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Abstract A rapid and flexible manual method is described that maps individual coronal
loops of a 2D EUV image as Bézier curves using only four points per loop. Using the coro-
nal loops as surrogates of magnetic-field lines, the mapping results restrict the magnetic-field
models derived from extrapolations of magnetograms to those admissible and inadmissible
via a fitness parameter. We outline explicitly how the coronal loops can be employed in con-
straining competing magnetic-field models by transforming 2D coronal-loop images into
3D field lines. The magnetic-field extrapolations must satisfy not only the lower boundary
conditions of the vector field (the vector magnetogram) but also must have a set of field
lines that satisfies the mapped coronal loops in the volume, analogous to an upper bound-
ary condition. This method uses the minimization of the misalignment angles between the
magnetic-field model and the best set of 3D field lines that match a set of closed coronal
loops. The presented method is an important tool in determining the fitness of magnetic-
field models for the solar atmosphere. The magnetic-field structure is crucial in determining
the overall dynamics of the solar atmosphere.
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1. Introduction

Solar images have always been important in acquiring an understanding of the physics of
the Sun. From the first photographic images of the solar corona in 1851, to Hale’s spectrohe-
liograph chromospheric images of 1891, to Lyot’s coronagraph images of 1931, to Skylab’s
X-ray images of 1973, and to today’s Solar Dynamics Observatory’s images, image anal-
ysis has played a pivotal role in the development of solar physics. Starting in April 2010,
the operation of the Solar Dynamics Observatory, with its two primary imaging instruments
of the extreme ultraviolet (EUV) multiple-wavelength spectroheliograph, the Atmospheric
Imaging Assembly (AIA) and the combined vector magnetograph and Dopplergraph instru-
ment, the Helioseismic and Magnetic Imager (HMI), have provided unparalleled observa-
tions of the magnetically dominated structure of the solar atmosphere (Lemen et al., 2012;
Schou et al., 2012). In particular, the coronal-loop structures in the solar atmosphere
are clearly defined by AIA at high resolution (1.5 arcsec) and high temporal cadence of
(1 image/12 second) over the EUV spectral range (9.4 – 33.5 nm) using a set of spectral
filters covering a temperature range of 0.06 – 20 MK (Aschwanden and Boerner, 2011;
Reeves and Golub, 2011; Pesnell, Thompson and Chamberlain, 2012). HMI provides pho-
tospheric vector magnetograms every 90 – 135 seconds, and is normally averaged into 12-
minute products. The HMI data provide the base magnetic field for the corona, as well
as dopplergrams and continuum filtergrams (Scherrer et al., 2012). Use of the AIA data
to define precisely the loop structures, which are surrogates for magnetic-field lines, pro-
vides a definitive diagnostic for admissible and inadmissible magnetic-field solutions.1 The
magnetic-field models for the solar atmosphere are decisive and crucial in determining the
overall dynamics of the atmosphere leading to flares and coronal mass ejections and the
form of the outflowing solar wind. The geometry of the magnetic-field lines can be used

i) to determine the variability of the magnetic-field strength with height which is important
in determining the plasma-β ratio,

ii) to understand the non-potential magnetic structures of the solar atmosphere, which is
critical in estimating the magnetic free energy,

iii) to study the open/closed topology of the magnetic field by defining the foot points of
the field lines and specifying the open-field lines, and

iv) to constrain the possible magnetic reconnection scenarios in the corona.

To date, the best method to delineate the coronal structures in an active region employing
EUV imagery is through a manual method of tracing each curvilinear feature, even though
extensive research has been carried out into automating the process (Aschwanden et al.,
2008; Aschwanden, 2010). This manual success is due to the exceptional mental process of
being able to recognize in context a single loop in a complex image where the unshaped,
overlaying, and discontinuous loops may have low contrast and ill-defined endpoints; albeit
with personal biases. In this article, we exploit this manual process of visual recognition by
introducing an easy curve-matching process. This method uses only four points per loop,
which are moved through a simple user-interaction process allowing the curve to be rapidly
overlaid onto the selected loop in an image. The total resulting curve is stored by using only

1The new orbiting solar instrument, the Interface Region Imaging Spectrograph (IRIS), launched 27 June
2013, will provide additional UV images with an increased spatial resolution of 0.33 – 0.40 arcsec with
a 2 × 2 arcmin2 FOV. IRIS data will be important in showing the local heating locations at the base of
the coronal loops and in improving our understanding of the interface between the photosphere and corona
(iris.lmsal.com).

http://iris.lmsal.com
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four coordinate points: the control points. The interactive computer process is implemented
to allow various co-spatial magnetograms and EUV filtergrams to be viewed sequentially.
This improvement allows the recognition of the overall loop structure by studying the loops
at various emission temperatures, and allows the loop identification to include information
on the arrangement of the underlying photospheric magnetic flux. The use of photospheric
and chromospheric images also helps determine the tentative location of the coronal foot
points by allowing the selection to be consistent with magnetic features and lower atmo-
spheric emission features at the end points of the loop. The rationale of this approach is
discussed in the following sections.

