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Abstract Fast sausage waves in a model coronal loop that consists of a cylindrical core
with axial magnetic field and coaxial annulus with purely azimuthal magnetic field are con-
sidered. It is shown that the principal mode of fast sausage waves with arbitrary wavelength,
which is the mode having no nodes in the radial direction, can be supported by such a loop.
All other modes can propagate in such a loop as trapped modes only if their wavelengths
are smaller than the cut-off wavelength. The obtained theoretical results are applied to the
interpretation of observed periodic pulsations of microwave emission in flaring loops with
periods of a few tens of seconds.
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1. Introduction

In the last decade we observe the fast development of a new branch of solar physics
called coronal seismology (e.g. Aschwanden, 2006; Nakariakov and Melnikov, 2009;
Erdélyi and Goossens, 2011). Coronal seismology was first suggested by Uchida (1970),
Rosenberg (1970) and Roberts, Edwin, and Benz (1984), but its fast progress is related to
the launch of recent space missions like TRACE, SOHO and Hinode. The aim of coro-
nal seismology is to obtain information about properties of a medium from observations
of waves and oscillations in this medium. The initial advances of coronal seismology are
mainly related to observations of different wave modes in coronal magnetic loops. In par-
ticular, observations of kink oscillations of coronal magnetic loops enabled theorists to
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estimate the magnetic field strength in coronal loops (e.g. Nakariakov and Ofman, 2001)
and the atmospheric scale height in the corona (e.g. Andries, Arregui, and Goossens, 2005;
Dymova and Ruderman, 2006; Arregui et al., 2007; Van Doorsselaere, Nakariakov, and
Verwichte, 2007; Goossens, 2008; Verth, Erdelyi, and Jess, 2008; Andries et al., 2009). Re-
cently significant progress has been made in prominence seismology (e.g. Terradas et al.,
2008; Soler et al., 2010; Diaz, Oliver, and Ballester, 2010; Arregui and Ballester, 2011;
Arregui et al., 2011).

To obtain information about the coronal plasma and magnetic field from the observa-
tions of waves and oscillations one needs theoretical models of these waves and oscillations.
In particular, one needs theoretical models of coronal loop oscillations. Traditionally coro-
nal magnetic loops have been modeled as monolithic magnetic cylinders, although recently
more sophisticated models have been developed (see, e.g., the review by Ruderman and
Erdélyi, 2009).

One more type of oscillations important for coronal seismology are quasi-periodic pul-
sations (QPPs) of electromagnetic emission generated by solar flares. The periods of these
pulsations range from a fraction of a second to a few tens of seconds. At present there are
two main mechanisms suggested for their explanations. The first one is related to MHD
auto-oscillations, in particular to oscillatory regimes of magnetic reconnection (e.g. Inglis,
Nakariakov, and Melnikov, 2008; Inglis and Nakariakov, 2009; Nakariakov et al., 2010a,
2010b). The second mechanism is the modulation of the electromagnetic emission by fast
sausage modes in magnetic tubes (Rosenberg, 1970; Kopylova, Stepanov, and Tsap, 2002;
Nakariakov, Melnikov, and Reznikova, 2003; Kopylova et al., 2007; Nakariakov and Mel-
nikov, 2009). An important property of fast sausage modes in a straight homogeneous
magnetic tube with axial magnetic field is that they are trapped waves when their wave-
length is smaller than the cut-off wavelength, while they become leaky (i.e. we have radi-
ation pulsations) when the wavelength is larger than the cut-off wavelength (e.g. Zaitsev
and Stepanov, 1975; Meerson, Sasorov, and Stepanov, 1978; Wilson, 1980; Spruit, 1982;
Edwin and Roberts, 1983; Inglis et al., 2009). The typical cut-off wavelength is of the or-
der of the tube radius. Since the typical radii of coronal magnetic loops are much smaller
than their lengths, this implies that only harmonics of fast sausage modes with high ax-
ial numbers can exist in the form of trapped waves. The only exceptions are flaring loops
with the very large ratio of plasma densities inside and outside the loop. This fact does
not cause any difficulty when applying fast sausage modes for interpretation of radiation
pulsations with periods of a few seconds. However, oscillations with longer periods, of the
order of tens of seconds, have been also observed (e.g. Trottet, Pick, and Heyvaerts, 1979;
Aschwanden, 1987; Kupriyanova et al., 2010). Recently Foullon et al. (2010) reported ob-
servations of radiation pulsations with larger periods, up to 10 min. Fast sausage waves with
such periods in a straight homogeneous magnetic tube are leaky unless we assume that the
density ratio is very large. As a result it is problematic to use fast sausage waves for the
interpretation of these observations. Hence, it is desirable to develop new models of coronal
magnetic loops that will describe trapped long-period fast sausage waves.

