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Abstract We analyze the occurrence-frequency distributions of peak fluxes [P ], total fluxes
[E], and durations [T ] of solar flares over the last three solar cycles (during 1980 – 2010)
from SMM/HXRBS, CGRO/BATSE, and RHESSI hard X-ray data. From the synthesized
data we find powerlaw slopes with mean values of αP = 1.73 ± 0.07 for the peak flux, αE =
1.62 ± 0.12 for the total flux, and αT = 1.99 ± 0.35 for flare durations. We find a tendency
of an anti-correlation of the powerlaw slope of peak fluxes with the flare rate or sunspot
number as a function of the solar cycle. The occurrence powerlaw slope is always steeper by
�α ≈ 0.1 during a solar-cycle minimum compared with the previous solar-cycle maximum,
but the relative amplitude varies for each cycle or instrument. Since each solar cycle has been
observed with a different instrument, part of the variation could be attributed to instrumental
characteristics and different event selection criteria used in generating the event catalogs.
The relatively flatter powerlaw slopes during solar maxima could indicate more energetic
flares with harder electron-energy spectra, probably due to a higher magnetic complexity
of the solar corona. This would imply a non-stationarity (or solar-cycle dependence) of the
coronal state of self-organized criticality.

Keywords Sun: hard X-rays · Sun: flares · Solar cycle

1. Introduction

In the observational part of this study (Paper I) we focus on the statistics of solar-flare hard
X-ray fluxes during the course of the last three solar cycles, while theoretical modeling is re-
ferred to Paper II. Solar flares are catastrophic events in the solar corona, most likely caused
by a magnetic instability that triggers a magnetic reconnection process, producing emission
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in almost all wavelengths. Since the emission mechanisms are all different in each wave-
length, such as nonthermal bremsstrahlung (in hard X-rays), thermal bremsstrahlung and
free-bound or recombination radiation (in soft X-rays and EUV), gyrosynchrotron emission
(in microwaves), plasma emission (in metric and decimetric waves), etc., estimates of the
energy contained in each flare event strongly depend on the emission mechanism, and thus
on the wavelength. In this study we concentrate on the hard X-ray wavelength. Hard X-
ray emission in solar flares mostly results from thick-target bremsstrahlung of nonthermal
electrons accelerated in the corona that precipitate into the dense chromosphere. Thus, the
hard X-ray flux is the most direct measure of the energy-release rate, and thus is expected
to characterize the energy of flare events in a most uncontaminated way, while emission in
other wavelengths exhibits a more convolved evolution of secondary emission processes.
The main observables that are available for flare statistics in hard X-rays are the peak flux
[P ], the total flux or fluence [E] (defined as the time-integrated flux over the entire event),
and the total time duration [T ] of the event. In this study, we present a comprehensive com-
pilation of occurrence-frequency distributions of these observables obtained in hard X-rays,
and investigate whether their behavior is different during solar-cycle minima, including the
current anomalous solar minimum.

2. Statistics of Solar Flares in Hard X-rays

In this section we describe observed occurrence-frequency distributions of solar-flare hard
X-ray parameters (in chronological order), discuss the properties of the datasets (hard X-
ray energies, observational epochs, instruments), compile the results in Table 1 (powerlaw
slopes of fluxes, fluences, durations, number of events, instruments, and references), and
derive synthesized distributions that serve as reference values of the average solar-flare ac-
tivity. In Section 4 we investigate whether deviations from these reference values can be
found during the solar cycle.

One of the earliest reports of a frequency distribution of solar hard X-ray flare fluxes
was made by Datlowe, Elcan, and Hudson (1974), who published a frequency distribution
of 123 flare events detected in the 20 – 30 keV energy range above a threshold of � 0.1
photons cm−2 s−1 keV−1 with the OSO-7 spacecraft during the period of 10 October 1971 –
6 June 1972, finding a powerlaw slope of βP ≈ 0.8 for the cumulative frequency distribution.
For compatibility we list only powerlaw slopes [α] of differential frequency distributions in
Table 1, and use the conversion α = β + 1 when needed. We list also the number of events,
which is a good indicator of the statistical uncertainty of the powerlaw slope fits (Figure 6).

A sample of 25 microflares of smaller size were detected at 20 keV with a balloon-
borne instrumentation of the University of California Berkeley (UCB) during 141 minutes
of observations on 27 June 1980, yielding a powerlaw distribution with a slope of β ≈ 1
(Lin et al., 1984).

Many more events were observed with the Hard X-Ray Burst Spectrometer (HXRBS)
onboard the Solar Maximum Mission (SMM) spacecraft, which recorded 6775 flare events
during the 1980 – 1985 period, exhibiting a powerlaw distribution of peak count rates with a
slope of αP = 1.8, extending over four orders of magnitude (Dennis, 1985).