2. Parametric Bézier Curve

A coronal loop in a EUV image is seen as a curvilinear feature in the projected two-
dimensional image plane. These enhanced coronal-loop features trace the magnetic field
that contains the EUV-emitting plasma. They appear distinct in the EUV images be-
cause the pressure is enhanced by about ten times over the ambient pressure and have
plasma temperatures between 104 – 106 K, and, in the common closed form, span from
positive to negative magnetic-field regions (Priest, 1982; Aschwanden, 2001, 2002). Be-
cause the magnetic pressure dominates the plasma pressure, the coronal features trace
the curve of the magnetic-field lines (Gary, 2001). The closed magnetic loops in an
active region are generally the brightest due to the plasma trapping of the magnetic
field. As a mathematical construct, the center of these loops is a locus of a point mov-
ing with one degree of freedom, e.g. u, along the curve. The geometric modeling of
the curves can be efficiently described by parametric equations (Klimchuk et al., 1992;
Klimchuk, 2000). In 2D, the curves are described by the functions x = x(u) and y = y(u)

of a parameter u, which allows lines tangent to the coordinate axes, bounded lines, and lines
independent of the image coordinate systems. One class of parametric curves is the Bézier
curves. We refer the reader to Mortenson (1997) for a detailed discussion of these curves
and their general properties.

The major advantages of using Bézier curves to map the coronal features are

i) they provide a method to change the shape of the curve with only a few parameters in
order to match a coronal loop,

ii) the variation of the simple parameters changes the shape of the curve in a predictable
manner,

iii) the curve automatically starts and ends at the user-defined foot points, and
iv) the curves and their derivatives with respect to the parameter u exist and can be deter-

mined at every point along the curve by a simple analytic equation.

Given a value of u (0 ≤ u ≤ 1), a position point [X(x,y)] along the curve is determined.
The predictable nature of the changes in the curve is due, in part, to the Bézier curve be-
ing invariant under affine transformations (combinations of translation, rotation, scaling, or
shear) and there is a simple geometric algorithm (the de Casteljau construction (Mortenson,
1997)) for constructing the curve.

The general 2D Bézier curve of degree n can be written in the form

X(x, y) = f (u) =
n∑

i=0

Pi+1βn,i(u), u ∈ [0,1], (1)
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Figure 1 An example of a using
cubic (n = 3) Bézier curve to fit a
coronal loop on a SDO AIA
171 Å filtergram taken in the
northern area of the active region
AR 11117 on 25 October 2010.
From frames (a) to (f), the
control points are moved to have
the curve match the loop
captured in frame (f). The field of
view is ≈ 4.5 × 5.3 arcmin2.

where βn,i is the nth-degree polynomial basis function, the Bernstein polynomials,

βn,i(u) = n!
i!(n − i)!u

i(1 − u)n−i , (2)

and Pj (j = 1, . . . , n + 1) are position vectors (xj , yj ) called control points and are the
vector parameters that control the shape of the curve (Mortenson, 1997, Equation (4.2)).
[n.b. In this article, Pj indexing starts with 1, this is different from Mortenson’s indexing,
which starts from 0.] The Bézier curves interpolate between the first and last control points
and are tangent to the first and last sides of an open polygon formed by connecting the
Pj (x, y) points. The Bézier curve lies within the convex hull of the polygon control points
(as shown in Figure 1).

We can generally restrict the curves that trace projected coronal loops to the class of
cubic (n = 3) Bézier splines. The essence of this assumption is that the coronal loops show
normally at most one inflection point, which can be handled by the cubic Bézier curve. We
will later quantify this assumption by comparing Bézier curve approximations to a set of
field lines generated for an active region by a magnetic-field solution extrapolated from a
solar magnetogram. The parametric cubic Bézier curve is given explicitly by

X(x, y) = f(u)

= (1 − u)3P1(x1, y1) + 3u(1 − u)2P2(x2, y2)

+ 3u2(1 − u)P3(x3, y3) + u3P4(x4, y4), (3)

where P1 and P4 are the control points associated with the coronal-loop foot points under the
appropriate assumption which are to be described. For simplicity, the curves for the coronal
loops are assumed non-segmented, i.e. non-composite curves. However, if necessary, high-
order curves can be accommodated by a composite of cubic Bézier curves joined end to end.
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In this case, the control points at the joints are joined preserving the position and tangent
continuities.

To improve loop recognition, high spatial-frequency image filtering or image time-
differencing techniques could be implemented to help delineate the coronal loops. However,
our current method does not apply these methods, to avoid inducing artifacts. For exam-
ple, a few observed coronal-loop features might be artificially generated by line-of-sight
integration effects of overlapping coronal objects, but even these would be shaped by the
magnetic-field structures in the low-plasma-β corona (Gary, 2001). We assume that each
visible loop is a magnetic-field surrogate and use un-enhanced imagery.