Parker (1979) considered a quasi-static expansion of twisted magnetic tubes in the solar
atmosphere. He showed that, during this process, the magnetic flux in the tube is redis-
tributed in such a way that the azimuthal flux is concentrated at the peripheral part of the
tube, and the axial flux in the tube core. As a result a tube consisting of two parts is formed.
In the internal or core part of this tube the magnetic field is predominantly axial, while it
is predominantly azimuthal in the annulus encircling the core region. One can expect that
the formation of such magnetic flux tubes consisting of two parts is a natural result of the
evolution of twisted magnetic tubes transported in the solar atmosphere from the convection
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zone. This observation puts studying waves and oscillations of magnetic tubes consisting of
two parts on the agenda.

Standing waves in a magnetic tube consisting of two parts have been already studied
by Mikhalyaev and Solov’ev (2005) (see also the review by Ruderman and Erdélyi, 2009).
However, in the model of a magnetic tube studied in this paper the magnetic field was axial
both in the core region and annulus. Erdélyi and Carter (2006) and Carter and Erdélyi (2008)
studied the wave propagation in a tube consisting of the core with the axial magnetic field
and the annulus with the twisted magnetic field.

The aim of this paper is to study standing waves in a tube consisting of the core region
with the axial magnetic field and the annulus with the purely azimuthal magnetic field.
We show that such a tube can support trapped fast sausage standing waves corresponding
to the fundamental mode and the low-order overtones in the axial direction. The paper is
organized as follows. In the next section we formulate the problem. In Section 3 we derive
the dispersion equation for fast sausage waves. In Section 4 we study the dispersion equation
analytically in the long wavelength approximation and numerically for arbitrary wavelength.
Section 5 contains the summary of the obtained results and our conclusions.

2. Problem Formulation

The solar corona is strongly dominated by the magnetic field with the magnetic pressure
being much larger than the plasma pressure. This implies that we can use the cold plasma
approximation to describe fast wave modes. We consider standing waves in a model mag-
netic tube first suggested by Mikhalyaev (2005). This model magnetic tube consists of a core
region with axial magnetic field and the annulus with purely azimuthal magnetic field. The
external magnetic field is once again axial. Hence, in cylindrical coordinates r , ϕ, z with the
z-axis coinciding with the tube axis the background magnetic field is given by

B(r) =

⎧
⎪⎨

⎪⎩

Biez, r < b,

(B0/αr)eϕ, b < r < a,

Beez, a < r,

(1)

where a is the radius of the tube, b is the radius of the core region, Bi, Be, B0 and α are
constants, and eϕ and ez are the unit vectors in the azimuthal and axial directions. The
magnetic field has to satisfy the equilibrium conditions, which are the conditions of the
magnetic pressure balance at the boundaries r = a and r = b,

B2
i = B2

0

(αb)2
, B2

e = B2
0

(αa)2
. (2)

It follows from this equation that bBi = aBe. Since the magnetic field is discontinuous at
the tube and core boundaries, there are surface currents on these boundaries with the com-
ponents given by

jϕ(b) = jz(b) = Bi

μ0
, jϕ(a) = jz(a) = −Be

μ0
, (3)

where μ0 is magnetic permeability of free space. It is straightforward to see that the total
current in the loop is zero, so the loop is current-neutral. Note that, at present, the data on the
current distribution in coronal loops are sparse. Melrose (1991) argued that some of coronal
loops might not be current-neutral.
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Figure 1 The dependence of the
background density on the radial
coordinate r .

We assume that the background density is given by

ρ(r) =

⎧
⎪⎨

⎪⎩

ρi, r < b,

ρ0/(αr)2, b < r < a,

ρe, a < r.