A subsequent mission with hard X-ray detector capabilities was the Compton Gamma
Ray Observatory (CGRO). Although it was designed to detect γ -rays from astrophysical
objects, it also detected solar flares systematically during the period of 1991 – 2000. Us-
ing the Burst And Source Transient Experiment (BATSE), statistics of flares with energies
> 25 keV were sampled and more detailed powerlaw distributions of peak fluxes were re-
ported with values of αP = 1.61±0.03 (Schwartz et al., 1992), αP = 1.75±0.02 (Biesecker,
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Table 1 Frequency distributions measured from solar flares in hard X-rays and γ -rays. References: 1 Dat-
lowe, Elcan, and Hudson (1974); 2 Lin et al. (1984); 3 Dennis (1985); 4 Schwartz et al. (1992); 5 Crosby,
Aschwanden, and Dennis (1993); 6 Biesecker, Ryan, and Fishman (1993); 7 Biesecker, Ryan, and Fishman
(1994); 8 Crosby (1996); 9 Lu et al. (1993); 10 Lee, Petrosian, and McTiernan (1993); 11 Bromund, McTier-
nan, and Kane (1995); 12 Perez Enriquez and Miroshnichenko (1999); 13 Su, Gan, and Li (2006); 14 Christe
et al. (2008); 15 Lin, Feffer, and Schwartz (2001); 16 Tranquille, Hurley, and Hudson (2009).

Powerlaw Powerlaw Powerlaw Number Instrument Reference

slope of slope of slope of of and

peak flux fluence durations events threshold

[αP ] [αE ] [αT ] [n] energy

1.8 123 OSO-7 (>20 keV) 1

2.0 25 UCB (>20 keV) 2

1.8 6775 HXRBS (>20 keV) 3

1.73±0.01 12 500 HXRBS (>25 keV) 4

1.73±0.01 1.53±0.02 2.17±0.05 7045 HXRBS (>25 keV) 5

1.71±0.04 1.51±0.04 1.95±0.09 1008 HXRBS (>25 keV) 5

1.68±0.07 1.48±0.02 2.22±0.13 545 HXRBS (>25 keV) 5

1.67±0.03 1.53±0.02 1.99±0.06 3874 HXRBS (>25 keV) 5

1.61±0.03 1263 BATSE (>25 keV) 4

1.75±0.02 2156 BATSE (>25 keV) 6

1.79±0.04 1358 BATSE (>25 keV) 7

1.59±0.02 2.28±0.08 1546 WATCH (>10 keV) 8

1.86 1.51 1.88 4356 ISEE-3 (>25 keV) 9

1.75 1.62 2.73 4356 ISEE-3 (>25 keV) 10

1.86±0.01 1.74±0.04 2.40±0.04 3468 ISEE-3 (>25 keV) 11

1.80±0.01 1.39±0.01 110 PHEBUS (>100 keV) 12

1.80±0.02 2.2±1.4 2759 RHESSI (>12 keV) 13

1.58±0.02 1.7±0.1 2.2±0.2 4241 RHESSI (>12 keV) 14

1.6 243 BATSE (>8 keV) 15

1.61±0.04 59 ULYSSES (>25 keV) 16

Ryan, and Fishman, 1993), and αP = 1.79 ± 0.04 (Biesecker, Ryan, and Fishman, 1994)
for BATSE. Biesecker (1994) noticed slight differences of the powerlaw slope during low-
activity (αP = 1.71±0.04) and high-activity periods (αP = 1.68±0.02), with the powerlaw
slope being usually flatter for high-activity periods.

A systematic study of flares observed with HXRBS over the entire mission duration
of 1980 – 1989 was conducted by Crosby, Aschwanden, and Dennis (1993), measuring peak
count rates [Pcts: cts s−1], converted into photon fluxes [Pph: photons cm−2 s−1 keV−1] at en-
ergies > 25 keV, peak HXR spectrum-integrated fluxes [PX: photons cm−1 s−1], peak elec-
tron fluxes [Pe: ergs s−1], flare durations T , and time-integrated total energies in electrons
[Ee: ergs], for four different time intervals of the solar cycle. In Table 1 we list the values
for the time ranges of 1980 – 1982 (7045 events; solar maximum phase), 1983 – 1984 (1008
events), 1985 – 1987 (545 events; solar minimum phase), and 1988 – 1989 (3874 events).
The values of the powerlaw slopes change by � 2% during different periods of the solar
cycle.

From the Wide Angle Telescope for Cosmic Hard X-Rays (WATCH) onboard the
Russian satellite GRANAT, a sample of 1546 flare events was observed at energies of



102 M.J. Aschwanden

Figure 1 Occurrence-frequency distributions of hard X-ray peak count rates [Pcts: cts s−1] observed
with SMM/HXRBS (1980 – 1989), BATSE (1991 – 2000), and RHESSI (2002 – 2010), with powerlaw fits.
An average preflare background of 40 [cts s−1] was subtracted from the HXRBS count rates. Note that
CGRO/BATSE has larger detector areas, and thus records higher count rates.

