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Abstract The Helioseismic and Magnetic Imager (HMI) on board the Solar Dynamics Ob-
servatory (SDO) provides photospheric vector magnetograms with a high spatial and tem-
poral resolution. Our intention is to model the coronal magnetic field above active regions
with the help of a nonlinear force-free extrapolation code. Our code is based on an optimiza-
tion principle and has been tested extensively with semianalytic and numeric equilibria and
applied to vector magnetograms from Hinode and ground-based observations. Recently we
implemented a new version which takes into account measurement errors in photospheric
vector magnetograms. Photospheric field measurements are often affected by measurement
errors and finite nonmagnetic forces inconsistent for use as a boundary for a force-free field
in the corona. To deal with these uncertainties, we developed two improvements: i) prepro-
cessing of the surface measurements to make them compatible with a force-free field, and
ii) new code which keeps a balance between the force-free constraint and deviation from
the photospheric field measurements. Both methods contain free parameters, which must
be optimized for use with data from SDO/HMI. In this work we describe the correspond-
ing analysis method and evaluate the force-free equilibria by how well force-freeness and
solenoidal conditions are fulfilled, by the angle between magnetic field and electric current,
and by comparing projections of magnetic field lines with coronal images from the Atmo-
spheric Imaging Assembly (SDO/AIA). We also compute the available free magnetic energy
and discuss the potential influence of control parameters.

The Sun 360
Guest Editors: Bernhard Fleck, Bernd Heber, and Angelos Vourlidas

T. Wiegelmann (�) · J.K. Thalmann · B. Inhester · T. Tadesse
Max-Planck-Institut für Sonnensystemforschung, Max-Planck-Strasse 2, 37191 Katlenburg-Lindau,
Germany
e-mail: wiegelmann@mps.mpg.de

T. Tadesse
College of Natural Sciences, Institute of Geophysics, Space Science, and Astronomy,
Addis Ababa University, PO Box 1176, Addis Ababa, Ethiopia

X. Sun · J.T. Hoeksema
W.W. Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA 94305, USA

mailto:wiegelmann@mps.mpg.de


38 T. Wiegelmann et al.

Keywords Active regions, magnetic fields · Active regions, models · Magnetic fields,
corona · Magnetic fields, photosphere · Magnetic fields, models

1. Introduction

The Helioseismic and Magnetic Imager (HMI) on board the Solar Dynamics Observatory
(SDO) provides us with measurements based on which the photospheric magnetic field vec-
tor can be derived (Schou et al., 2012). In this work we describe how these measurements
can be extrapolated into the solar corona under the assumption that the coronal magnetic
field is force-free, which means that the Lorentz force vanishes. We compare the result-
ing magnetic field models with observations of the coronal plasma from the Atmospheric
Imaging Assembly (AIA), which is also on board the SDO.

The force-free field equations are given by

(∇ × B) × B = 0, (1)

∇ · B = 0, (2)

subject to the boundary condition

B = Bobs on the bottom boundary, (3)

where B is the three-dimensional (3D) magnetic field and Bobs the measured magnetic field
vector in the photosphere. Bineau (1972) and Amari, Boulmezaoud, and Aly (2006) inves-
tigated the mathematical structure of these equations regarding existence, uniqueness, and
well-posedness. Boulmezaoud and Amari (2000) proved the existence of force-free solu-
tions for simple and multiple connected domains, and Aly (2005) proved uniqueness of
force-free fields for a special cylindrical configuration. Several methods have been devel-
oped to solve these equations numerically. For reviews see Sakurai (1989), Aly (1989),
Amari et al. (1997), and Wiegelmann (2008). Within the last few years the different numer-
ical codes have been intensively tested, evaluated, and compared in Schrijver et al. (2006),
Metcalf et al. (2008), and Schrijver et al. (2008). A joint study (DeRosa et al., 2009) has
concluded that a successful application of nonlinear force-free field (NLFFF) extrapolation
methods requires:

i) Large model volumes at high resolution, which accommodate most of the magnetic
connectivities within an active region and to its surroundings.

