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Abstract Inversions for local helioseismology are an important and necessary step for
obtaining three-dimensional maps of various physical quantities in the solar interior. Fre-
quently, the full inverse problems that one would like to solve prove intractable because
of computational constraints. Due to the enormous seismic data sets that already exist and
those forthcoming, this is a problem that needs to be addressed. To this end, we present
a very efficient linear inversion algorithm for local helioseismology. It is based on a sub-
tractive optimally localized averaging (SOLA) scheme in the Fourier domain, utilizing the
horizontal-translation invariance of the sensitivity kernels. In Fourier space the problem de-
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couples into many small problems, one for each horizontal wave vector. This multichannel
SOLA method is demonstrated for an example problem in time–distance helioseismology
that is small enough to be solved both in real and Fourier space. We find that both approaches
are successful in solving the inverse problem. However, the multichannel SOLA algorithm
is much faster and can easily be parallelized.

Keywords Helioseismology · Inverse modeling

1. Introduction

The inverse problem of local helioseismology is to use measurements (e.g., wave travel-
time shifts) to infer the physical conditions in the solar interior. For a recent review of
local helioseismology, see, e.g., Gizon, Birch, and Spruit (2010). Inversions have been
used to study flows and wave-speed perturbations around sunspots (e.g. Kosovichev, 1996;
Gizon, Duvall, and Larsen, 2000; Jensen et al., 2001; Zhao, Kosovichev, and Duvall, 2001;
Couvidat et al., 2004; Gizon et al., 2009), flows associated with supergranulation (e.g. Koso-
vichev and Duvall, 1997; Woodard, 2007; Jackiewicz, Gizon, and Birch, 2008a), and global-
scale flows (e.g. Basu, Antia, and Tripathy, 1999; Haber et al., 2002; Zhao and Kosovichev,
2004; González Hernández et al., 2008).

Essentially all inversions that have been employed in local helioseismology are linear.
These inversions are based on the assumption of a linear relationship between perturbations
to a reference model for the solar interior and the corresponding changes in the helioseismic
measurements. The assumption of linearity is reasonable for inversions in the quiet Sun (e.g.
Jackiewicz et al., 2007b; Couvidat and Birch, 2009). Within the context of linear inversions,
the two main approaches are optimally localized averages (OLA: Backus and Gilbert, 1968)
and regularized least squares (RLS: Paige and Saunders, 1982). In OLA methods, the goal
is to produce spatially localized estimates of conditions in the solar interior while also con-
trolling the associated random noise. In RLS methods, the goal is to produce a model of the
solar interior that provides the best fit to the data under particular smoothness conditions.

The first three-dimensional (3D) inversions in local helioseismology were based on the
RLS formalism (Kosovichev, 1996; Couvidat et al., 2005) and carried out using the LSQR
algorithm (an iterative method, Paige and Saunders, 1982). RLS corresponds to Tikhonov
regularization (Tikhonov, 1963) in the mathematical literature. This approach continues to
be used extensively in time–distance helioseismology (e.g. Zhao, Kosovichev, and Duvall,
2001; Zhao and Kosovichev, 2004; Zhao et al., 2007). Jacobsen et al. (1999) introduced the
multichannel deconvolution (MCD) approach to solving the RLS equations. In MCD, the
(assumed) horizontal-translation invariance of the kernels is exploited to decouple the full
RLS problem into a set of easily solvable problems, one for each horizontal wave vector.
This method has been used by, e.g., Jensen, Jacobsen, and Christensen-Dalsgaard (1998),
Jensen et al. (2001), and Couvidat et al. (2004).