10 – 30 keV during 1990 – 1992, yielding similar powerlaw slopes for peak count rates,
αP = 1.59 ± 0.02, and flare durations αT = 2.28 ± 0.08 as reported before (Crosby, 1996;
Crosby et al., 1998). However, it was noted that the frequency distribution of flare durations
exhibits a gradual rollover for short flare durations, approaching a slope of αT ≈ 1, so it can-
not be fitted with a single powerlaw distribution over the entire range of flare durations. From
the PHEBUS instrument on GRANAT, which is sensitive to γ -ray energies, Perez Enriquez
and Miroshnichenko (1999) analyzed 110 high-energy solar flares observed in the energy
range of 100 keV – 100 MeV and found the following powerlaw slopes: αP = 1.80±0.01 for
(bremsstrahlung) hard X-ray fluxes at > 100 keV, αP = 1.38 ± 0.01 for photon energies at
0.075 – 124 MeV, αP = 1.39 ± 0.01 for bremsstrahlung at 300 – 850 keV, αE = 1.50 ± 0.03
for the 511 keV annihilation line fluence, αE = 1.39 ± 0.02 for the 2.223 MeV neutron-line
fluence, and αE = 1.31 ± 0.01 for the 1 – 10 MeV γ -ray line fluence. The flatter power-
law slopes of the occurrence-frequency distributions at higher energies could possibly be
explained by flatter spectra (Section 3.1).

Using data from a > 25 keV hard X-ray detector onboard the ISEE-3/ICE spacecraft
from 24 August 1978 until 11 July 1986, Lu et al. (1993) determined the frequency dis-
tributions of the peak luminosity [P : erg s−1], the energy [E: erg], and flare duration
[T : s] and found that the measured distributions could be best fitted with a cellular au-
tomaton model that produced powerlaw slopes of αP = 1.86, αE = 1.51, and αT = 1.88.
The fits of the distributions included an exponential rollover at the upper end, which ex-
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Figure 2 Occurrence frequency distributions of hard X-ray total counts or fluence [E: cts] observed with
SMM/HXRBS (1980 – 1989), BATSE (1991 – 2000), and RHESSI (2002 – 2010), with powerlaw fits. An
average preflare background of 40 cts s−1 multiplied with the flare duration was subtracted in the total counts
of HXRBS.

plains why they inferred a less-steep slope for durations than previously reported. Lee,
Petrosian, and McTiernan (1993) analyzed the same data and determined the correlations
and frequency-distribution powerlaw slopes with special care of truncation biases and ob-
tained similar values for ISEE-3 (αP = 1.75, αE = 1.62, αT = 2.73) as Crosby, Aschwan-
den, and Dennis (1993) for HXRBS. A third study was done with the same data (Bro-
mund, McTiernan, and Kane, 1995), where the energy spectrum was also calculated to de-
termine different energy parameters, similar to the study of Crosby, Aschwanden, and Den-
nis (1993), finding the following powerlaw slopes: αP = 1.86, . . . ,2.00 for the peak photon
flux [Pph: photons cm−2 s−1], αP = 1.92, . . . ,2.07 for the peak electron power [Pe: erg s−1],
αE = 1.67, . . . ,1.74 for the total electron energy [Ee: erg], and αT = 2.40, . . . ,2.94 for the
total duration [T : s], where the range of powerlaw slopes results from the choice of the
fitting range. The flare duration [T ] was defined at a level of 1/e times the peak count rate.

From the latest solar mission with hard X-ray capabilities, the Ramaty High-Energy Solar
Spectroscopic Imager (RHESSI) spacecraft, frequency distributions were determined in the
12 – 25 keV energy band from 2002 – 2005 (Su, Gan, and Li, 2006), finding powerlaw slopes
of αP = 1.80 ± 0.02 for the peak fluxes, and a broken powerlaw αT = 0.9 – 3.6 for the flare
duration, similar to previous findings (see, e.g., Crosby et al., 1998). Christe et al. (2008)
conducted a search for microflares and identified a total of ≈ 25 000 events observed with
RHESSI during 2002 – 2007 and investigated the frequency distributions at lower energies,
finding powerlaw slopes of αP = 1.50 ± 0.03 for 3 – 6 keV peak count rates [Pcts: cts s−1],
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Figure 3 Occurrence-frequency distributions of hard X-ray flare durations [T : s] observed with
SMM/HXRBS (1980 – 1989), BATSE (1991 – 2000), and RHESSI (2002 – 2010) with powerlaw fits. The
flare durations for RHESSI were estimated from the time difference between the start and peak time, because
RHESSI flare durations were determined at a lower energy of 12 keV (compared with 25 keV for HXRBS
and BATSE), where thermal emission prolongs the nonthermal flare duration.

αP = 1.51 ± 0.03 for 6 – 12 keV peak count rates, and αP = 1.58 ± 0.02 for 12 – 25 keV
peak count rates. Converting the peak count rates [P ] into total energy fluxes by integrating
their energy spectra, Christe et al. (2008) find an energy distribution with a powerlaw slope
of αE = 1.7 ± 0.1, with an average energy-deposition rate of � 1026 erg s−1. It is interesting
that these microflare statistics are fairly consistent with overall flare statistics, even though
it represents only a subset in the lowest energy range.