The field of view of the isolated active region (AR) 11158, as shown in Figures 1
and 2, seems a suitable candidate to fulfill this requirement.

ii) Accommodation of measurement uncertainties in the transverse field component.
This has been implemented in recent updates of different NLFFF extrapolation

codes; see Wheatland and Régnier (2009), Wiegelmann and Inhester (2010), Amari and
Aly (2010), Wheatland and Leka (2011), and Tadesse et al. (2011).

iii) Preprocessing of the photospheric vector field for a realistic approximation of the upper
chromospheric, nearly force-free field.1

1Preprocessing of inconsistent boundary data is particularly important for methods using the magnetic field
vector directly as a boundary condition. Grad–Rubin methods use the normal magnetic field and electric cur-
rent (for one polarity) as the boundary condition. The vertical current is derived from the transverse magnetic
field, and these conditions are per construction well posed, even if the photospheric magnetic field vector is
not force-free. Consequently, preprocessing is not crucial for these methods.
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Figure 1 Left: Full-disk SDO/HMI magnetogram, Right: Full-disk AIA 171 Å image. Both data sets were
obtained on February 14, 2011 at 20:34 UT and have been co-aligned as described in the SDO data analysis
guide (DeRosa and Slater, 2011). The rectangle outlines the subregion (AR 11158) in the vector magnetogram
which is used for the force-free field modeling.

As we will see in Section 2.1, the HMI vector magnetogram shown in Figure 3 is
almost force-free. Tools for implementing the measurement errors (previous item) can
also deal with the remaining small forces. For comparison we also investigate prepro-
cessed data.

iv) Force-free models should be compared with coronal observations.
In Figures 5 and 6 and in Table 2 we compare the force-free models with coronal

images observed with SDO/AIA.

2. Instrumentation and Data Set

The HMI instrument (Scherrer et al., 2012; Schou et al., 2012) on SDO observes the full Sun
at six wavelengths in the Fe I 6173 Å absorption line. Filtergrams with a plate scale of 0.5′′
pixels are collected and converted to observable quantities like Dopplergrams, continuum
filtergrams, and line-of-sight and vector magnetograms. For vector data, each set of filter-
grams takes 135 seconds to be completed, and the filtergrams are then averaged over a pe-
riod of about 12 minutes (see Hoeksema et al. (2012; to be submitted to Solar Phys.) and the
HMI homepage for details: http://hmi.stanford.edu/). To generate the vector magnetograms,
Stokes parameters are derived from the averaged filtergrams and inverted with the help of a
Milne–Eddington algorithm, an advanced version of the Very Fast Inversion of the Stokes
Vector (VFISV) (Borrero et al., 2011). The magnetic filling factor is set to be one in the in-
version. With the amount of information HMI provides about the line profile, this produces
the most stable results. One could determine the filling factor in strong field regions, where
it is expected to be close to unity. However, in weak field regions, it is difficult to resolve the
filling factor as well as the field strength. The 180◦ azimuthal ambiguity in the transverse
field is resolved by an improved version of the minimum energy algorithm (Metcalf, 1994;
Metcalf et al., 2006; Leka et al., 2009). HMI vector field uncertainties depend on field

http://hmi.stanford.edu/
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Figure 2 Top left: Blos cut from full-disk HMI magnetogram. Top right: Bz from vector magnetogram.
To align the vector magnetogram with the line-of-sight magnetogram and AIA we carried out a correlation
analysis; the correlation between Blos and Bz is 92 %. Bottom: Same field of view seen in AIA 171 Å. In the
right picture we over-plotted contour lines of Bz (same color code as in the images above).

strength, disk position, and orbital velocity. Formal uncertainties due to the inversion are
computed for each pixel as part of the normal processing. Conservatively, the random errors
in the line-of-sight component are about 5 G, while the uncertainty in the transverse field is
as much as 200 G in weak field regions and as little as 70 G where the field is strong. The
zero point uncertainty in the longitudinal direction is < 0.1 G. Additional uncertainties arise
because of the disambiguation and systematic errors that are not as well quantified.

Regions of interest (ROIs) containing strong magnetic fluxes are automatically identified
(Turmon et al., 2010). Figure 3 shows a vector magnetogram containing AR 11158 observed
on February 14, 2011 at 20:34 UT. After correcting for projection effects (Gary and Hagyard,
1990), the data have been mapped to a local Cartesian coordinate using Lambert equal area
projection (Calabretta and Greisen, 2002). An overview on the processing of HMI vector
magnetograms can be found at http://jsoc.stanford.edu/jsocwiki/VectorMagneticField/. For the
magnetic field extrapolation, we bin the data to 720 km (about 1′′) and use a computational
box of 300 × 300 × 160 grid points.

http://jsoc.stanford.edu/jsocwiki/VectorMagneticField/
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Figure 3 SDO/HMI vector magnetogram observed on February 14, 2011, at 20:34 UT. The rectangular area
marks the inner box, where wf = wd = 1; see Section 3 for details.