The 3D-OLA approach is computationally impractical for typical time–distance inver-
sions due to the size of the matrices involved, as we will show in Section 4. An improved
OLA variant, termed subtractive OLA (SOLA) and introduced by Pijpers and Thompson
(1992), allows one to perform fewer matrix inverse computations, yet does not reduce the
sizes of the matrices. SOLA corresponds to what is known as the method of approximate in-
verse in the mathematical literature on regularization of inverse problems (Louis and Maass,
1990; Schuster, 2007). In problems where the kernel functions are separable as products
of functions of horizontal position and functions of depth, one can reduce the 3D-SOLA
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problem to a set of 2D-SOLA problems followed by 1D depth inversions (Jackiewicz et al.,
2007a; Jackiewicz, Gizon, and Birch, 2008a). However, this separation is not always possi-
ble.

In this article we will show an efficient Fourier method for calculating 3D-SOLA prob-
lems for local helioseismology. This method requires horizontal-translation invariance of
the reference model for the solar interior and is based on an MCD approach. We will show
that, unlike direct solution of the SOLA equations, this method is computationally feasible.
We will also use example computations to demonstrate that the multichannel approach is
many orders faster than the real-space method.

2. Setup of the Inverse Problem

The solar interior is filled with numerous scatterers, such as flows, magnetic fields, hot and
cold spots, and density and pressure anomalies. The scattering mechanism for each of these
perturbations is physically different. Consider P such perturbations acting on the wave field.
Not accounting for the magnetic field, the thermodynamic and flow perturbations would sum
to P = 5 independent quantities, e.g., the three components of flow velocity, sound speed,
and first adiabatic exponent.

In time–distance helioseismology (Duvall et al., 1993), the measurements consist of
travel times between points and concentric annuli or between points and quadrants. These
travel-time measurements are performed for different choices of Fourier filters (e.g. Gizon
and Birch, 2005; Jackiewicz, Gizon, and Birch, 2008b). Taken together, we assume that we
have M such measurements, each denoted by the running index a, where 1 ≤ a ≤ M . In
this article we are concerned with the local helioseismology of a small patch of the Sun near
disk center, and we make the approximation that sphericity can be ignored. Thus we adopt
a Cartesian coordinate system:

x = (r, z) = (x, y, z), (1)

where r is the horizontal position vector on the solar surface and z is height.
The statement that a number of scatterers acts on the wave field to create small shifts in

travel times [δτ a(r)] may be expressed as follows (e.g. Gizon and Birch, 2002):

δτ a(r) =
∫

�
d2r′ dz

P∑
β=1

Ka
β(r′ − r, z)δqβ(r′, z) + na(r), (2)

where δqβ(r, z) represents the P perturbations in the various physical quantities that de-
scribe the solar interior, indexed by β . The sensitivity of a travel-time measurement [δτ a(r)]
to a localized change [δqβ(r′, z)] is given by the travel-time sensitivity kernel [Ka

β(r′ −r, z)].
For point-to-annulus or point-to-quadrant measurements [δτ a(r)] the position vector [r]
usually denotes the center of the annulus (although there is some freedom in this con-
vention). Note that in Equation (2) we have explicitly assumed that the background solar
model and the sensitivity kernels are invariant under horizontal translations. Sensitivity ker-
nels result from forward modeling under the single-scattering Born approximation (Gizon
and Birch, 2002). The integral is taken over the volume of the Sun. The term na(r) is the
stochastic noise of the travel-time measurement [δτ a(r)] due to the forcing of waves by
turbulent convection. The travel-time noise covariance matrix [�] has elements

�ab(ri − rj ) = Cov
[
na(ri ), n

b(rj )
]
. (3)

Details about the computation of � can be found in Gizon and Birch (2004).
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The general OLA inversion problem for time–distance helioseismology seeks to find an
estimate of δqα at any chosen target position [r0; z0], given a set of δτ , K , and �. In other
words, we are looking for a linear combination of the travel times such that

δq inv
α (r0; z0) =

N∑
i=1

M∑
a=1

wα
a (ri − r0; z0)δτ

a(ri ) (4)

is an estimate of δqα(r0; z0). The weights [wα
a (ri −r0; z0)] are the unknowns of the problem.