Figure 1 shows a sequence of six images in which the cubic Bézier control points are
moved, until in frame F the curve visibly overlays a loop in the AIA 171 Å filtergram. As
the line segments or the open polygons formed by the four points P1,P2,P3, and P4 expand
from a straight line to embrace the 171 Å loop which is captured in the last frame, the points
P1 and P4 are placed at the foot points and initially P2 and P3 are placed at equal distances
between the end points. Then the points P2 and P3 are moved outward along the two tangent
lines at the nearest foot points, respectively. The length of the resulting curve is given by

L =
∫ 1

0

∣∣∣∣
∂f(u)

∂u

∣∣∣∣du, (4)

which can be evaluated numerically (Bancisk and Juhasz, 1999). For Figure 1(f), the
coronal-loop arclength L is 190 arcsec or 137 Mm, which is about 100 times the cross-
sectional width of the loop. For a particular point on the coronal loop, the tangent vector
is T = dX(x, y)/ds where the s is the differential of arclength, ds = (dx2 + dy2)1/2. For
Bézier curves, the normalized tangent vector can be written as

T =
∂f(u)

∂u

| ∂f(u)

∂u | , (5)

where

∂f(u)

∂u
=

n∑

i=0

[Pi+2 − Pi+1]βn−1,i (u). (6)

Equation (6) allows one to calculate equally spaced steps along a Bézier curve, even though
equal steps in u are not equal Euclidean steps. The normal vector is N = κ−1dT/ds,
where κ is the curvature or the reciprocal of the radius of curvature, ρ = κ−1 =|[1 +
(dy/dx)2]3/2/d2y/dx2|. The average radius of curvature is

ρave = 1

L

∫ L

0
ρ(s)ds. (7)

For this example, ρave = 86 arcsec or 63 Mm (with ρmin = 28 Mm). The width of the
coronal loop, two arcsec, is only 2 % of the arclength (Aschwanden, 2011; Aschwanden
and Boerner, 2011). By visual inspection, the peak-to-peak error in fitting is estimated to
be about the same value. This value is typical of the fitting that is achieved by this manual
method.

In order to estimate the errors of using a cubic Bézier curve to map the center line of the
coronal loop, we will assume that the variety of coronal-loop structures can be approximated
by a set of potential-field lines. This then allows the loop coordinates to be numerically
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Figure 2 Cubic Bézier curves
(black) are fitted and compared to
the potential magnetic-field lines
(light gray) for the active region
AR 11117 using a ten-dipole fit
to the HMI magnetogram (25
October 2010, 20:58 UT)
(background). The background
magnetogram (5 by 5 arcmin2) is
in false-color with red showing
the direction of the field toward
the observer and blue away from
the observer.

compared to a Bézier fit. A computer algorithm was implemented to determine the control
points P2 and P3 that minimizes the difference between a cubic Bézier curve and a known
magnetic-field line. The process starts with having P1 and P4 at the foot points (or end
points) of the field lines. The cubic Bézier curve fit is found by varying the respective two
middle control points, P2 and P3, along the nearest foot-point tangents, P′

1 and P′
4, such that

the distances between equally spaced points on the coronal loop (field line) and the Bézier
curve are minimized in the root-mean-square sense. Two Euclidean distances [ε2 and ε3] are
introduced such that ε2 is the distance between P2 and P1 along the field-line tangent at P1,
and ε3 is the distance between P3 and P4 along the field-line tangent at P4. The placement
of P2 and P3 is then generated by minimizing the square root of the sum of the squared
differences between equally divided points [α] on the Bézier curve [f] and the field-line [r]
loops, as a function of ε2 and ε3:

χ =
[

1

m

m∑

α=1

[
f(uα, ε2, ε3) − rα

]2

]1/2

. (8)

This determines the best fit for a Bézier curve to the potential-field line.
To quantify the use of the cubic (n = 3) Bézier curve over higher-degree curves, we use

the above minimization process to compare the differences between the cubic curves and a
series of field lines generated from a known magnetic-field configuration. The magnetic field
is a ten-dipole fit to the longitudinal magnetogram of AR 11117. The parameters of the ten
dipoles (i.e. dipole magnetic-field strengths and locations) are determined by minimizing the
RMS differences between the sum of longitudinal magnetic field at the photosphere of the set
of dipoles and the planar longitudinal magnetogram. Applying the minimization procedure
to a set of randomly generated field lines, the curve-fitting results are shown in Figure 2 and
are given in Table 1. These data imply that the single cubic Bézier curve is sufficient for
most studies. The RMS error of Equation (8) of the Bézier curve fit is less than 5 % of the
length of the curve. Only when there is a large (90◦) kink in the 2D image of the loop is there
difficulty in matching the loop with a single cubic Bézier curve, and in the manual process
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Table 1 Statistical study of the suitability of the cubic Bézier curves to map magnetic fields. The potential-
field loop of length L in arcsec is given with the mean RMS error and the percent deviation of RMS/L.

Loop length [arcsec] RMS fit % Deviations Number of loops

40 – 90 0.48 0.60 73

100 – 149 1.67 1.38 41

150 – 199 3.87 2.21 29

200 – 299 8.44 3.40 11

300 – 409 16.95 4.49 5

Figure 3 The process of
straightening the cubic Bézier
curve (a) by generating two
parallel lines (b) and segmenting
the region into equal steps of the
parametric equation (c). An
example of a gridded 10 × 10
segment of the Bézier path (d)
with its irregular quadrilateral
shape which is translated into a
rectangle form (e) in the
loop-straightening process. In
frame (a), the normal vector
direction to the field line is blue
and the tangent vector is orange.

this mismatch is quickly determined. The RMS fit error of 5 % is comparable to the 4.5 Mm
width of the a typical 100 Mm coronal loop observed by Transition Region and Coronal
Explorer (TRACE: Aschwanden and Boerner, 2011). Hence it is expected that the cubic
Bézier curve can be fitted within the width of the observed loop. Of course, a composite
curve could be implemented if higher criteria are required.