Flare statistics were also gathered from the Solar X-ray/Cosmic Gamma-Ray Burst Ex-
periment (GRB) onboard the Ulysses spacecraft (Tranquille, Hurley, and Hudson, 2009),
finding similar results for > 25 keV events, i.e. a powerlaw slope of αP = 1.60 ± 0.04,
which steepens to αP = 1.75 ± 0.08 if the largest events with pulse pile-up are excluded.

We re-compiled statistics from existing flare catalogs from the three instruments
SMM/HXRBS (1980 – 1989), CGRO/BATSE (1991 – 2000), and RHESSI (2002 – 2010)
and show summary plots of the resulting frequency distributions in Figures 1 – 3. The pow-
erlaw slopes are obtained from weighted linear regression fits, using the Poisson statistics of
the number of events in each logarithmic bin (see Section 3.5). The average powerlaw slope
for peak fluxes [Pcts] is αP = 1.73 ± 0.07 (Figure 1). The corresponding frequency distri-
butions of total counts or fluences are shown in Figure 2, which have an average powerlaw
slope of αE = 1.62 ± 0.12 in the range of E ≥ 105 cts. The distributions of flare durations
are shown in Figure 3, which exhibit an average of αT = 1.99 ± 0.35, with a tendency of a
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Figure 4 Scatterplots between the total counts E(P ) (left panels) or flare duration T (P ) (right panels)
versus the peak count rate [Pcts] for solar flares with SMM/HXRBS (1980 – 1989) (top), CGRO/BATSE
(1991 – 2000) (middle), and RHESSI (2002 – 2010) (bottom). Linear regression fits are applied for y(x) and
x(y) (gray lines) and the listed values correspond to the average of the two linear regression fits.

rollover at the low end. Thus, our synthesized reference values are

N(P ) ∝ P −αP , αP = 1.73 ± 0.07,

N(E) ∝ E−αE , αE = 1.62 ± 0.12, (1)

N(T ) ∝ T −αT , αT = 1.99 ± 0.35,
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which are compatible with most of the published values listed in Table 1. Thus, we can con-
sider these synthesized values as representative means, averaged from three major missions
over the last 30 years and three solar cycles, which can serve as a reference for the overall
flare productivity of the Sun in hard X-ray wavelengths.

In Figure 4 we show the correlation plots between the parameters (sampled in Figures 1 –
3) and determine linear regression fits, which yield scaling laws of E ∝ P 1.30±0.12 and
T ∝ P 1.15±0.24. Theoretically, these correlation coefficients can also be calculated from the
powerlaw slopes of the frequency distributions. If two parameters x and y have powerlaw
distributions N(x) ∝ x−αx and N(y) ∝ y−αy , and the parameters are correlated by a power-
law relationship y ∝ xγ , the powerlaw indices are related by γ = (αx − 1)/(αy − 1) (see,
e.g., Aschwanden, 2010; Section 7.1.6). Therefore, based on the powerlaw slopes αP , αE ,
and αT measured in Figures 1 – 3, we expect the following correlations between these three
parameters:

E ∝ P γE , γE = (αP − 1)/(αE − 1) = (1.73 − 1)/(1.62 − 1) = 1.2 ± 0.2,

T ∝ P γT , γT = (αP − 1)/(αT − 1) = (1.73 − 1)/(1.99 − 1) = 0.7 ± 0.2.
(2)

The correlation plots shown in Figure 4, where the linear regression fit is performed for y(x)

with x as independent variable, as well as for x(y) with y as independent variable, respec-
tively. The averaged powerlaw slopes (of both linear regression fits and all three datasets)
yield values of E ∝ P 1.3±0.2 and T ∝ P 1.3±0.8, which are consistent with the values derived
from the powerlaw slopes of the frequency distributions (Equation (2)), i.e. E ∝ P 1.2±0.2

and T ∝ P 0.7±0.2.

3. Uncertainties and Errors of Powerlaw Slopes

The determination of powerlaw slopes and their uncertainties is subject to methodological
and data-selection effects. Given the variation of observed powerlaw slopes as listed in Ta-
ble 1, it might be useful to briefly discuss some important selection effects and statistical
uncertainties.