(4)

Then the Alfvén speed, VA(r) = B(r)/
√

μ0ρ(r), is a piece-wise constant function. To sim-
plify the analysis we assume in what follows that ρ0/(αa)2 = ρe. The dependence of the
background density on r is shown in Figure 1. Now the Alfvén speed is the same in the
annulus and outside the tube, VA0 = VAe. It is not very difficult to extend the analysis to the
general case where VA0 �= VAe. The qualitative behavior of fast sausage waves remains the
same. It follows from the first condition in Equation (2) that

ρiV
2

Ai =
ρ0V

2
A0

(αb)2
= a2ρeV

2
Ae

b2
. (5)

We assume that VAi < VA0, which implies that ρi/ρe > (a/b)2.
Usually the density variation in the radial direction causes the wave energy to be reso-

nantly absorbed. However, this is not the case in our study. The general reason for this is that
there is no Alfvén resonance for axisymmetric motion. The sausage waves can be subject to
slow resonance only (e.g. Goossens, Erdélyi, and Ruderman, 2011). There is no slow reso-
nance in a cold plasma approximation. Even if we take the plasma pressure into account, the
phase speed of fast waves is much larger than the slow magnetosonic speed in a low-beta
plasma, which makes the slow resonance impossible. Further, in the particular equilibrium
that we consider here, there is no resonant absorption even for non-axisymmetric waves be-
cause, for a wave mode with the wavenumber k, the Alfvén spectrum consists of only two
points: VA0k and VAik. Hence, there is no Alfvén continuum.

The plasma and magnetic field perturbations are described by the linearized magnetohy-
drodynamic (MHD) equations for ideal cold (i.e. zero-beta) plasmas,

ρ
∂2ξ

∂t2
= 1

μ0
(∇ × b) × B, (6)

b = ∇ × (ξ × B), (7)

where B = Bϕeϕ + Bzez, ξ = (ξr , ξϕ, ξz) is the plasma displacement and b = (br , bϕ, bz) the
magnetic field perturbation. We do not write the mass conservation equation, because it is
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not used in what follows. We also have to impose boundary conditions at the boundaries of
the annulus. At these boundaries the radial plasma displacement and the Lagrangian mag-
netic pressure perturbation have to be continuous. Hence, we have (e.g. Bennett, Roberts,
and Narain, 1999)

ξri(b) = ξr0(b), ξr0(a) = ξre(a), (8)

Pi(b) = P0(b) − ρ0V
2

A0

α2b3
ξr0(b), P0(a) − ρ0V

2
A0

α2a3
ξr0(a) = Pe(a), (9)

where P = b · B/μ0 is the magnetic pressure perturbation.
Equations (6) and (7), and the boundary conditions (8) and (9) are used in the next section

to derive the dispersion equation for fast sausage waves.

3. Derivation of Dispersion Equation

Since the background density and magnetic field are axisymmetric and independent of z,
we can look for a solution to Equations (6) and (7) that is independent of ϕ and Fourier-
analyze this solution with respect to z. In addition, we are looking for eigenmodes. Hence,
we take perturbations of all variables to be proportional to exp[i(kz − ωt)]. Then Equa-
tions (6) and (7) reduce to the system of ordinary differential equations describing the de-
pendence of perturbations on r . It is straightforward to show that ξϕ = ξz = bϕ = 0. Hence,
in the fast sausage waves, only ξr , br and bz are non-zero. The system of equations describ-
ing the dependence of perturbations of r can be reduced to a system of two equations for
ξr and P (Appert, Gruber, and Vaclavik, 1974). In the particular case of cold plasma and
sausage waves this system takes the form

D
d(rξr )

dr
= rC1ξr − rC2P, (10)

D
dP

dr
= C3ξr − C1P, (11)

where

D = ρω2 − k2B2
z

μ0
, C1 = 2ρω2B2

ϕ

rB2
, C2 = ω2

V 2
A

− k2, (12)

C3 = D

(

D + 2Bϕ

μ0

d

dr

Bϕ

r

)

+
(

2Bϕ

rμ0

)2(ω2B2
ϕ

V 2
A

− k2B2
z

)

. (13)

Eliminating ξr we obtain the equation for P ,

d2P

dr2
+ C3

rD

d

dr

(
rD

C3

)
dP

dr
+

[
C3

rD

d

dr

(
rC1

C3

)

+ C2C3 − C2
1

D2

]

P = 0. (14)