2.1. Quality of the HMI Vector Magnetogram

To serve as a suitable lower boundary condition for a force-free modeling, vector magne-
tograms must be approximately flux balanced, and the net force and net torque have to van-
ish. Wiegelmann, Inhester, and Sakurai (2006) introduced three dimensionless parameters,
the flux balance εflux, net force balance εforce, and net torque balance εtorque:

εflux =
∫

S
Bz∫

S
|Bz| ,

εforce = | ∫
S
BxBz| + | ∫

S
ByBz| + | ∫
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(B2
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(B2
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z )
,
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where the integrals in εforce and εtorque correspond to the Maxwell stress tensor and its first
moment, respectively (see Molodensky, 1969, 1974; Aly, 1989). For perfectly force-free
consistent boundary conditions these three quantities are zero, while for real observed data
this is hardly the case. However, for practical computations, it is sufficient that these quanti-
ties become small, e.g., εflux, εforce, εtorque � 1. In Table 1 we list the values for the used HMI
data set in the first row. All three quantities are well below unity, which gives us some con-
fidence that the data might serve as a suitable boundary condition for a force-free modeling.

To deal with vector magnetogram data being inconsistent with the force-free assumption,
we developed a preprocessing routine (Wiegelmann, Inhester, and Sakurai, 2006), which de-
rives suitable boundary conditions for force-free modeling from the measured photospheric
data. Applying this procedure to HMI further reduces εforce and εtorque significantly (sec-
ond row). Note that the values of about 0.05 for εforce and εtorque for the original HMI vec-
tor magnetogram (first row) are significantly lower than those observed for vector magne-
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Table 1 Values of the three
dimensionless parameters defined
in Section 2.1 following
Wiegelmann, Inhester, and
Sakurai (2006), for different data
sets.

Data set εflux εforce εtorque

HMI, Feb. 14, 2011 0.0034 0.0564 0.0535

preprocessed HMI 0.0037 0.0002 0.0009

SFT Oct. 26, 1992 0.0854 0.6842 0.8837

Hinode Dec. 12, 2006 0.0167 0.2727 0.3387

SOLIS Jun. 07, 2007 0.0124 0.6400 0.6691

tograms from other ground-based and space-borne missions (rows 3 – 5) like the Solar Flare
Telescope (SFT), Hinode, and SOLIS.2 For detailed investigations of these data sets, see
Wiegelmann, Inhester, and Sakurai (2006), Schrijver et al. (2008), and Thalmann, Wiegel-
mann, and Raouafi (2008), respectively.

3. Nonlinear Force-Free Field Modeling

We solve the force-free Equations (1)–(3) by using an optimization principle as proposed
by Wheatland, Sturrock, and Roumeliotis (2000) and extended by Wiegelmann (2004) and
Wiegelmann and Inhester (2010) in the form

L =
∫

V

wf
|(∇ × B) × B|2

B2
+ wd|∇ · B|2 d3V

+ ν

∫

S

(B − Bobs) · W · (B − Bobs)d2S, (4)

where ν is a Lagrangian multiplier which controls the injection speed of the boundary con-
ditions. wf and wd are weighting functions, which are one in the region of interest (in-
ner 236 × 236 × 128 physical box) and drop to zero in a 32 pixel boundary layer toward
the lateral and top boundaries of the full 300 × 300 × 160 computational domain. W is a
space-dependent diagonal matrix whose elements are inversely proportional to the estimated
squared measurement error of the respective field component. In principle, one could com-
pute W from the measurement noise and errors obtained from the inversion of measured
Stokes profiles to field components. Until these quantities become available, a reasonable
assumption is that the magnetic field is measured in strong field regions more accurately
than in the weak field and that the error in the photospheric transverse field is at least one
order of magnitude higher than the line-of-sight component. Appropriate choices to opti-
mize ν and W for use with SDO/HMI magnetograms are investigated in this paper. For a
detailed description of the current code implementation and tests we refer to Wiegelmann
(2004) for the basic code and Wiegelmann and Inhester (2010) for a description and tests of
slow boundary injection and the consideration of measurement errors. For the first time we
combine the above described algorithm with a multiscale approach as described in Wiegel-
mann (2008). For this work we apply our code with a three-level multiscale approach to an