As a result of obtaining a cubic Bézier fit to a coronal-loop image, one can extend the
process to extract the coronal-loop pixels and straighten out the loop. This straightened loop
can be used to study

i) the fitness of the loop to the curve, i.e. to determine how straight the coronal loop is
when the Bézier curve is straightened out,

ii) the cross-sectional characteristics of the coronal loops, and
iii) the influence of the near-by and cross-cutting loops (Klimchuk et al., 1992).

This analysis using the straightened loop is to be discussed later but here we discuss
the extraction and straightening process. The technique generates two curves parallel to the
cubic Bézier fit on opposite sides of the loop.

Figure 3(a), shows, at a specific parameter value [u] the normal vector direction to the
field line [N/‖N‖] and the tangent vector [T/‖T‖]. If we extend the normal direction out
in both directions along the curve we obtain two parallel lines (Figure 3(b)). The respective
Bézier curves, fupper(u) and flower(u), for these two lines can be obtained from Equation (3),
where the values of the corresponding parametric values [ua and ub] for two selected middle
control points [Pa and Pb] for the upper and lower curves, are known.
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These two parallel cubic Bézier curves can be subdivided into segments by using the
parametric values ui = i/M , i = 0, . . . ,M . The individual widths of the subdivided seg-
ments of the fit are not all the same since the arclength is not a linear function of u. This
division is shown in Figure 3(c), with one segment highlighted in yellow and with M = 100.
The four quadrilateral corners of a segment are given by fupper(ui), flower(ui), fupper(ui+1),
and flower(ui+1). The collection of segments can be straightened by making each segment
into rectangles with a width of the arclength distance of the segment, and the height is the
fixed distance between the outer parallel Bézier curves as shown in Figure 3(d).

The curved segments, Figure 3(c), do not have parallel sides and are not oriented normal
to the image-plane axes; hence the image points associated within these segments must be
calculated by breaking the area down via a linear interpolation of each of the four sides.
A resultant 10 × 10 grid is shown in the example given in Figure 3(d) for a segment. We
use these straightening and curve-fitting techniques as major elements for fitting and check-
ing the Bézier curve fits. Although not yet implemented, an additional improvement in our
method could use this straightening segment and perform a cost-function analysis for fine
adjustments of the placement of the middle control points (Conlon and Gallagher, 2010).
The selection of coronal-loop foot points are discussed next.

3. Determining the End Points – The Foot Points

Because the coronal-heating process remains unknown, there are many proposed coronal-
heating models. Aschwanden lists a set of coronal-heating models broken down into eight
subgroups (Aschwanden, 2002, p. 361). The heating processes in the models belonging to
nearly all subgroups are driven by photospheric motions and/or by magnetic-field processes
that are connected to the photosphere. The exception is the one subgroup that relates to
magnetic instabilities in the corona itself and does not necessarily relate directly back to the
photosphere. However, in general, it is expected that there should be a photospheric or chro-
mospheric signature to the heating process even though this signature may not completely
specify the process. For example, transient events (e.g. nanoflares) produce energy and out-
flows consistent with plasma heating and have been related to coronal loops (Aschwanden,
2002). In the manual selection process we examine the foot-point locations (see Figure 4
and the four enlargements in Figure 5) in the EUV continuum and the longitudinal field
strength in order to associate the foot-point location with heating surrogates.

The foot points of coronal loops, in many cases, are not definitely determined by visual
inspection from a single wavelength filtergram. For those cases in which the end points of
the loops are not definite due to the overlapping of loops, the lack of definition and contrast,
and the fading of the loop at one of the foot points, we can use two approaches. The first is to
use the full set of filtergrams from AIA to augment a particular filtergram and the second is
to use photospheric and chromospheric signatures as proxies. The heated coronal loops have
a temperature distribution along the axial direction of the loop. This implies that the loop
heating or cooling is reflected to some degree by the dynamics and heating signatures at the
foot points (see, e.g., Berger and Title, 2001; Aschwanden, 2002; Yurchyshyn et al., 2010).
Magnetic structures have been related to the coronal-loop foot points (see, e.g., Schrijver and
Title, 2002; Katsukawa and Tsuneta, 2005). Also using TRACE and Solar and Heliospheric
Observatory/Michelson Doppler Imager (SOHO/MDI) data, dipole magnetic features were
related to large scale loops (Schrijver and Title, 2002). Both hot and cool loops have been
found to be rooted in 1 kG photospheric fields using Yohkoh, SOHO, and TRACE data. The
foot points are identified with some specific magnetic feature or chromospheric emission at
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Figure 4 SDO data of active
region AR 11140 on 4 January
2011 at 00:00 UT: (top) AIA
171 Å filtergram, (middle) AIA
1700 Å filtergram, and (bottom)
HMI longitudinal magnetogram,
with enlarged selected foot-point
views, to the left. As indicated by
the circles, multiple wavelength
views of the regions around
possible foot-point locations help
to limit the foot-point origin. The
fields of view are 6.0 × 0.4
arcmin2 and 0.7 × 0.4 arcmin2,
respectively.

the base of the corona (cf. Figure 4). An additional improvement in the manual foot-point
selection process would be to devise and test various algorithms for selecting the nearest
possible heating site using EUV images, magnetograms, and Doppler maps (De Pontieu
et al., 2009).