In the above equation, N = (2n + 1)2 is the total number of horizontal position vectors [ri ].
Throughout the article we assume that the travel times are given on a uniform square grid
with sampling hx in both horizontal directions and with nx = ny = 2n + 1 pixels on each
side.

3. Subtractive Optimally Localized Averaging

Using Equations (2) and (4) we have

δq inv
α (r0; z0) =

∫
�

d2r′ dz

P∑
β=1

[
N∑

i=1

M∑
a=1

wα
a (ri − r0; z0)K

a
β(r′ − ri , z)

]
δqβ(r′, z)

+
N∑

i=1

M∑
a=1

wα
a (ri − r0; z0)n

a(ri ). (5)

We can rewrite Equation (5) as

δq inv
α (r0; z0) =

∫
�

d2r′ dz Kα
α(r′ − r0, z; z0)δqα(r′, z) (6a)

+
∫

�
d2r′ dz

P∑
β=1,β �=α

Kα
β(r′ − r0, z; z0)δqβ(r′, z) (6b)

+
N∑

i=1

M∑
a=1

wα
a (ri − r0; z0)n

a(ri ), (6c)

where the functions Kα
β are averaging kernels given by

Kα
β(r, z; z0) =

N∑
i=1

M∑
a=1

wα
a (ri; z0)K

a
β(r − ri , z), ∀β ∈ [1,P ], (7)

and β is a running index between one and P that labels the physical quantities.
The term (6a) on the right-hand side of Equation (6) is what we are searching for, i.e. the

quantity δqα convolved with the averaging kernel Kα
α . If the averaging kernel Kα

α(r, z; z0) is
well localized in the horizontal (around r = 0) and vertical (around z = z0) directions, we
will recover a smoothed estimate of δqα .

The term (6b) is the leakage from the other perturbations β �= α into δq inv
α . Ideally, one

would like all averaging kernels Kα
β with β �= α to be zero.

The term (6c) represents the propagation of random noise from the travel times into the
inverted δq inv

α .
The SOLA method consists of searching for the inversion weights [wα

a (r; z0)] so that the
averaging kernels [Kα

β ] resemble user-supplied target functions [T α
β ], while keeping error
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magnification as small as desired. This can be achieved by minimizing the cost function

Xα

(
wα;μ) =

∫
�

d3x
P∑

β=1

[
Kα

β(x; z0) − T α
β (x; z0)

]2
(8a)

+ μ

N∑
i=1

M∑
a=1

N∑
j=1

M∑
b=1

wα
a (ri; z0)�ab(ri − rj )w

α
b (rj ; z0). (8b)

Equation (8) has two main components: The first term (8a), the “misfit,” is a measure of
how the averaging kernels [Kα

β ] match the target functions [T α
β ]. To minimize the crosstalk,

the target has only one non-vanishing component [T α
α ], which we write as the product of a

2D Gaussian in the horizontal coordinates and a 1D function of the vertical coordinate. Thus
we write

T α
β (x; z0) = C exp

(−‖r‖2

2s2

)
f (z; z0) δβα, ∀β ∈ [1,P ], (9)

where δβα is the Kronecker δ-function. Typically, the function f peaks at a desired target
depth z = z0. The constant C is taken so that the spatial integral of T α

α is unity. The parameter
s controls the width of the Gaussian.

The second term (8b) of Equation (8) is proportional to the variance [σ 2
α ] of the random

noise in q inv
α due to the propagation travel-time noise:

σ 2
α ≡

N∑
i=1

M∑
a=1

N∑
j=1

M∑
b=1

wα
a (ri; z0)�ab(ri − rj )w

α
b (rj ; z0). (10)

The trade-off parameter μ in Equation (8) is chosen to provide a satisfactory trade-off be-
tween the misfit and the noise; this choice is somewhat subjective.