2The values refer to other active regions and dates and are meant as examples of the typical value range for a
particular instrument. It is planned to compare vector magnetograms for one particular active region and time
observed with different instruments (SOLIS and HMI) and the corresponding force-free models (Thalmann
et al., in preparation). Further investigations are necessary to clarify whether the good fulfillment of the
force-free consistency criteria here is a property of this particular active region or if the HMI measurements
are generally more force-free.
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SDO/HMI data set with 300 × 300 points in x and y and extrapolate 160 pixels in height in
the z direction.

3.1. Quality of the Reconstructed 3D Fields

To evaluate how well the force-free and divergence-free conditions are satisfied by the re-
constructed 3D fields, we monitor the following expressions:

L1 =
∫

V

|(∇ × B) × B|2
B2

d3V, (5)

L2 =
∫

V

|∇ · B|2 d3V, (6)

σj =
(∑

i

|Ji × Bi |
Bi

) / ∑

i

Ji , (7)

L1∞ = sup
x∈V

|j × B|, (8)

L2∞ = sup
x∈V

|∇ · B|, (9)

where L1 and L2 correspond to the first and second terms in Equation (4), respectively,
with the difference that the integral is carried out in the inner 236 × 236 × 128 physical
box, where wf ≡ wd ≡ 1, excluding the buffer boundary of 32 pixels toward the lateral
and top boundary of the computational box. For potential and linear force-free fields, the
values correspond to the discretization error. Also investigated in the inner box is the sine
of the current weighted average angle σj between the magnetic field and electric current
(see Wheatland, Sturrock, and Roumeliotis (2000) and Schrijver et al. (2006) for details)
and L1∞ and L2∞, which are the L∞ norms for the Lorentz force and divergence, respec-
tively.

3.2. Code setup and choice of free parameters

Before we perform nonlinear force-free extrapolations, we use the vertical component Bz

of the HMI data to compute a potential and a linear force-free field (αL = 2.5, α =
1.16 × 10−8 m−1) with a Fourier transform method (Alissandrakis, 1981). Here, α is the
linear force-free parameter (∇ × B = αB), which is 0 for a potential field. For a linear
force-free field we calculate, as suggested by Hagino and Sakurai (2004), an averaged value
α = ∑

μ0Jz sign(Bz)/
∑ |Bz|, where Jz = 1

μ0
(

∂By

∂x
− ∂Bx

∂y
) is the vertical current in the pho-

tosphere.
For nonlinear force-free fields (NLFFFs) we minimize the function (4), and we vary the

Lagrangian multiplier ν and the mask W , which we want to optimize. In the first column
in Table 2 we name case studies with different parameter sets (as specified in columns 2
and 3) with letters (A to N). For cases A – H we choose W = BT/max(BT). This seems to
be a reasonable choice, as the measurement error in the transverse field is higher in weak
field regions. We vary the Lagrangian multiplier ν between 0.1 and 0.0001 for cases A – F.
The lower the value of ν, the slower the observed boundary becomes injected, so that the
code has more time to relax toward a force-free state. The computing time increases with
a power law when ν decreases (Time [h] ∼ 0.013 h · ν−0.88); see Figure 4a and column 10
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Figure 4 Relation between the Lagrangian multiplier ν and computing time (panel a), asin(σj ) (panel b),
and L = L1 + L2 (panel c). Panel d shows the relation of computing time in hours to asin(σj ). The values
correspond to NLFFF cases A – F in Table 2. The dashed lines show power law fits in all panels (in panel c
the lowest value ν = 0.0001 has been excluded from the power law fit).

in Table 2. The relation between ν and asin(σj ) can also be approximated by a power law
(asin(σj ) [degree] ∼ 45.7◦ · ν0.28); see Figure 4b. The values for force- and divergence-
freeness L1 and L2 are slightly higher for ν = 10−4 than for 10−3, but the general trend
is that L1 and L2 decrease with decreasing ν in the form of a power law, L ∼ 98 · ν0.46, with
L = L1 + L2; see Figure 4c. It seems that the choice ν = 0.001 is optimal, as higher values
of ν correspond to worse fulfillment of all force-free consistency criteria (σj ,L1,L2), and a
lower ν only increases the computing time drastically, but does not or hardly improves the
solution.