Because of the relation between coronal heating and various foot-point signatures in
the photosphere or chromosphere, locating the foot points of the coronal loops should be
employed using these signatures. We employ these signatures in our coronal-loop fitting
by adding additional panels to the main computer panel (Figure 5). The four additional
subpanels show enlarged portions of the images around the two foot points of the Bézier
curve. The magnetograms and the 1700 Å continuum panels are updated continuously and
the control points [P1 and P4] are moved to fine tune these foot points to coincide with the
enhancement in the magnetic flux and UV emission.

4. The Manual Program

In the manual mapping, we have developed a Mathematica® program that provides a simple
interface to view alternately the EUV filtergrams and magnetograms and provide manipula-
tion and storage of the control points, as well as expanded views of the foot-point regions.
As seen in Figure 5, the main coronal-mapping program provides a simple switching mode
to change the background between AIA and HMI images. The control points are selected to
map a particular coronal loop in this data set. Furthermore, as the foot points are adjusted,
the expanded views of the two foot-point regions (enlarged by a factor of two) in both the
EUV continuum and longitudinal field are updated and allow suitable foot-points’ adjust-
ment and selection. The data are stored and then the next loop is mapped, all at a rapid pace
of only a few seconds per loop.
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Figure 5 The main panel for selecting and mapping the coronal loops by foot-point adjustments. The first
and last control-point subframe locations for the magnetic field and 1700 Å continuum regions are shown
below the active region. There are keys to switch the main-panel backround view through the AIA filters and
HMI data sets.

In order to obtain the EUV images needed for the coronal-loop identification there
are several alternatives, e.g. Heliophysics Event Knowledgebase (HEK: Hurlburt et al.,
2012), Virtual Solar Observatory (VSO: sdac.virtualsolar.org) web pages, SolarSoftWare
software (SSW: www.lmsal.com/solarsoft) and Joint Science Operations Center data request
forms (JSOC: www.jsoc.Stanford.edu). Here we discuss only JHelioviewer. JHelioviewer
(www.jhelioviewer.org) is a visualization tool for SDO, AIA, and HMI data based on the
JPEG 2000 image-compression standard, which gives a highly compressed, quality pro-

http://www.lmsal.com/solarsoft
http://www.jsoc.Stanford.edu
http://www.jhelioviewer.org
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Figure 6 Panel (a): first row, a set of open and closed field lines is shown on the 171 Å filtergram and the
HMI LOS magnetogram for AR 11117 on 12 October 2010 at 18:30 UT (7.2 × 5.4 arcmin2). Panel (b):
the loop to be straightened is shown with the active region (2.9 × 2.1 armin2). The loop is clearly defined
leaving the following sunspot but weakens and disappears as it enters the preceding sunspot region. A manual
method allows the intuitive connection of disjointed coronal loops within the context of the entire region,
albeit subjective, per loop, with consistent total structure. Panel (c): the Bézier curve has been straightened
and the resulting associated emission for the coronal loop is displayed.

gressive, and region-of-interest based form of image search and acquisition (Mueller et al.,
2009). These features make it relevant for NASA’s Solar Dynamics Observatory data since
the observatory is providing more than a terabyte of image data per day. The use of the
browser allows the capturing of the AIA filtergrams and HMI magnetograms. One of the
primary advantages of the JHelioviewer software lies in its ability, in part, to cross-reference
the data sets and solar events from various instruments and spacecraft and to allow the cap-
ture of selected regions of interest for later analysis.

After browsing for specific data in JHelioviewer, the user created the state file and images
upon exiting. This state file can be modified to select particular fields of view (center, width,
and height in meters) and, if needed, reopened with the new coordinates.

In Figure 6, panels (a) and (b), show more details of the elements of the manual mapping
program. Figure 6(a) shows a full set of field lines that has been mapped by selecting and
moving the Bézier control points, and illustrates the benefits of switching between back-
ground images. For each curve the four Bézier points determine the full curve and are stored
for analysis. Figure 6(b) shows, for one loop, a selected Bézier curve and the four associate
control points. Using the method to straightening the line, the fit can be checked, as shown in
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Figure 7 The cubic Bézier connection between the 3D and 2D projections. Dashed blue line: a 2D cubic
Bézier curve in the z = 0 plane, defined by the control points Pi (xi , yi ), i ∈ (1,4). If the control points P1 and
P4 become 3D vectors, via (x1, y1,0) and P4(x4, y4,0), and if we define P′

2 and P′
3 as P′

2(x2, y2, z2) and
P′

3(x3, y3, z3), then we define the 3D cubic Bézier curve (dark red) by the introduction of two parameters: z2
and z3. The two curves are related by having points lying at the same location in the image plane.

Figure 6(c). Further improvement of the program might automate small corrections through
a cost analysis that makes slight adjustments automatically to fit the coronal loop.