In regions r < b and r > a, where the background magnetic field is purely axial, Equa-
tions (11) and (14) reduce to

d2P

dr2
+ 1

r

dP

dr
+ k2

r P = 0, k2
r = ω2

V 2
A

− k2, (15)

ξr = 1

ρ(ω2 − V 2
Ak2)

dP

dr
. (16)
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In what follows we consider trapped waves with the amplitude decaying exponentially with
the distance from the tube. When k2

re > 0, the solution to Equation (15) in the external region
is expressed in terms of Bessel functions that decay only as r−1/2 when r increases. We can
have a solution decaying exponentially in the external region only when k2

re < 0. In that case
the solution in the external region is given by

Pe = AeK0(λr), ξre = AeλK1(λr)

ρe(V
2

Aek
2 − ω2)

, (17)

where

λ2 = −k2
re = −k2

r0 = k2 − ω2

V 2
A0

, (18)

Ae is a constant, and K0 and K1 are the modified Bessel functions of the second kind (Mc-
Donald functions), and the zero and first order. When ω2 > V 2

Aik
2 we have k2

ri > 0, so the
corresponding wave mode is a body wave (Edwin and Roberts, 1983). In this case the solu-
tion in the core region regular at r = 0 is given by

Pi = AiJ0(κr), ξri = AiκJ1(κr)

ρi(V
2

Aik
2 − ω2)

, (19)

where Ai is a constant, J0 and J1 are the Bessel functions of the zero and first order, and
κ = kri. When ω2 < V 2

Aik
2 we have k2

ri < 0, so the corresponding wave mode is a surface
wave. To obtain the solution in the core region regular at r = 0 in this case we have to
substitute I0(|κ|r) and I1(|κ|r) for J0(κr) and J1(κr), respectively, in Equation (19), where
I0 and I1 are the modified Bessel functions of the first kind, and the zero and first order.

In the annulus (b < r < a), where the background magnetic field is purely azimuthal,
Equations (11) and (14) reduce to

d2P

dr2
+ 3

r

dP

dr
+ λ2P = 0, (20)

ξr = α2r

ρ0ω2

(

r
dP

dr
+ 2P

)

. (21)

Using the variable substitution P = S/r we transform Equation (20) to the modified Bessel
equation of order one,

d2S

dr2
+ 1

r

dS

dr
−

(

λ2 + 1

r2

)

S = 0. (22)

Hence, in the annulus, the solution is given by

P0 = 1

r

[
A1I1(λr) + A2K1(λr)

]
, ξr0 = α2λr

ρ0ω2

[
A1I0(λr) − A2K0(λr)

]
, (23)

where A1 and A2 are constants. When deriving Equations (17), (19), and (23) we have used
the recurrent relations for Bessel functions and modified Bessel functions (e.g. Abramowitz
and Stegun, 1964). Substituting Equations (17), (19), and (23) in the boundary conditions (8)
and (9) we obtain the system of four linear homogeneous algebraic equations for the quan-
tities Ai, Ae, A1 and A2. This system has non-trivial solutions only when its determinant is
equal to zero. This condition results in the dispersion equation for fast sausage waves,

WZ − XY = 0, (24)
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where

W = J0(κb)I0(λb) − J1(κb)

κb

(

I0(λb) − bω2

λV 2
A0

I1(λb)

)

, (25)

X = J0(κb)K0(λb) − J1(κb)

κb

(

K0(λb) + bω2

λV 2
A0

K1(λb)

)

, (26)

Y = I0(λa)K0(λa) + K1(λa)

λa

(

I0(λa) − aω2

λV 2
A0

I1(λa)

)

, (27)

Z = K2
0 (λa) + K1(λa)

λa

(

K0(λa) + aω2

λV 2
A0

K1(λa)

)

. (28)

The dispersion equation (24) is valid for body waves, i.e. when ω/k > VAi. To obtain the
dispersion equation for surface waves we have to substitute |κ| for κ , and I0 and I1 for J0

and J1 in this equation. The dispersion equation (24) is used in the next section to study fast
sausage waves.

