)
ω−2

(
ω2 − ω2

Bi

)−1 = 0. (35)

One can find from Equation (34)

dF/d� = −(2/�)

[
ω−2

pe + sin2 θ
ω2

Be

(�2 − ω2
Be)

2

]
. (36)

We furthermore take into account that in the solar-wind plasma ω2
pe � ω2

Be (i.e. c �
vA

√
M/m ) is always valid. Indeed, the ratio ω2

pe/ω
2
Be = (m/M)(c2/v2

A) for typical solar-
wind plasma parameters is sufficiently high, ω2

pe/ω
2
Be > 104. (Note that in the distant solar

wind at r > 5 AU the ratio ω2
pe/ω

2
Be does not depend on solar distance either). The ratio of

the second term in the brackets of Equation (36) to the first term is of the order of ω2
pe/ω

2
Be,

and hence the second term can be neglected. Then Equation (36) reduces to

−2(ω/�)ω−2
pe + (m/M)

(
ω2 − ω2

Bi cos2 θ
)
ω−2

(
ω2 − ω2

Bi

)−1 = 0. (37)

One can consider two limiting cases for Equation (37): ω � ωBp and ω � ωBp. In the
first case we have from Equation (37)

−2(ω/�)ω−2
pe + (m/M)ω−2 = 0, (38)

which is the same relation as obtained for the non-magnetised plasma. Equation (37), on the
other hand, has three solutions for ω given by

ω = (m/2M)1/3ωpe = ω1; ω = ω2,3 = (1/2)(1 ± i
√

3)ω1. (39)

One of them is unstable with the classical growth rate

γmax = √
3/4(m/2M)1/3ωpe. (40)
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In the opposite case, i.e. for ω � ωBp and ω � ωBp, we find from Equation (36)

−2(ω/�)ω−2
pe + (m/M) cos2 θω−2 = 0, (41)

leading to

γmax = √
3/4

[
(m/2M) cos2 θ

]1/3
ωpe. (42)

Thus one can conclude from the estimates (40) and (42) that the Buneman instability in
the solar-wind plasma is not suppressed by the magnetic field. It follows from Equation (42)
that the real and imaginary parts of the unstable solution are of similar magnitude. Thus, we
can estimate the frequency ω as ω ≈ γmax. The comparison of γmax given in Equation (42)
and ωBi then gives

ω/ωBi ≈ (M/m)2/3(ωpe/ωBe) � 1, (43)

showing that the classical expression for γmax in Equation (42) can be used for the down-
stream plasma near the shock. The growth rate of the Buneman instability presented by
Alexandrov, Bogdankevich, and Rukhadze (1984), namely γmax = √

3/4(m/2M cos2 θ)1/3 ·
ωpe, corresponds to the limit opposite to ours here, namely to strong magnetic fields with
ω2

pe � ω2
Be. Hence in conclusion we have shown that under typical conditions of the solar

wind, which are applicable to our study, the instability is unaffected by the magnetic field.

7. The Downstream Bulk Speed and the Electron Temperature Gain

Now we estimate the fraction of relative kinetic energy transferred to thermal energy of the
electrons. One can find the joint bulk speed from the relation

mU2e + MU2p = (m + M)U2, (44)

which after taking into account Equation (8) and m � M leads to

U2 ≈ U2p + (m/M)U2e ≈ U2p + s
√

m/MU2p (45)

and shows that the difference between U2 and U2p is small compared with U2p.
The part of electron kinetic energy transformed to heat [�We] can be found from the

energy conservation law related to the pair of particles

2�We = mU 2
2e + MU 2

2p − (m + M)U 2
2 . (46)

Combining Equations (45) and (46), one can easily confirm that

2�We =
[

mM

m + M

]
(U2e − U2p)

2 (47)

or

�We ≈ (1/2)mU 2
2e, (48)

meaning that almost the entire kinetic energy of the overshooting electrons is transformed
to electron heat, and the speed U2e plays the role of the thermal speed of heated electrons. It
should be noted that the system of Equations (46) through (48) is equivalent to the system
describing an inelastic collision of two particles with masses m and M .

Hence Equation (48) allows us to estimate the jump in electron temperature after one
single jump passage by
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�T1e = mU 2
2e/3k = (

m�U 2
1 /3k

){
1 + M

m

[
1 − (

1/s2
)]} ≈ (

m�U 2
1 /3k

)M

m

[
1 − (

1/s2
)]

= (
M�U 2

1 /3k
)[

1 − (
1/s2

)]
. (49)

Using the typical values (see Fahr, Siewert, and Chashei, 2012) of s ≈ 1.1 and of �U1 ≈
50 km s−1, we find from Equation (47)

�T1e ≈ M�U 2
1 /18k ≈ 1.5 × 104 K, (50)

which is much lower than the electron temperature observed at solar distances of about
1 AU.