3.1. Energy or Wavelength Bias

In Table 1 we compare mostly flare data in the hard X-ray regime with energies of > 20 keV
or > 25 keV, which all have similar powerlaw slopes of αP ≈ 1.6−1.8. Even flares detected
at lower energies > 8 keV (Lin, Feffer, and Schwartz, 2001) or > 12 keV (Su, Gan, and
Li, 2006; Christe et al., 2008) have similar powerlaw slopes. Also at the upper end, flares
detected at high energies of > 100 keV (Perez Enriquez and Miroshnichenko, 1999) have
similar powerlaw slopes. However, the same subset of flares observed at 0.075 – 124 MeV,
from bremsstrahlung at 300 – 850 keV, from the 511 keV annihilation line fluence, from the
2.223 MeV neutron-line fluence, and from the 1 – 10 MeV γ -ray line fluence, have signifi-
cantly flatter powerlaw slopes (αP ≈ 1.3 − 1.4). This can be explained by the flatter energy
spectra of large flares, which causes relatively higher fluxes at higher energies, and thus
flatter occurrence-frequency distributions. Dennis (1985) has shown a systematic tendency
of the hard X-ray spectrum as a function of the hard X-ray count rate, being generally flat-
ter for large flares with high count rates, which predicts also flatter powerlaw slopes of the
occurrence-frequency distributions at higher energies. Similar wavelength-bias effects oc-
cur also for flare fluxes detected in soft X-rays and EUV wavelengths, compared with hard
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Figure 5 Occurrence-frequency distributions of hard X-ray peak count rates [Pcts : cts s−1] observed with
SMM/HXRBS (1980 – 1989), without background subtraction (αP = 2.06±0.05; blue), and with subtraction
of an average background of B = 40 cts s−1 (αP = 1.73 ± 0.01; red).

X-ray fluxes, which depend on the physical emission mechanism. Therefore we confine our
comparisons in Table 1 only to hard X-ray energies in the range of > 8 keV to > 100 keV
here.

3.2. Effects of Data Gaps and Spacecraft Orbits

Data gaps due to spacecraft night or South Atlantic Anomaly (SAA) passages can also cause
systematic biases, because they tend to shorten flare durations (due to interruption) and un-
derestimate the total flare counts (due to incomplete sampling). These effects can in principle
be simulated and their systematic effects on frequency distributions can be quantified this
way. Numerical simulations of such selection and instrumental effects are also discussed
in the context of waiting-time distributions (see, e.g., Aschwanden and McTiernan, 2010).
The distribution of peak fluxes is less affected by data gaps, as long as the peak of a flare
is observed. Visual screening of flare light curves was carried out for events detected with
SMM/HXRBS, so that missed flare peaks could be identified in the flare catalog (B.R. Den-
nis, private communication, 2010). For RHESSI flare catalogs, however, no correction for
spacecraft-night datagaps has been applied to flare peak fluxes and fluences so far, and long-
duration flares are counted multiple times for each spacecraft orbit (J.M. McTiernan, private
communication, 2010).
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3.3. Pre-event Background Subtraction

Most flare catalogs list the peak counts of flares without preflare-background subtraction,
which has little impact on large flares, but leads to a strong overestimate of fluxes for the
smallest flares, and thus systematically overestimates the powerlaw slope. We demonstrate
this for the dataset of SMM/HXRBS flares. Figure 5 shows two (weighted) powerlaw fits, a
steeper slope of αP = 2.06±0.05 for the uncorrected flare peak counts, and a flatter slope of
αP = 1.73 ± 0.04 after subtraction of an estimated average background of 40 cts s−1. This
correction was also applied in the original analysis by Crosby, Aschwanden, and Dennis
(1993), and we use it here too. Note that the background-uncorrected distribution shows
also a steepening of the powerlaw slope at the lower end.

For the RHESSI flare catalog, the preflare background is estimated to be ≈ 10 – 20 cts s−1

per detector, the low limit applying to low spacecraft latitude, the high limit for high lati-
tudes, with a mean of ≈ 12 cts s−1 per detector (J.M. McTiernan, private communication,
2010).

The subtraction of an average preflare background value is only a first-order correc-
tion, which may even cause events with negative peak fluxes when the background is time-
varying. The optimum method would be to measure the preflare background for each event
separately and to subtract it from the peak fluxes, as well as from the fluences before time
integration.

3.4. Instrument Sensitivity

The instrumental sensitivity usually translates into a fixed flux threshold, which causes a
sharp lower cutoff for peak flux distributions (Figures 1 and 5), but a gradual rollover for
total fluence and duration of events (Figures 2 and 3). The rollover limits the scale-free range
of the distribution over which a powerlaw can be fitted, and moreover produces a systematic
bias for flatter powerlaw slopes when part of the rollover is included in the powerlaw fit. If
powerlaw fits are weighted by the number of events per bin in a linear regression fit to a
histogram, the lowest bins will have the highest weight, and thus a gradual rollover at the
lower end will produce a too-flat powerlaw slope, when compared with the fit in the upper
bins of the distribution. We determine the lower bound of the powerlaw fit range by the χ2-
criterion, which reliably detects a rollover by an excessive deviation from a powerlaw fit in
terms of the expected standard deviation.