In cases G and H we investigate the influence of preprocessing on the result. We used a
standard preprocessing parameter set μ1 = μ2 = 1,μ3 = 0.001,μ4 = 0.01. These parame-
ters control the amount of force-freeness, torque-freeness, nearness to the actually observed
data, and smoothing, respectively (see Wiegelmann, Inhester, and Sakurai (2006) for de-
tails on preprocessing). NLFFF extrapolations have been carried out here for ν = 0.01 and
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ν = 0.001, and we find that L1 and L2 are smaller for extrapolations from preprocessed
data. Similarly to the unprocessed case, L1,L2, σj decrease with decreasing ν, while the
computing time increases. The computing time for preprocessed data is about a factor of
three (ν = 0.01) or two (ν = 0.001) higher compared with the unprocessed cases. However,
the angle between the magnetic field and current asin(σj ) does not improve, and becomes
worse (by a factor 1.3) for ν = 0.001. A reason for the L-values becoming lower, while σj

remains the same, might be that some strong current peaks are smoothed out by preprocess-
ing. If we consider that without preprocessing (case E) L1 and L2 are already of the order of
the discretization error of the potential field, the lower value σj , and the shorter computing
times, we conclude that preprocessing is not necessary for this data set.

In cases I – L we investigate the effect of different mask functions. We choose a unique
mask in cases I and J, which means that we do not consider different errors in high and low
field strength regions in the photospheric vector magnetogram. As one can see (in compar-
ison with cases B and E) all three force-free consistency criteria are worse; consequently,
one should not use a unique mask. Interesting cases are K and L, where we choose the mask
W = (BT/max(BT))2. This choice gives more weight to strong than to weak regions, simi-
larly as in the linear cases A – H, but prefers strong regions significantly more. For ν = 0.01
(case K compared with B) L1 and L2 are better and σj worse. For ν = 0.001 (case L com-
pared with E) all three criteria are fulfilled somewhat better for the quadratic mask function.
However, the computing time is a factor of 1.6 longer for the quadratic case (L). We con-
clude that, if ν is sufficiently low, than the final equilibrium is quite robust regarding the
exact choice of the mask function profile.

For comparison we also extrapolated the magnetogram with the old code version, which
uses a fixed lower boundary and does not contain a mask and Lagrangian multiplier (cases M
and N without and with preprocessing, respectively). Without preprocessing, all three force-
free consistency criteria are fulfilled worse than for the new code, because the old code
has no ability to correct for inconsistencies in the magnetograms. Preprocessing improves
the result for L1 and L2 by about a factor of four, but σj hardly improves. However, the
computing time for the old code (case N) is significantly lower (by a factor of five and nine
compared to E and L, respectively), as for the best runs with the new code. If we compare
results of the old code (case N, after preprocessing) with results from the new code with
similar computing times (cases C and G), the performances are similar. Higher computing
times are the price we pay to get better force-free consistent equilibria.

In column 9 in Table 2 we present the ratio of the total magnetic energy to the energy
of a potential field E/E0. While the correct value is a priori unknown, this criterion cannot
serve directly as a quality measure of the reconstructed NLFFFs, except that E/E0 should
be greater than unity. E/E0 is an important quantity, as it defines an upper limit for the
free magnetic energy, which could become converted in kinetic and thermal energy during
eruptions. Taking the average of all 14 NLFFF models we find E/E0 = 1.20 ± 0.06, and
if we consider only the best cases, say where asin(σj ) < 10◦ (cases D, E, F, H, J, L), one
finds E/E0 = 1.24 ± 0.03. For long time series it will probably not be possible to extrap-
olate all magnetograms with several different parameter sets, but we propose to do this for
some magnetograms within a time series to derive an error estimation for E/E0. We find
that this quantity is not significantly influenced by the chosen parameter set (value of La-
grangian multiplier ν, mask function profile W , preprocessing) if the force-free consistency
criteria L1,L2, σj are fulfilled, and one should check them for each extrapolation from vec-
tor magnetograms. We find that the L∞ norms for Lorentz force and divergence behave very
similarly to the integral forms. Therefore, both norms can alternatively be used to evaluate
the quality of the extrapolated field.
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Figure 5 AIA images of AR 11158 in different wavelengths, observed on February 14, 2011 at 20:34 UT.
Over-plotted are some selected field lines from NLFFF model E.