The minimization is also subject to the constraints∫
�

Kα
β(x; z0)d3x = δβα, ∀β ∈ [1,P ], (11)

which ensure that the inverted quantity is normalized appropriately.

4. Linear System of Equations

The SOLA problem defined in Section 3 has been traditionally solved in real space for the
1D and 2D cases (e.g. Pijpers and Thompson, 1994). Below we write the problem for the
3D case.

We recast the optimization problem of Equation (8) subject to the constraints (11) by
minimizing the function

Lα

(
wα,λ;μ) = Xα

(
wα;μ) + 2

P∑
β=1

λβ

(∫
�

Kα
β(x; z0)d3x − δβα

)
(12)

with respect to the vector of weights wα and a vector of Lagrange multipliers λ. There
are M × N unknown weights wα

a (rj ; z0) and P unknown Lagrange multipliers λβ . The
minimization consists of solving the following set of M × N + P equations:

∂

∂wα
a (ri; z0)

{Lα} = 0, ∀(a, i) ∈ [1,M] × [1,N ], (13)



24 J. Jackiewicz et al.

and

∂

∂λβ
{Lα} = 0, ∀β ∈ [1,P ]. (14)

Equations (13) and (14) imply

N∑
j=1

M∑
b=1

Aab(ri − rj )w
α
b (rj ; z0) +

P∑
β=1

Caβλβ = tαa (ri; z0),

∀(a, i) ∈ [1,M] × [1,N ], (15)

and
N∑

j=1

M∑
b=1

Cbβwα
b (rj ; z0) = δβα, ∀β ∈ [1,P ], (16)

where we define

Aab(ri − rj ) ≡
∫

�
d2r dz

P∑
β=1

Ka
β(r − ri , z)K

b
β(r − rj , z)

+ μ�ab(ri − rj ), (17)

Caβ ≡
∫

�
Ka

β(r − ri , z)d2r dz =
∫

�
Ka

β(x)d3x, (18)

tαa (ri; z0) ≡
∫

�
Ka

α(r − ri , z)T α
α (x; z0)d3x. (19)

Equations (15) and (16) form a system of M × N + P linear equations. The weights
wα

a (ri; z0) can be obtained by matrix inversion, or some equivalent linear solver. Inspecting
Equations (17), (18), and (19), one sees that the dimension of the matrix that is to be inverted
is (MN +P )× (MN +P ). An advantage of the SOLA method (see Section 3) compared to
the OLA method is that the systems of equations for different target functions differ only in
the right-hand sides and not in the matrix. Therefore, the large matrix in Equation (17) has
to be set up and inverted only once. For example, after inversion, we can infer the physical
quantity at any depth using a new tαa (ri; z0).

Let us now discuss the computational cost of the SOLA scheme for typical time–distance
inversions. The computational cost depends greatly on the size of the matrix A to be in-
verted. Typically, A may have more than 1014 elements (more than a petabyte!), which do
not fit in computer memory. In practice, we do not solve the full problem, but truncate the
sums over j in Equations (15) and (16). We consider a restricted number of convolution
“shifts” [rj = (xj , yj )] such that

−nshiftshx ≤ xj ≤ nshiftshx, (20)

−nshiftshx ≤ yj ≤ nshiftshx, (21)

where hx is the horizontal sampling. The total number of shifts [Nshifts = (2nshifts + 1)2]
must be much less than N so that the problem can be solved. The minimum number of
shifts that is acceptable depends on the size of the target function and the horizontal extent
of the sensitivity kernels. In the example of Section 6, we have nshifts = 45. The smaller the
number of shifts, the worse the approximation of the problem and the worse the localization
and the noise of the answer.
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If one takes the same number of parameters as in the (2 + 1)D flow inversion of
Jackiewicz, Gizon, and Birch (2008a), then P = 3 (the three components of velocity),
nshifts = 10, so that Nshifts = 441, and M = 3 × 5 × 20 for three geometries (waves propa-
gating in “outward minus inward,” “West–East,” and “North–South” directions), five ridges
(f,p1,p2,p3, and p4 modes), and twenty different radii. The problem would then require
inverting a matrix of size ≈ 100 000 × 100 000 that occupies tens of gigabytes of mem-
ory. Furthermore, it is well known that matrix inverse operations scale as O(N 3), where
N = (NM + P ) is the length of the matrix on one side. Even without memory issues, this
calculation becomes intractable very quickly.