8. Heating of the Solar-Wind Electrons due to Repeated Shock Passages

Now we consider the radial dependence of the solar-wind-convected electrons taking into
account their magnetic cooling and their heating by interactions with interplanetary shocks.
A similar problem was previously considered by Fahr, Siewert, and Chashei (2012) for ions.
As shown by these authors, the change of ion speed by the passage of two shocks with op-
posite compression ratios is small compared with the initial ion speed. This allows one to
describe the interaction of particles with consecutive multi-shock structures of the moving
solar wind as a velocity-diffusion process. In contrast to protons, the corresponding change
of the electron speed, however, is much stronger and, independent of the compression ra-
tio, as shown above, leads to a decay of the relative electron/proton kinetic motion and to
electron heating. For a description of statistical electron heating in the distant solar wind we
assume that statistically significant jumps in the electron temperature at multiple passages
of travelling shocks are smoothed in space and time, describing multiple shock passages
with an average typical distance Lsh between them. With these assumptions and the mag-
netic cooling term derived above (see Equation (18)), the equation for the radial dependence
of the electron temperature can thus be written in the following form (see also Fahr and
Chashei, 2002):

dTe

dr
+ 2T

r
= �T1e

�U1

LshU1
. (51)

Here the second term on the left side derived in Equations (18) and (19) of this article
corresponds to magnetic cooling (see Fahr, 2007; Fahr and Fichtner, 2011) and the right
side describes heating by shock passages. Here �T1e in Equation (51) is some constant
value, �U1 is the typical differential bulk speed relative to the travelling shock front, U1 is
the solar-wind speed, Lsh is the typical distance between consecutive shocks in the moving
solar-wind plasma. The right-hand term of Equation (51) in accordance with Equation (19)
depends only on parameters of the jump structure and sequence and does not depend on solar
distance. The radial profile of the resulting electron temperature is defined by the solution
of Equation (51) given in the following form (Fahr and Chashei, 2002):

Te(x) = x−2
[
Te0 + �Te1x

3(�U1/U1)(r0/Lsh)
]
, (52)

where we introduced the dimensionless argument x = r/r0; Te0 is the initial value of the
temperature that is defined only by coronal conditions and must be specified at x = 1 from
the initial condition Te(1) = Te0 + �Te1(�U1/U1)(r0/Lsh). The solution (52) is shown in
Figure 1.

Evidently, the resulting function Te(x) given by Equation (52) attains its minimum at a
heliospheric distance [xm] given by

xm = 1

3

[
2Te0

�Te1

U1

�U1

(
Lsh

r0

)−1]
, (53)
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Figure 1 Radial profiles of electron temperature calculated by Equation (52) at a compression ratio
s = 1.1 for several values of Lsh, the distance of consecutive shocks (i.e. shock occurrence period):
Lsh = 1;1/2;1/3;1/4;1/5 AU from bottom to top. This shows that the position [xm] of the temperature
mimimum decreases and the minimum temperature increases with a decrease of the mean distance [Lsh]
between shocks.

and thus heating dominates cooling at solar distances x ≥ xm. When heating is stronger
than cooling at x > xm, this results in temperature increases with increasing distance. Equa-
tion (53) shows that the dependence on the location of the temperature minimum at xm

depends on the parameters of the problem, but is relatively weak.
Assuming that the initial solar distance x = 1 is located at r0 = 1 AU and using the set of

parameters Te(x = 1) = 1.2 × 105 K (Burlaga, 1971), �U1/U1 = 0.1, r0/Lsh = 3, we find
from Equation (53) Te(1) = Te0 + Te1 = 1.2 × 105 K.

Taking Te0 ≈ 1.2 × 105 K then gives the estimate for xm: xm ≈ 4, i.e. the electron-
temperature increase starts at a solar distance of about 4 AU. Correspondingly, the electron
temperature [Te,min] at the minimum of the radial profile in accordance with Equation (50)
is approximately equal to Te,min ≈ 2 × 104 K, which is considerably higher than in the case
of pure magnetic cooling. The electron temperature according to solution (52) attains high
values of about Te(100) = 4 × 105 K near the termination shock, i.e. at values of about
x ≈ 100. This value is even higher than that of the electron temperature at 1 AU, i.e. heat-
ing by travelling shocks overcompensates for the magnetic cooling. Similar estimates can
be found at Lsh = 1 AU. In this case Te0 ≈ 1.2 × 105 K, xm ≈ 5, Te,min ≈ 1.2 × 104 K;
Te(100) ≈ 1.5 × 105 K, showing that the shock effect is still strong and approximately com-
pensates for the magnetic cooling. Obtaining the above numerical estimates, we assumed
that the distance from the adjacent shocks is about Lsh = (1/3) AU or 1 AU. These values
appear to be relatively reasonable, because shocks and discontinuities are observed in the
solar wind sufficiently frequently, sometimes even several shocks per day (Burlaga, 1971).
At Lsh � 1 AU occurrence of the shocks is rare and electron heating can be expected to be
fairly negligible; at Lsh � 1 AU the electron pressure will be too high with effective sound
speeds cs = (kTe/M)1/2 > 100 km s−1, making the existence of the termination shock fairly
questionable.
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9. Conclusions

We have shown in this article that contrary to hitherto conventional thinking, solar-wind
electrons do not simply cool off with increasing distance, but due to their interactions with
travelling shocks undergo permanent heating processes while being advected out to larger
distances with the solar wind. This leads to the occurrence of a temperature minimum in
the radial electron temperature profile beyond which electron temperatures again increase.
We speculate here from examining this effect of jump-induced heating that electron tem-
peratures may be dependent on the solar-activity cycle, and that more pronounced electron
heating occurs at higher activity conditions. It may also be possible to predict that elec-
tron temperatures at higher ecliptic latitudes, where high-speed solar-wind streams with low
fluctuation amplitudes dominate at least during minimum conditions, electron temperatures
may increase less effectively because of the reduced occurrence frequencies of travelling
shocks in these regions.
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