3.5. Linear Regression Fit Methods

A common method to determine powerlaw slopes is a linear regression fit to a histogram
in a log(N)–log(S) diagram, which can be done in two ways. If the frequency distribution
closely follows a powerlaw function, a weighted linear regression fit can be performed in
x log–y log space log(N) vs. log(S), or in x log–y lin space N vs. log(S), using the number
of events per bin as relative weights. However, if the frequency distribution exhibits signif-
icant deviations from a straight powerlaw (e.g., Figures 2 and 3), a weighted powerlaw fit
can only be performed in a powerlaw-like subinterval. Often an unweighted fit (with equal
weight in every bin) is carried out to obtain an approximate powerlaw slope. For the results
given in the literature (as compiled in Table 1), it is not always clear whether the authors
performed a weighted or unweighted linear regression fit, which may significantly deviate
from each other depending on the fitted interval. In present study, we perform only weighted
fits in well-defined intervals as described below.
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In a x log–y log (or x log–y lin) histogram, the bins �xi on the x-axis are chosen to be of
equal width on a log scale, corresponding to an exponentially increasing width on a linear
scale. If N(x) is the fitted function, the number of events Ni per bin depends on the variable
(logarithmic) bin width �xi ,

Ni =
∫ xi+�xi

xi

N(x)dx ≈ N(xi)�xi. (3)

The statistical uncertainty [σi ] in bin �xi due to Poissonian statistics is, in the Gaussian
limit,

σi =
√

Nfit
i , (4)

and the statistical weighting factor [wi ] for a linear regression fit that minimizes the squared
standard deviations [σi ] is then,

wi = 1

σ 2
i

. (5)

The linear regression fit in x log–y lin space (in order to avoid asymmetric positive and neg-
ative uncertainties that result for x log–y log fits) finds then the following best-fit powerlaw
function

Nfit
i = N0(xi)

−α. (6)

A criterion for the goodness of a fit is the χ2-test, expressed with the so-called reduced χ2-
value, which expresses the mean deviation of the data points from the fitted function in units
of expected standard deviations,

χred =
[

1

(n − nfree)

n∑
i=1

(Ni − Nfit
i )2

(σi)2

]1/2

, (7)

where n is the number of datapoints (or histogram bins here) and nfree is the number of
free parameters of the fitted function, which is nfree = 2 for a linear regression fit (with
free parameters N0 and α in Equation (6)). However, while bins with a large number of

events (� 10) are well approximated by a Gaussian, with an uncertainty of σi =
√

Nfit
i about

the expectation value Nfit
i , the Poisson probability distribution deviates significantly from

a Gaussian for bins with fewer events. For this case, the χ2-test has to be replaced with
C-statistics (Cash, 1979), which has the following expression corresponding to the reduced
χ2-criterion

χCash =
[

2

(n − nfree)

n∑
i=1

Ni ln
(
Ni/N

fit
i

) − (
Ni − Nfit

i

)]1/2

, (8)

where Nfit
i is the theoretical expectation value based on the best-fit powerlaw function and

has to be positive for all fitted bins. For an acceptable powerlaw fit, approximately a value
of χCash ≈ 1.0 is expected. However, the distribution of the C-statistic values is not always
peaked at 1.0 as the χ2 probability distribution is, but instead depends on the expectation
values of the number of counts per bin, when the majority of bins have a low number of
events (Nousek and Shue, 1989; Schmahl, 1999a, 1999b). The linear regression fit then
yields a powerlaw slope α and a probable uncertainty σα derived from minimizing either the
χ2 or the C-statistics.
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Figure 6 Monte-Carlo simulations of powerlaw distributions carried out for a theoretical powerlaw slope
of α = 1.75 with different random representations according to Equation (11). A single distribution based
on N = 1000 events is shown with powerlaw fit α = 1.74 (top left panel). The Gaussian distribution of
powerlaw slopes obtained from Nrun = 1000 runs with different random representations yields a mean of
α = 1.75 ± 0.03 (top right). These Monte-Carlo simulations are repeated for various number of events
N = 102, . . . ,105, which show a convergence of the mean value and standard deviations toward the theo-
retical value α = 1.75 (bottom left). The scaling of the standard deviation σα(N) = α/

√
N as a function of

the number of events N is also shown (bottom right).

3.6. Monte-Carlo Simulations of Powerlaw Uncertainty

We verify these results with a Monte-Carlo simulation. Mathematically, a desired distri-
bution function f (x) can be generated from uniformly distributed random values ρ in the
range of [0,1] by using the inverse function F−1(x) of the integral function F(x) of f (x).
Here we wish to generate a frequency distribution of energies E in the form of a powerlaw
function p(E) with slope α (Aschwanden, 2010, Section 7.1.5),

p(E) = (α − 1)E−α, (9)

which fulfills the normalization
∫ ∞

1 p(E)dE = 1. The total probability ρ(E) in the range
[0,E] is then the integral function of p(E) (Equation (9)),

ρ(E) =
∫ E

0
p(ε)dε =

∫ E

0
(α − 1)ε−α dε = [

1 − E(1−α)
]
. (10)
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The inverse function E(ρ) of ρ(E) (Equation (10)) is

E(ρ) = [1 − ρ]1/(1−α). (11)

In Figure 6 (top left) we use a random generator that produces 1000 values [ρi ] uniformly
distributed in the range of [0,1], choose a powerlaw index of α = 1.75, and use the transform
Equation (11) to generate values Ei = [1 − ρi]1/(1−α) and sample the frequency distribution
of the 1000 values Ei , which produces a powerlaw function p(E) = (α − 1)E−α as defined
in Equation (9), with a best-fit slope of α = 1.74.