Another issue is the computation of the kernel-overlap integral in Equation (17). This
computation is extremely expensive in real space. However, it can be sped up very signif-
icantly by transforming to horizontal Fourier space, where it becomes a simple multipli-
cation. Convolution operations are O(N 2) in real space but reduce to O(N ln N ) when
performed in Fourier space. In order to describe this step explicitly, let us define the discrete
Fourier transform. Any function f and its Fourier transform f̃ are related according to

f̃ (k) = h2
x

(2π)2

∑
r

f (r)e−ik·r, (22)

f (r) = h2
k

∑
k

f̃ (k)eik·r, (23)

where hk = 2π/(nxhx) is the sampling in Fourier space. The horizontal wave vector k takes
the discrete values kpq = phk êx + qhk êy, where p and q are integers in the range [−n,n].
Using this definition of the Fourier transform, we obtain

h2
x

N∑
l=1

P∑
β=1

Ka
β(rl − ri , z)K

b
β(rl − rj , z)

= (2πhk)
2
∑

k

eik·(ri−rj )

P∑
β=1

K̃a∗
β (k, z)K̃b

β(k, z), (24)

where we used the fact that the Fourier transform of Ka
β(−r) is K̃a∗

β (k) since Ka
β is real.

In this form the kernel-overlap integral is computed much faster than in Equation (17). The
SOLA inversion examples presented later were computed using these equations. To avoid
the edge effects resulting from the implicit periodicity assumed by the Fourier transform,
we padded the sensitivity kernels and noise covariance matrices with zeros over a zone as
wide as the size of the widest sensitivity kernel.

5. Solution in Fourier Space

In this section we fully exploit the horizontal-translation invariance of the sensitivity kernels
and rewrite the entire problem in Fourier space. Using the definition of Equation (22), the
Fourier transforms of Equations (15) and (16) are

h4
kN

M∑
b=1

Ãab(k)w̃α
b (k; z0) + δk,0

P∑
β=1

Caβλβ = h2
k t̃

α
a (k; z0), ∀a,k (25)

and

h2
kN

M∑
b=1

Cbβw̃α
b (0; z0) = δβα, ∀β, (26)
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where k takes the discrete values kpq = phk êx + qhk êy, with p and q in the range [−n,n].
This set of equations can be written conveniently in matrix form as

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

if k �= 0, h2
kNÃ(k)w̃α(k; z0) = t̃α(k; z0),

if k = 0,

[
h4

kNÃ(0) C

CT 0

][
w̃α(0; z0)

λ

]
=

[
h2

k t̃α(0; z0)

Uα/(h2
kN

2
x )

]
,

(27)

where the vector t̃α(k; z0) = [t̃ α1 (k; z0) t̃α2 (k; z0) . . . t̃αM(k; z0)]T and the matrix Ã(k) =
[Ãab(k)] have the following elements:

Ãab(k) = (2π)2
∫ ztop

zbot

P∑
β=1

K̃a∗
β (k, z)K̃b

β(k, z)dz + μ�̃ab(k), (28)

t̃ αa (k; z0) = (2π)2
∫ ztop

zbot

K̃a∗
α (k, z)T̃ α

α (k, z; z0)dz, (29)

where zbot and ztop are the bottom and top heights of the computation box. Furthermore,
Uα = [δ1,α δ2,α . . . δP,α]T, w̃α(k; z0) = [w̃α

1 (k; z0) w̃α
2 (k; z0) . . . w̃α

M(k; z0)]T, and C =
[Caβ ] has elements given by Equation (18).