5. Determining the Best 3D Magnetic Field Model

The 2D parametric cubic Bézier curve fit to an imaged coronal loop can be generalized to
3D with only two additional scalar parameters, and this 3D loop can be used to constrain
3D magnetic-field models. This section discusses this generalization. The 2D cubic Bézier
curve (from Equation (1)) is given by

X(x, y) = f(u) =
3∑

i=0

Pi+1βn,i(u), (9)

where Pj are 2D position vectors (xj , yj ), and can be extended to 3D, by having the po-
sitions vector be 3D vectors, i.e. Pj = (xj , yj , zj ). Hence, writing Equation (9) in the 3D
form, we have

R(x, y, z) = F(u)

= [[
(1 − u)3x1 + 3u(1 − u)2x2 + 3u2(1 − u)x3 + u3x4

]
,

[
(1 − u)3y1 + 3u(1 − u)2y2 + 3u2(1 − u)y3 + u3y4

]
,

[
(1 − u)3z1 + 3u(1 − u)2z2 + 3u2(1 − u)z3 + u3z4

]]
. (10)

The X(x, y) curve is the 2D projection of the 3D curve R(x, y, z) onto the z = 0 plane.
Figure 7 illustrates this projection geometry. Assuming P1 and P4 are the photospheric foot
points of a coronal loop, Figure 7 shows that by changing only z2 and z3 for the matched
Bézier control points, a 3D curve agrees with the fitted coronal loop in 2D projection.
Therefore, if we can determine z2 and z3, we have the 3D coronal-loop structure, i.e. a
3D magnetic-field line.
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Next, a method to determine z2 and z3 is discussed in terms of minimizing the coronal
magnetic-field line tangents [Bobs(R)] with a theoretical magnetic-field model [Btheo(R)]. At
a 3D position [R], we define the misalignment angle μ(R), 0 ≤ μ ≤ π (De Rosa et al., 2009;
Aschwanden and Malanushenko, 2013) as

μ(R) = cos−1

[
Btheo(R) · Bobs(R)

|Btheo(R)||Bobs(R)|
]
, (11)

where the angle μ is defined in terms of R and the associated field directions for the observed
and theoretical magnetic fields. For the entire loop, a characteristic misalignment angle is
defined by the equation

ξ = 1

�

�∑

k=1

μ(Rk), (12)

where the sum is over � = 100 equi-spaced points along a field line and � has the same
value for all loop lengths. Hence from the preceding paragraphs, we define, for the j th loop,
a similar overall characteristic misalignment angle ξj [zj2, zj3] for the 3D Bézier coronal fit,
where the position z-coordinates are determined by

z[zj2, zj3] = (1 − u)3zj1 + 3u(1 − u)2zj2 + 3u2(1 − u)zj3 + u3zj4, (13)

where zj1 and zj4 are the estimated foot-point positions at z = 0, and zj2 and zj3 are initially
unknown. Hence given a 3D magnetic-field extrapolation model [Bm

theo(x)], where m is the
model number, and using the 3D Bézier loop construction we can construct the characteristic
misalignment angle for the j th loop and mth theoretical magnetic-field model assuming
values for z2 and z3:

ξm
j [zj2, zj3] = 1

�

�∑

k=1

cos−1

[
Bm

theo(Rk[zj2, zj3]) · Bobs(Rk[zj2, zj3])
(|Bm

theo(Rk[zj2, zj3])||Bobs(Rk[zj2, zj3])|)
]
. (14)

The final set of values for zj2 and zj3 (i.e. z∗
j2 and z∗

j3), are determined by the values that
minimize ξm

j , i.e.

ξm
j

[
z∗
j2, z

∗
j3

] = minz2,z3

[
ξm
j [zj2, zj3]

]
. (15)

Using the best-fit parameters z∗
j2 and z∗

j3, we define a global parameter [�] using all of the
N loops for each model:

�[m] = 1

N

N∑

j

ξm
j

[
z∗
j2, z

∗
j3

]
. (16)

We define this as a measure of the goodness of fit for each model. The best magnetic model
representation for the corona is given by the model which satisfies minm[�[m]]. Assum-
ing that all the models extrapolate the same photospheric vector magnetic field then this
procedure allows a selection of the best model that agrees with the coronal loops.

Figure 8 shows the misalignment of the tangent Bézier vectors and the normalized
magnetic-field directions associated with a field lines in AR 11117 (see Figure 2), in which
the middle-two cubic Bézier control points are given increasingly vertical displacements
z2 and z3. The resulting characteristic misalignment angles (Equation (14)) decrease from
36◦ to 0.5◦. The photospheric projection of the field line is fitted by a root-mean-squared
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Figure 8 The reduction of the
misalignment of the tangent
Bézier vectors and the
normalized magnetic-field
directions as displacements z2
and z3 are increased. The blue
arrows are tangents to the Bézier
curve and the red arrows are the
normalized magnetic-field
directions at the same point. The
black line is the original field line
generated from a ten-dipole
magnetic-field model (Figure 2,
Loop A). From bottom to top, the
associated characteristic
misalignment angles are 36.70,
29.75, 23.00, 16.61, 10.70, 5.33,
0.51 (minimum), and 3.78
degrees.

2D Bézier curve and then the middle control points are given vertical displacements with
the resulting curve becoming 3D with the addition of non-zero values for z2 and z3. The
minimum characteristic misalignment error is not zero, in part from three sources of errors
resulting from i) the finite integration steps for the initial field lines, ii) an imperfect match
of the cubic Bézier curve to the projected field line (2 % RMS error), and iii) the RMS
minimization determination of z2 and z3. However, the resulting 3D cubic Bézier curve is
a good representation of the numerical field line with an RMS displacement error of 3.3 %
compared to the arc length of the field line.