We repeat the generation of powerlaw histograms with N = 1000 different random rep-
resentations ρi and find for the powerlaw slopes a Gaussian distribution with a mean and
standard deviation of α = 1.75 ± 0.03 (Figure 6, top right). The spread of α-values is ex-
pected to depend on the number N of events in the distribution. In order to quantify this
dependence we repeat the same exercise for different numbers of events in the range of
N = 102, . . . ,105, which is shown in Figure 6 (bottom left). The standard deviations σα of
the powerlaw slope distributions is found to depend on the number of events (per distribu-
tion) as

σα(N) = α√
N

, (12)

as expected for a normal distribution of random values generated by a large number of
Monte-Carlo simulations. Equation (12) can be used to estimate the accuracy of the pow-
erlaw slope from the number of events. For instance, for a dataset of N = 104 events, an
accuracy of

√
N = 1% is expected for the value of the powerlaw slope.

4. Solar-Flare Statistics versus Solar Cycle

We investigate now whether the statistical distributions of the most reliably determined flare
parameter, namely the peak flux P , exhibits significant changes during the solar cycle. The
approximately sinusoidal variation of the flare rate during the last three Solar Cycles 21, 22,
and 23 is shown in Figure 7, where we have SMM/HXRBS coverage during 1980 – 1989
(Cycle 21 and part of 22), CGRO/BATSE coverage during 1991 – 2000 (end of Cycle 22
and start of Cycle 23), and RHESSI coverage during 2002 – 2010 (Cycle 23). After elim-
inating questionable events from the flare catalog (i.e., events with energy gain changes,
time discrepancies, missing peak flux, negative peak flux after background subtraction, or
pile-up events), we are left with 9374 flare events observed with SMM/HXRBS, 6542 flare
events observed with CGRO/BATSE, and 12 147 flare events with RHESSI. The list of peak
fluxes obtained from the currently existing flare catalogs has to be taken with a grain of salt,
because the peak flux was missed in some flare events in spacecraft-orbit night, or some
long-duration events were counted multiple times when they overlapped multiple spacecraft
orbits (in particular for RHESSI), or the preflare flux was subtracted with an average con-
stant, while it is time-variable in reality. The effect of the background subtraction on the
slope of the powerlaw distribution of peak fluxes is shown in Figure 5, but the effect of the
other shortcomings on the powerlaw slope is not well-known and needs to be corrected on
an event-by-event basis, using auxiliary data such as GOES light curves.

In order to eliminate any bias of powerlaw fits related to the number of events per subset
(since the accuracy of the fitted powerlaw slope scales with N−1/2, i.e. Equation (12)), we
subdivide the dataset of each instrument into subsets with equal event numbers, of the order
of 2000 events per subset. This way we obtain 12 subsets, consisting of four HXRBS subsets
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Figure 7 Top: Monthly averages of solar-flare rates observed during the last three solar cycles in hard
X-rays with SMM/HXRBS (1980 – 1989), CGRO/BATSE (1991 – 2000), and RHESSI (2002 – 2010). Bot-
tom: Monthly averages of solar-flare rate observed in soft X-rays with GOES, including events above the
C3-class level.

(with 2343 events each), three BATSE subsets (with 2180 events each), and five RHESSI
subsets (with 2429 events each). The time ranges of these 12 equal-sized data subsets are
listed in Table 2, and the corresponding frequency distributions with the powerlaw fits are
shown in Figure 8, along with the slopes [αP ] and χ2-tests in terms of Cash statistics (χCash).
The fitted ranges of peak fluxes [P1,P2] are chosen to start at the next bin above the maxi-
mum of the frequency distribution, and to span four orders of magnitude, with a logarithmic
binning of seven bins per decade.

In order to investigate the temporal dependence of the powerlaw slopes of peak-flux dis-
tributions, we plot the values αP ±σα in the second panel of Figure 9, where all subsets have
the same uncertainty in the powerlaw slope, but cover time intervals of variable lengths, i.e.
smaller time intervals during solar maxima and longer time intervals during solar minima,
because of our requirement of equal number statistics in each subset. For comparison, we
also plot the published values of datasets, which includes datasets 3 – 8, and 12 – 14 from
Table 1 (Figure 9, top panel). The datasets labeled with 17 – 19 in the middle panel corre-
spond to HXRBS, BATSE, and RHESSI as listed in Table 2 and analyzed in Figures 1 – 4
and 8. In the third panel of Figure 9 we repeat the same procedure with smaller data subsets
of approximately 1000 events per subset, in order to have a higher temporal resolution of
the cycle variation.

The temporal variation of the powerlaw slope αP (t) as shown in Figure 9 appears to have
a cyclic modulation that is anti-correlated with the solar cycles. Since three solar cycles
contain three maxima and three minima, we fit a sixth-order polynomial to the data, as
shown in the second and third panel in Figure 9. The powerlaw slopes reach relative maxima
during the minima of the solar cycles, i.e. αP = 1.79 in t ≈ 1986 (between Cycle 21 and 22),
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Table 2 Frequency distributions measured from solar flares in hard X-rays during the solar cycle.