In Fourier space the problem decouples into many small problems, one for each horizon-
tal wave vector k. These small problems are completely independent and therefore can be
solved in a parallel fashion. The solution w̃α

a (k; z0) is constructed for each k separately. By
analogy to the RLS multichannel deconvolution (Jacobsen et al., 1999), we call the current
approach multichannel SOLA or MCD SOLA.

For each wave vector, the matrix to be inverted is much smaller than in the real-space
case. For each wave vector k �= 0, the matrix is of size M2. Taking the same parameters
as in Section 4, the Fourier approach would only need 441 inversions of matrices of size
300 × 300. This would result in an increased speed by more than five orders of magnitude
over the real-space method for this realistic example. Note that there is no need to truncate
the problem anymore (nshifts = n).

Here we provide expressions for the averaging kernel [Equation (7)] and the variance of
the noise [Equation (10)] in terms of the Fourier transform of the weights:

Kα
β(r, z; z0) = h4

kN
∑

k

eik·r
M∑

a=1

w̃α
a (k; z0)K̃

a
β (k, z), (30)

σ 2
α = h6

kN
2

M∑
a=1

M∑
b=1

∑
k

w̃α∗
a (k; z0)�̃ab(k)w̃α

b (k; z0). (31)

We emphasize that the averaging kernel is now computed as a matrix multiplication instead
of a convolution.

The inferred solar property δq inv
α at position (r, z0) is

δq inv
α (r; z0) = Nh4

k

∑
k

eik·r
M∑

a=1

w̃α∗
a (k; z0)δτ̃

a(k), (32)

where δτ̃ a(k) is the Fourier transform of the travel-time maps.
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Figure 1 Inputs to the example inversion. The point-to-point Born sensitivity kernel for sound speed is
shown in the left column, and a target function with FWHM of 20 Mm in the right column. The kernel in the
x–y plane (top left) is the 1D spatial integral of the kernel over depth. The black and white circles denote the
two observation points, separated by 15 Mm. The depth slice in the lower left panel is taken along the y = 0
line. The horizontal cut of the target function (top right) is at a depth of 1 Mm. The depth slice (lower right)
is also along y = 0. The depth profile of the target was computed according to Equation (33).

6. Example Inversion for Sound Speed

6.1. Setup

We now show a rather simple example of a time–distance helioseismic inversion to demon-
strate the multichannel SOLA method and compare it to its real-space counterpart. For sim-
plicity, we will only consider one mean (mn) point-to-point travel-time measurement with
the distance between the two observation points fixed at � = 15 Mm. For consistency with
the measurement, we have computed a point-to-point Born approximation sensitivity kernel
according to Birch, Kosovichev, and Duvall (2004). This kernel gives the sensitivity of mean
travel times to the sound-speed perturbation [δc2/c2]. No prior filtering has been done; i.e.,
the whole model power spectrum is used. We are not interested in specific types of ker-
nels for this example problem; we only want to compare inversion methods and prove that
the MCD inversion works. This sound-speed kernel, denoted Kmn

c2 according to the conven-
tions in Section 2, is shown in Figure 1. This kernel has 91 × 91 elements in the horizontal
direction and 80 elements in the vertical direction.