4. Comparison with AIA Images

As pointed out in DeRosa et al. (2009), force-free field models should be compared with
coronal observations in order to quantify to what extent they correctly reproduce the coronal
magnetic field configuration. In Figure 5 we show some arbitrarily chosen force-free field
lines (from NLFFF model E) in comparison with AIA images in different wavelengths (see
Lemen et al. (2012) for an overview of AIA). Qualitatively the field lines seem to reasonably
agree with the observed plasma loops, but deviations are also clearly recognizable. In the
following we aim to estimate the difference between force-free field lines and plasma loops
quantitatively. While stereoscopic reconstructed loops in 3D as used in DeRosa et al. (2009)
and Conlon and Gallagher (2010) are not available, we compare our results with an AIA
image from one viewpoint. A basic assumption is that the plasma is frozen into the magnetic
field; hence the plasma loops outline the magnetic field lines. Consequently, the gradient of
the intensity parallel to the magnetic field lines should be small. We want to detect bright
loops (high intensity) and to quantify the deviation of projected field lines (computed from
the NLFFF models) and plasma loops (as visible in AIA images) as
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Figure 6 AIA 171 Å images with field lines as computed from selected models. The red, white, and green
loops here correspond to AIA-red, AIA-white, and AIA-green in Table 2.

C =
√∫

S
(∇I (s))2 ds

∫
S
I (s)ds

, (10)

where I (s) is the intensity along a projected magnetic field line.3 This criterion finds loops of
high I (s) with small intensity gradients along the loops (low ∇I (s)). For other possibilities
to define the penalty function C, see Wiegelmann et al. (2005) and Conlon and Gallagher
(2010).

For a quantitative comparison, we compute a number of field lines, originating ± 5 pixels
around previously chosen locations: P1 = (80,30),P2 = (85,100), and P3 = (225,185).
Field lines not closing within the extrapolation domain are excluded from the quantitative
comparison, and the ten field lines giving the lowest values of C are considered for further

3For convenience the values in the last three columns in Table 2 have been multiplied by 105 and rounded to
obtain three-figure integer numbers.
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analysis. The average and standard deviation of C for these ten field lines in each region are
displayed in the last three columns of Table 2, respectively. The field lines originating from
± 5 pixels around P1,P2, and P3 are shown as red, white, and green curves, respectively for
some of the models in Figure 6. The field lines corresponding to the potential field model,
the NLFFF models E and L (which best performed for the force-free consistency criteria,
see last section), and the old (fixed boundary, model M) NLFFF code are shown in Figure 6.

The white loops in Figure 6 seem to agree reasonably well with AIA for all models, even
those of the potential field model. The average penalty function for these loops is in the
range 200 – 300 for all models. However, the red S-shaped coronal loops cannot be iden-
tified with a potential or linear-force free model (the linear model performing even worse
than the potential one). All NLFFF models show a much better agreement, with the penalty
function (about 165 – 265) being in most cases less than half as large as for the potential
field. The penalty function for the green loops is higher for all models, but the penalty func-
tion for the best NLFFF models is about a factor of two better than for the potential field.
It seems that these green loops are the most challenging loops to reconstruct, and the old
NLFFF code, which used a fixed boundary for the transverse potential field, performs only
slightly better than the potential field. However, the best NLFFF models (in the sense of
being more force-free, in particular cases E and L shown in Figure 6) indicate the correct
field topology also for the green loops. Using the penalty function C to evaluate the quality
of the reconstruction clearly favors NLFFF models over potential and linear FF models, but
this criterion is not sensitive enough to definitely favor one of the NLFFF models. In the
future one should consider a more sophisticated comparison between magnetic field models
and coronal images, e.g., by applying different penalty functions, using loops or structures
extracted from the images, and doing comparisons in different AIA wavelengths. For ear-
lier observations from SDO (for which vector magnetograms have not yet been released)
one could also compare the results with images taken from vantage points with one or both
of the Solar TErrestrial RElations Observatory (STEREO) spacecraft or compare them di-
rectly with stereoscopic reconstructed 3D loops. However, this cannot be implemented as a
standard diagnostic for NLFFF models, as the angle between the two STEREO spacecraft
and SDO becomes too large for stereoscopy.