By forcing the end points of the cubic Bezier curve (P1 and P4) onto the photosphere,
the misalignment-angle minimization process then has a single global minimum for all the
coronal loops used in this study. A follow-on study, now in progress, also allows z1 (or z4) to
have a vertical displacement, and we minimize the coronal loops displacements with three
free z-parameters. We simulate an open field line by having one end point in the corona and
one on the photosphere. We are also exploring having all four control points with a vertical
displacement, although it might be problematic in finding a global minimum; however, this
would negate the necessity of assuming photospheric foot points.

This method could be used to determine the linear force-free parameters in minimum
dissipation rate (MDR) models (Gary, 2009) to distinguish the best nonlinear-force-free
model, or to select the source-surface height of a potential-field source model (De Rosa
et al., 2009; Malanushenko et al., 2012).

The active region AR 11117 was used in a comparison example (Wu et al., 2012; Tadesse
et al., 2012; Jiang et al., 2012). Figure 9 shows the results of a potential-field extrapolation
compared with the 3D time-dependent data-driven MHD solution of Wu et al. (2012). Also
for comparison, the NLFFF minimum dissipative rate (MDR) model is included (Hu and
Dasgupta, 2008; Hu et al., 2010). The MHD is obviously superior in generating field lines
closer to the observed coronal loops. This superiority is, in part, caused by using the full
photospheric vector magnetic field in the model and having no global parameters as is the
case for the other two models which use constant-LFFF parameters. Using Equation (16)
we can determine a quantitative comparison between these three models. The results of
the analysis for the three models is shown in Table 2, where 25 closed coronal loops were
used. This analysis assumed the identified loops were closed, i.e. both ends of the loop were
coronal foot points at z = 0. Obviously this assumption is only asserted, but it relies on
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Figure 9 For active region AR
11117, a comparison of field
lines from a potential magnetic
field (panel (a)), a minimization
of energy dissipation rate process
(panel (b)), and a data-driven
MHD magnetic field (panel (c))
are shown with AIA 171 Å
coronal loops mapped by cubic
Bézier curves. The background is
the LOS HMI magnetogram
(3.3 × 2.1 arcmin2). The field
lines (red) of each model are
generated from the end points
(foot points) of Bézier mapped
coronal loops. Bézier coronal
loops are colored yellow if they
appear to be closed field lines,
and green if they appear to be
open field lines. The agreement
of the projected field lines with
the Bézier coronal-loop curves
visibly improves from (a) to (c).

checking the polarity of the assumed foot points and the general geometry of model field
lines. Having a number of Bézier-fitted coronal loops allows the statistics to be in favor of the
majority being actually closed loops. In the current process we assume that the foot points
are actually at or very near the photosphere level, although later work will allow these foot
points to be also elevated in the minimization procedure. For the initial investigation these
foot-point values are zero, to simplify the test of the method.

For the three magnetic-field models studied (potential, MDR, and MHD) the respec-
tive misalignment angles are 32.7◦, 28.8◦, and 27.6◦. The calculation had a physical vol-
ume of 200 × 128 × 100 arcsec3. Of particular interest are the resulting magnetic-energy
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Table 2 The misalignment angle results comparing three magnetic-field models, using 3D Bézier curve fits
to 25 coronal loops, characterized as closed field lines.

Field
model

Mean
misalignment
angle

Standard
deviation

Loop
minimum
misalign.
angle

Loop
maximum
misalign.
angle

Mean z2 Mean z3

Potential 32.7◦ 15.1 10.7 66.4 41.9 44.8

MDR 28.8◦ 11.6 14.1 59.3 32.4 37.1

MHD 27.6◦ 10.5 11.3 59.0 36.7 40.7

values in the volume corresponding to 4.12, 4.47, and 4.90 × 1032 ergs. There is an al-
most inverse linear correspondence between the energy and the misalignment angle, with
an extrapolated zero misalignment angle having an energy of about twice the potential
energy. However, we have only three points, and it will be interesting to see if we can
verify this trend in future studies. Furthermore, in the context of several previous studies
employing the misalignment angle, the derived misalignment angles of Table 2 are con-
sistent. In a comparison of nonlinear-force-free-magnetic-field (NLFFF) models, De Rosa
et al. (2009) derived the misalignment angles of the model in comparison with Solar TEr-
restrial RElations Observatory (STEREO) data for active region AR 10953. The mean
misalignment angles of these NLFFF models ranged from 24◦ to 44◦ with the mini-
mum being, surprisingly, associated with a potential-field model; there does not seem to
be a linear correspondence between the energies and the misalignment angles of these
NLFFF models. The field lines employed in this study were at the periphery of the ac-
tive region and hence the study was affected by the lack of knowledge of the side and
upper boundary conditions. The boundary conditions, the weakness of the transverse-
field measurements, and pre-processing the data could also affect these results signifi-
cantly giving the potential field a smaller misalignment angle. Two additional articles us-
ing STEREO data have calculated the misalignment angle employing submerged dipoles,
with and without currents, to model the magnetic fields (Sandman and Aschwanden, 2011;
Aschwanden, 2013). Each of these articles effectively describes modeling the STEREO ob-
served field lines, that is, these models are to achieve the best fit to the observed field lines
and do not take into account magnetic transverse-field measurements, nor do they employ
any solar plasma parameters. Without electric currents, for four active regions employing
from 70 to 200 loops, the peak misalignment angles ranged from 11.2◦to 17.8◦ compared
to the potential (PFSS) range of results from 19◦ to 32◦. In both cases there were numerous
misalignment angles greater than the value corresponding to the peak of the distribution of
all misalignment angles. Therefore, our results using the 3D Bézier approach seem consis-
tent with these previous results and show a promising new method to compare competing
magnetic-field models.