4. Fast Sausage Waves in Coronal Loops

In this section we study the properties of fast sausage waves in a model coronal loop de-
scribed in Section 2. We start our analysis from the long wavelength approximation and
assume that ka � 1. Then, using the expansions of Bessel functions and modified Bessel
functions for small values of the argument (e.g. Abramowitz and Stegun, 1964), we obtain,
in the thin tube approximation, the solution for the dispersion equation (24):

ω2 = k2V 2
A0

ln(a/b)

2 + ln(a/b)
. (29)

Obviously ω2 < k2V 2
A0, so λ2 > 0 and the dispersion equation (29) corresponds to a trapped

mode. This mode is a body wave (κ2 > 0) when

ρi

ρe
>

a2[2 + ln(a/b)]
b2 ln(a/b)

, (30)

and it is a surface wave (κ2 < 0) otherwise.
We have also studied the dispersion equation (24) numerically. If we rewrite this dis-

persion equation in terms of dimensionless quantities ω̃ = ω/kVAi and k̃ = bk, then we
will see that the dimensionless dispersion equation contains only two parameters: a/b

and VA0/VAi = (b/a)
√

ρi/ρe. In Figure 2 the numerically calculated dispersion curves are
shown for a = 2b and VA0 = 3VAi. The numbers at the curves are the radial numbers of the
modes, which are the numbers of nodes in the radial direction. We see that only the principal
mode that has no nodes in the radial direction can exist in the long wavelength approxima-
tion. All other modes have cut-off wavenumbers and can be supported by the tube only if
the wavenumber is larger than the cut-off wavenumber. We also see that the frequency of the
principal mode tends to the value given by Equation (29) when bk → 0. On the other hand,
ω ≈ kVAi for large values of bk that can be considered as the thick tube approximation. For
comparison, in Figure 3, we have also shown the dispersion curves for fast sausage modes
of a homogeneous magnetic tube with VA0 = 3VAi. We see that, in this case, all modes
including the principal one have cut-off wavenumbers.
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Figure 2 The dispersion curves
for fast sausage waves in a
complex current-carrying loop
with a/b = 2 and VA0/VAi = 3.
The numbers at the curves
indicate the number of nodes in
the radial direction.

Figure 3 The dispersion curves
for fast sausage waves in a
homogeneous loop with
VA0/VAi = 3. The numbers at
the curves indicate the number of
nodes in the radial direction.

The cut-off wave number kc is determined by the condition that the mode phase speed
becomes equal to the external Alfvén speed when k = kc. When k < kc, the phase speed is
larger than the external Alfvén speed, and the corresponding mode is leaky. Introducing the
intermediate region with purely azimuthal magnetic field reduces the mode phase speed, thus
decreasing the cut-off wave number. This effect is clearly seen when comparing Figures 2
and 3. In the case of the principal mode this phase speed reduction is so strong that its phase
speed never exceeds the external Alfvén speed, and thus there is no cut-off wave number for
this mode.

Let us now apply the theoretical results obtained in this paper to quasi-periodic pulsations
of microwave emission generated in a single flaring loop observed with the Nobeyama Ra-
dioheliograph and Nobeyama radio polarimeters on 21 May 2004. This observation has been
reported by Kupriyanova et al. (2010). In this observation the loop length was L = 25 Mm
and the pulsation period P = 30 – 40 s. Flaring loops are relatively thick, so we take the ra-
dius of the loop cross-section R = 2.5 Mm. First we apply the theory of fast sausage waves
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in homogeneous magnetic tubes. For the principal mode the cut-off wave number is given
by (Edwin and Roberts, 1983; Aschwanden, Nakariakov, and Melnikov, 2004)

kcR ≈ 2.4(VAi/VAe). (31)

Assuming that the pulsations of microwave emission were caused by the fast sausage mode
fundamental in the longitudinal direction, we obtain kR = π(R/L) ≈ 0.31. The condition
kcR ≤ 0.31 is equivalent to VAi/VAe < 0.13. If we assume that the magnetic field magnitude
inside and outside the loop is the same, then we can rewrite this inequality as ρi/ρe > 60.
We see that the loop could support the trapped fundamental fast sausage mode only if the
density contrast is very large, although it is not completely unrealistic because the density
contrast in flaring loops can be very large (Aschwanden, Nakariakov, and Melnikov, 2004).