The second input quantity kept fixed for our example inversion is the target function,
shown alongside the kernel in Figure 1. This 3D function has a Gaussian horizontal structure
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Figure 2 Model noise covariance matrix for mean point-to-point travel times with � = 15 Mm for the
example inversion. The left panel shows the noise covariance matrix in units of s2 as a function of horizontal
coordinates. The right panel is a cut through the matrix along the y = 0 line. The averaging time for this noise
estimation is eight hours.

with a full width at half-maximum (FWHM) of 20 Mm [see Equation (9)]. Since we are
only working with one single-sensitivity kernel (one �) in this example, it would be futile
to attempt to obtain an averaging kernel peaked at some chosen z = z0, since the kernel
itself possesses no such depth properties. Therefore, again for simplicity, we choose a depth
profile of the target function by horizontally integrating the sensitivity kernel at each depth
coordinate to obtain a 1D curve according to

f (z; z0) =
∫

d2rKmn
c2 (r, z). (33)

The 1D-curve f (z; z0) is then combined with the horizontal Gaussian to construct the 3D
target as in Equation (9). This choice for f (z; z0) keeps the example as simple as possible.
Note that the target in Figure 1 has a weak negative lobe beneath a depth of 10 Mm as a
result of the depth profile of the sensitivity kernel.

The final input quantity to the inversion is the noise covariance matrix defined in Equa-
tion (3) and denoted in this case as �mn,mn. We compute the covariance from the model
power spectrum according to Gizon and Birch (2004) and show the results in Figure 2. This
matrix tells us how two mean point-to-point travel-time measurements are spatially corre-
lated due to noise as the pairs of observation points are moved around with respect to each
other. Note that for this case there is a significant correlation only when the measurements
are made within about 10 Mm of each other.

6.2. Comparison of the Real-Space and Fourier-Space Solutions

We compute a set of real-space inversions and one Fourier inversion using the input quanti-
ties. The Fourier inversion is not computed in parallel for this example. For each inversion
we generate a trade-off, or L-curve (Hansen, 1998), by choosing ten values of the parameter
μ (see Equation (28)). The values of μ are chosen to span the space of misfit and noise. One
trade-off curve is generated for the Fourier inversion, but several are generated for the real-
space inversion, each corresponding to a different number of shifts employed. The possible
nshifts range from one to 45, with 45 being the maximum due to the size of the kernel for this
example (where nx = ny = 91). Since the MCD-SOLA inversion, in some sense, utilizes
all possible shifts once, the real-space method with 45 shifts and the multichannel method
should agree.
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Figure 3 Example inversion using both the real-space and MCD methods and one single-sensitivity kernel.
The top panel shows trade-off curves where the noise unit is the fractional difference in sound speed [δc2/c2].
The thin red lines show the real-space inversion using an increasing number of shifts from top to bottom
indicated by the numbers. The thick blue line is the Fourier-space inversion. The compute time for the 45-shift
inversion was about a factor of 100 larger than for the MCD inversion. The bottom panel corresponds to the
inversion weights at trade-off parameter μ = 0.01 Mm−3. This is the topmost point of each curve. Note that
the size of the weights in the real-space SOLA inversion depends on the number of shifts, which is why the
spatial scale changes, although the color scale is fixed throughout.

In Figure 3 we show the results for these inversions. The top panel of Figure 3 shows the
trade-off curves, with red lines indicating the real-space inversion for varying shifts indicated
by the numbers at the bottom of the curves. The thick blue line is the MCD inversion trade-
off curve. These curves are typically plotted as the square of the random noise level versus
the misfit on a logarithmic scale. We see that for increasing nshifts the real-space inversion
solution tends to the MCD solution. In fact, the L-curve for the 45-shift inversion falls on
top of the one for the MCD inversion. Figure 3 also shows the particular inversion weights
[wc2

mn] for each inversion, chosen from the first (topmost) point on each trade-off curve when
μ = 0.01 Mm−3. These are the points where the averaging kernel and target match best,
i.e. the smallest misfit. This is a reasonable choice since our main concern here is not the
noise, which is still quite small anyway. The last two weights in Figure 3 demonstrate what
the L-curves already suggest: the solutions of the two types of inversions are perfectly com-
parable when we take the maximum allowable number of shifts in the real-space method.
The weights for inversions with a smaller number of shifts are quite ill behaved due to edge
effects. Actually, in practice one never uses all possible shifts, since it is computationally
impractical to do so. This suggests that standard 3D-OLA inversions might have undesir-
able properties in the solution due to the necessary truncation of the problem. Cuts through
all weights are shown in Figure 4, reinforcing this point when only a subset of shifts is used.
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Figure 4 Cut through each
inversion weight in Figure 3
along the line y = 0. The curve
for the 45-shift real-space
inversion and the MCD-SOLA
inversion are almost
indistinguishable.