6. Conclusion

Although our manual technique is rapid, it is not an automated technique. The manual pro-
cess should allow automated techniques to improve via a learning process. In a recent ar-
ticle, Aschwanden (2010) reported on a promising technique that automatically identifies
the position of segments of coronal loops with the number extracted approaching the num-
ber of segments obtained by visual identifications. The method used is based on oriented-
directivity tracing of curvilinear features and takes advantage of the specific property that
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coronal loops have large curvature radii compared with their widths. In this article one can
find references to other automated approaches for coronal-loop identifications. We hope that
our visual identification process and the application of employing Bézier curves described
above can be used to improve these automated processes via a cognitive, intelligent, or hi-
erarchical temporal memory computing, i.e. learning from experience, cf. Banda, Angryk,
and Martens (2013). In particular, these new methods need to employ global connections
and foot-point selections to actually provide a complete closed magnetic-field line.

Similar investigations have been performed by other research groups. For example,
Malanushenko, Longcope, and McKenzie (2009) and Malanushenko, Yusuf, and Longcope
(2011) use a piecewise-cubic-spline function for a coronal loop (i.e. two cubic Hermite
splines were used to fix one loop where each spline was defined by two end points and
the tangents at the end points) and searches for linear-force-free field solutions curves in
both its force-free parameter and height for each best-fit field line to infer the twist of the
lines. In order to investigate the twist in the coronal magnetic field, various calculations
have been performed to select field lines from different LFFF and NLFFF models to deter-
mine the free parameter [α] which gives the best fit of the coronal lines (Lim et al., 2007;
Lopez Fuentes, Klimchuk, and Demoulin, 2006; Malanushenko, Longcope, and McKenzie,
2009; Aschwanden and Malanushenko, 2013; Aschwanden et al., 2012b). When the two
STEREO spacecraft had the proper angular separation, STEREO investigations have pro-
vided unique 3D reconstructions to allow testing of various extrapolation models (Aschwan-
den and Malanushenko, 2013; Aschwanden et al., 2012a, 2012b). Our approach presented
here is similar to the STEREO method investigated by Aschwanden (2013); however, we
have used a cubic Bézier curve-fitting approach with applications for distinguishing com-
peting magnetic-field models. The 3D cubic Bézier spline (n = 3) has two anchor points at
the ends and two middle control points, which allow non-planar curves.

The importance of employing coronal-loop images in selecting the magnetic-field model
arises in part from the difficulty of measuring the photospheric magnetic field. Wiegelmann
and Inhester (2010) and Wiegelmann et al. (2010) addressed the implication of the vector-
magnetogram errors for deriving a nonlinear-force-free magnetic-field model. The effect of
the 180◦ uncertainty in the polarization measurement of the transverse magnetic field and
its relatively weaker signal introduces errors in the magnetic-field extrapolations. These un-
certainties can be ameliorated by using the coronal-loop information on the direction of the
magnetic-field lines and connectivity, hence the need to map the coronal loops and extract
their information for an improved assessment of magnetic-field models, e.g. see De Rosa
et al. (2009).

In summary, we have described a rapid and flexible manual method based on cubic Bézier
splines to represent the EUV coronal loops of an active region. The technique uses only four
points per field line, which allows a computer-efficient and rapid algorithm. Since the coro-
nal loops are used as surrogates of magnetic-field lines, the Bézier mapping can restrict
the magnetic-field models derived from extrapolations of magnetograms to those admissi-
ble and inadmissible, since the magnetic-field extrapolations must satisfy not only the lower
boundary conditions of the vector field, the vector magnetogram, but also must have a set of
field lines that satisfies the additional conditions in the volume, akin to supplying an upper
boundary condition. Figure 10 summarizes this process, from data to the result of the good-
ness of fit parameter [�] for a model. The tool and program are important in determining the
magnetic-field models for the solar atmosphere which are crucial in determining the overall
dynamics of the solar atmosphere. In subsequent articles we will apply this technique to
compare various magnetic-field extrapolation models. For active-region analysis, the gen-
eralizations of this technique of coronal-loop identification and misalignment analysis can
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Figure 10 Flow chart for the selection of the best numerical coronal magnetic-field model for an active
region. Using the numerical criteria determined from the misalignment angles of the 3D Bézier curve fits
to best closed coronal loops, the compatibility of the models to coronal observations can be determined
numerically.

also be used for iterating a specific solar-atmosphere model to improve its 3D reconstruc-
tion of the corona. Such results will lead to a better understanding of the 3D plasma motion
along the magnetic-field lines and magnetic-field oscillations, as well as to an overall mod-
eled magnetic field consistent with observed coronal loop structure, and they will improve
understanding of the solar-atmosphere dynamics.
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