The estimate for the phase speed is 2L/P = 625 – 830 km s−1. For k close to kc the phase
speed is close to VAe. The typical value of the number density of coronal plasma surrounding
the loop is 3 × 1014 m−3. Then, for VAe ≤ 830 km s−1, we obtain B � 7 G (gauss), which is
too small for flaring loops. Of course, we can increase this estimate by decreasing kc and,
consequently, making the phase velocity closer to VAi. However, for this we have to increase
further the density ratio. We see that fast sausage modes in homogeneous magnetic tubes
can explain the observed modulation of microwave emission, but only under fairly extreme
assumptions about plasma parameters and magnetic field.

In contrast, the theory of fast sausage waves in current-carrying coronal loops can easily
explain the observed microwave emission modulation without making any extreme assump-
tions. Let us, for definiteness, take P = 40 s. Then it follows from Equation (29) that

VA0 ≈ 1.25 × 106

√
2 + ln(a/b)

ln(a/b)
m s−1.

Once again taking the number density of the surrounding plasma equal to 3 × 1014 m−3, we
arrive at

Be ≈ 10

√
2 + ln(a/b)

ln(a/b)
G.

If now we take Be = 50 G, which is a realistic value for flaring loops, then we obtain from
this equation a/b ≈ 1.087, so we need a very thin annulus with the azimuthal magnetic
field to obtain the correct values for parameters of the flaring loop. In accordance with
Equation (4), ρi/ρe > (a/b)2 ≈ 1.18. This is the only restriction imposed on the density
ratio. In particular, we can take ρi/ρe = 3, which sometimes is considered as a typical value
in non-flaring loops.

5. Summary and Conclusions

The first steps of coronal seismology were based on the use of the simplest model of a coro-
nal loop, which is a straight homogeneous magnetic tube. Depending on the phase velocity,
trapped waves that can propagate in such a tube are divided in fast and slow ones. Another
classification is related to the azimuthal dependence of perturbations. The waves are divided
in sausage, kink and fluting. The third classification is based on the radial dependence of
perturbations. In particular, the wave mode that does not have nodes in the radial direction is
called principal. The principal kink and fluting modes are the only fast modes that can have
arbitrary wavelength. All other fast wave modes have cut-off wavelengths. Typically these
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wavelengths are of the order of the radius of the tube cross-section, but sometimes they can
be substantially larger.

The principal fast sausage mode is used for the description of pulsations of microwave
radiation observed in flaring and post-flaring coronal loops. This application of the sausage
mode was very successful when the periods of pulsations did not exceed a few seconds.
However, the attempts to extend this model to pulsations with periods of a few tens of
seconds encounter serious difficulties related to the existence of the cut-off wavelength.

These difficulties can be easily overcome using the model of a complex magnetic tube
studied in this paper. In this model the tube consists of the core region with the axial mag-
netic field and the annulus with the azimuthal magnetic field. The magnetic field in the
external plasma is also axial. The most important difference between this model and the
model of a homogeneous magnetic tube is that the principal fast sausage mode in a complex
tube can have any wavelength. There is no cut-off wavelength for this mode. It has been
shown that this model can successfully describe pulsations of microwave radiations with
periods of a few tens of seconds without making any extreme assumptions about the plasma
and magnetic field parameters.

Here we need to make one important comment. The theory of fast sausage MHD waves
is applied for interpretation of pulsations of microwave radiation in flaring and post-flaring
coronal loops. This theory has been developed under the assumption that waves propagate
on a static background. However, in fact, the background is not static at all. In the model
suggested in this paper it is assumed that a complex magnetic tube is formed during the
quasi-static expansion of a twisted magnetic tube, which, once again, suggests that the
background is not static. Hence, strictly speaking, we have to study wave propagation on
a dynamic background before applying the results to interpretation of microwave radiation
pulsations.

The theory of waves and oscillation on a dynamic background is only making its first
steps. Recently kink oscillations of coronal magnetic loops with the density varying due to
cooling have been studied (Morton and Erdélyi, 2009, 2010; Ruderman, 2011a, 2011b). It
turns out that, in the case of the dynamic background, the oscillation frequencies are deter-
mined by the same boundary value problem as in the static case, where the time is present
as a parameter. As a result, the frequency varies with time. Hence, studying the dispersion
equation (24) is the starting point in investigating fast sausage waves on a dynamic back-
ground. It is quite possible that the observed variation of frequency of microwave radiation
pulsations is related to the dynamic nature of the background. But this is a problem for future
study.
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