We recorded the computation time for each inversion. For the 45-shift case, the convo-
lution matrix size is 8281 × 8281. The real-space inversion took two orders of magnitude
longer to compute than the Fourier inversion (100 seconds compared to 1 second), and this
distinction only becomes larger as the problem becomes larger. Simply stated, the Fourier
inversion takes a fraction of the time for small problems; for large problems, the real-space
inversion is computationally intractable.

To show that the inversion does indeed work, in Figures 5 and 6 we provide comparisons
between averaging kernel and target from the MCD solution. In the horizontal direction
the agreement is quite acceptable, especially considering that we have used only one input
sensitivity kernel. Since the vertical profile of the input target function was constructed to
match that of the sensitivity kernel, the good agreement there is expected.

7. Discussion and Conclusions

The example considered here is a very simple, toy inversion to demonstrate the usefulness
of this new Fourier-based MCD-SOLA method. We have also experimented with a larger
problem whereby we consider point-to-point measurements of various orientations of the
observation points with respect to the x-axis. We input the same kernel as the one shown in
this work, as well as horizontal rotations of it to match the measurements. Using the MCD
method, we found that only five rotations, spaced evenly between 0 and 90 degrees and
keeping � fixed, are needed to find a very good averaging kernel that does not change with
the addition of more rotations. The computation time for this inversion was about 1.5 sec-
onds. Had we attempted to solve the same problem with the real-space OLA inversion, in
addition to consuming 40 gigabytes of memory, it would have taken weeks to compute.

We also solved our toy problem with several kernels of various distances [�]. This allows
one to obtain some resolving power in depth, since the sensitivities differ. A target function
was chosen as a 3D Gaussian peaked at a depth of 4 Mm beneath the surface. The MCD-
SOLA inversion was able to find, as expected, an almost identical averaging kernel as the
standard SOLA method. For a realistic application of the MCD-SOLA method with various
target depths from 5 Mm to the surface, we refer the reader to the recent work of Švanda
et al. (2011), who inverted for vector flows using synthetic travel-time observations as input.

In conclusion, in this article we have extended the work for RLS inversions (Jacob-
sen et al., 1999) to a SOLA inversion. A toy example inversion problem was solved with
this new approach to compare and contrast to the more standard real-space SOLA method.
The example proved that the MCD-SOLA method works completely satisfactorily, whereas
the real-space counterpart may be intractable for all but the smallest problems. In fact, we
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Figure 5 Comparison of averaging kernel (left column) and target functions (right column) from the example
MCD-SOLA inversion. The target is the same one shown in Figure 1. The top panels are slices through the
averaging and target functions at a depth of 1 Mm. The bottom panels are slices with depth through the
averaging and target functions along the y = 0 line.

Figure 6 One-dimensional cuts through the averaging kernel and target function from Figure 5 for our
example MCD inversion. The left panel is a horizontal slice at y = 0 through each function at a depth of
1 Mm. The right panel is a plot along the x = y = 0 line with depth.
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demonstrated that for a realistic helioseismic problem, the MCD-SOLA method can be or-
ders of magnitude more computationally efficient than the corresponding real-space tech-
nique. We focused here on applications to time–distance helioseismology, but this approach
is completely generalizable to any local helioseismic method requiring inversions, such as
ring-diagram analysis and acoustic holography. The vast amounts of seismic data from the
Solar Dynamics Observatory (SDO) make it imperative to have efficient and consistent local
helioseismic OLA inversion procedures for studying the solar interior.
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