5. Conclusions and Outlook

In this work we have carried out nonlinear force-free coronal field extrapolations of an
isolated active region based on data from SDO/HMI. The vector magnetogram is almost
perfectly flux balanced, and the field of view is large enough to also cover the weak field
surrounding the active region. Both conditions are necessary in order to carry out meaning-
ful force-free computations. We also found that the photospheric magnetogram satisfied the
force-free criteria. The net force and torque are considerably smaller than in earlier measure-
ments of other active region fields with SFT, Hinode, and SOLIS; however, we do not know
for sure if this is a general property of HMI or if it is only true for this particular isolated
active region. A comparison of an active region measurement with different instruments is
planned. The data could be used directly as the boundary condition for nonlinear force-free
field computation; preprocessing of the photospheric field was not necessary.

The new code version takes into account errors in the measurements, in particular in the
transverse field, and injects the boundary data slowly, controlled by a Lagrangian multi-
plier ν. The error incorporation is controlled by using a mask function, which is one for the
most trustworthy data and 0 where one cannot trust the data. Unless an exact error computa-
tion becomes available from inversion and ambiguity removal of the photospheric magnetic
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field vector, a reasonable assumption is that the field is measured more accurately in strong
field regions, and we carried out computations with the mask ∝ BT and ∝ B2

T. For a suf-
ficiently small Lagrangian multiplier ν = 0.001 we found that the resulting coronal fields
are force-free and divergence-free in the sense that the remaining residual forces are of the
order of the discretization error of potential and linear force-free fields. The weighted an-
gle between magnetic field and electric current is about 5 – 6◦. The resulting field is almost
identical for both masks, but computations with the ∝ B2

T mask take significantly longer
(9 h 13 min versus 5 h 46 min for the ∝ BT mask). Injecting the boundary faster by choos-
ing a higher Lagrangian multiplier (say ν = 0.01) speeds up the computation (a run takes
only half an hour), but the residual forces are higher, and the current and field are not well
aligned. Inserting the boundary even more slowly (say ν = 0.0001) leads to much longer
computing times (more than 50 h), but does not improve the solution. We conclude that the
choice ν = 0.001 and a mask ∝ BT or ∝ B2

T are the optimal choices for this data set.
The computations have been performed on one processor on a Linux PC. Our code has

been parallelized with OpenMP, but rather than processing a single magnetogram with a
parallelized code, it is planned to process different magnetograms of a time series simul-
taneously. While the time cadence of HMI vector magnetograms is about 12 min, NLFFF
computations for one magnetogram on one processor take about 6 h. Consequently, the re-
quirement is about 50 processors (for each active region) in order for the NLFFF tools to
catch up with the data stream from HMI.

An important question is to what extent the optimum parameters for this data set can also
be applied to other active regions from SDO/HMI. A key point is to monitor the consistency
criteria of the magnetogram as well as the remaining residual forces and alignment of fields
and currents in the reconstructed 3D field. A comparison of the magnetic field model with
AIA images should also always be done. We used the 171 Å channel here, because loops are
well visible in this wavelength. However, the question of how coronal magnetic field models
can be validated best by coronal observations should be further investigated. Magnetic field
lines are 3D structures; many field lines might not be filled with plasma and thus not visible
in EUV images. Also, the question of how/if one can use the different wavelengths in AIA
to validate coronal field models is not trivial.

A stumbling stone for AR-NLFFF models could be that other active regions are not as
well isolated as AR 11158 investigated here, but might be magnetically connected to other
active regions and the quiet Sun. This situation requires full-disk vector magnetograms and
force-free computations in spherical geometry, as for example carried out from full-disk
SOLIS measurements in Tadesse et al. (2012). Due to their nature, extrapolations from full-
disk magnetograms must be calculated with a reduced spatial resolution, or one has to accept
significantly longer computing times. Global force-free coronal magnetic field models can
also be used to specify the lateral boundaries for active region modeling for nonisolated
active regions.
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