Instrument Years Number Lower Upper Powerlaw Goodness

of fit fit slope of of fit

events bound bound peak counts

[n] [P1] [P2] [αP ± σα] [χCash]

HXRBS 1980.1 – 1981.2 2343 43 43 939 1.79±0.02 0.74

HXRBS 1981.2 – 1982.1 2343 43 61 054 1.75±0.02 1.21

HXRBS 1982.1 – 1983.6 2343 43 117 876 1.73±0.02 0.88

HXRBS 1983.6 – 1989.0 2343 31 84 834 1.79±0.02 1.07

BATSE 1991.3 – 1992.0 2180 610 848 343 1.64±0.02 0.62

BATSE 1992.0 – 1995.0 2180 439 227 584 1.62±0.02 1.34

BATSE 1995.0 – 2000.0 2180 610 848 343 1.69±0.02 0.64

RHESSI 2002.1 – 2002.7 2429 16 16 378 1.68±0.02 1.19

RHESSI 2002.7 – 2003.4 2429 16 11 787 1.71±0.02 1.82

RHESSI 2003.4 – 2004.2 2429 16 61 054 1.66±0.02 1.61

RHESSI 2004.2 – 2005.4 2429 16 84 834 1.69±0.02 1.20

RHESSI 2005.4 – 2010.0 2429 22 16 378 1.76±0.02 1.88

αP ≈ 1.69 in t ≈ 1999 (between Cycle 22 and 23), and αP ≈ 1.76 in t ≈ 2008, the recent
extended solar minimum. During the solar maxima or one – two years later, the powerlaw
slopes reach their minimum values, so the frequency distributions are flattest then. We show
the cycle variation of GOES >C3-class flares in the bottom panel of Figure 9.

This is a novel result that could be interpreted as a solar-cycle dependence of the power-
law slope of flare hard X-ray count rate distributions. The variation of the powerlaw slope
is anti-correlated with the flare rate or sunspot number, being steepest during solar minima
and flattest during solar maxima. The absolute values of the powerlaw slope do not cover
the same range in each solar cycle, but it is not clear whether this reflects a property of
strong and weak cycles, or could be an artifact of the different instruments and the indi-
vidual flare-detection algorithms, since we used a different instrument for each solar cycle.
Therefore, some of the variation could be due to a systematic difference between the three
different instruments used in each cycle, especially since the absolute values and the relative
change between solar maxima and minima is different for each instrument. In particular for
the RHESSI data set, it is suspected that significant radiation damage before annealing in
2007 and 2010 could distort the flare statistics, which may also be indicated by the deviation
from a good powerlaw fit (with a χCash = 1.878 for the time interval of 2005.4 – 2010.0 in
Figure 8, bottom right). Moreover, the RHESSI flare catalog is biased by multiple counting
of flares that overlap multiple orbits and by missed flare peaks in the spacecraft night of the
orbit. However, despite these instrumental effects, the powerlaw slope appears to be system-
atically steeper during the solar minima compared with the preceding solar maximum for
each cycle and instrument (Figure 9, second and third panel).

5. Discussion and Conclusions

Frequency distributions of solar-flare parameters have been reported over the last three solar
cycles from different instruments and different phases of the solar cycle, covering a scattered
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Figure 8 Occurrence-frequency distributions of hard X-ray peak count rates [Pcts: cts s−1] observed with
SMM/HXRBS, CGRO/BATSE, and RHESSI, broken down into 12 time intervals with equal number of events
in each subset. The powerlaw fits were determined with weighted powerlaw fits within a range [P1,P2]
marked with dotted vertical lines. The best-fit powerlaw function is marked with thick solid linestyle and the
values and uncertainties are also listed in Table 2 and plotted as a function of time in Figure 9.

range of values (Table 1). Powerlaw slopes were reported in a range of αP ≈ 1.6 – 2.0 for
peak fluxes (counts), αE ≈ 1.4 – 1.7 for total fluxes (fluences), and αT ≈ 1.9 – 2.8 for total
durations, if we restrict to the hard X-ray range of ≈ 10 – 100 keV. Averaging the powerlaw
slopes from the largest datasets spanning entire solar cycles (using data from SMM/HXRBS,
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Figure 9 The powerlaw slope [αP ] of the peak flux [P ] as a function of time during the last three solar cycles
is shown for values quoted in the literature (top panel), for HXRBS, BATSE, and RHESSI data analyzed in
our study with equal-sized subsets of ≈ 2000 events per subset (second panel) or ≈ 1000 events per subset
(third panel), along with the flare rate observed by GOES (bottom panel). The diamond symbols and numbers
indicate the mean values of αP and the corresponding reference number quoted in Table 1. The horizontal bars
indicate the time intervals of the data subsets and the vertical bars indicate the uncertainties. The functional
dependence of the powerlaw slope [αP (t)] on the solar cycle is fitted with a sixth-order polynomial.

CGRO/BATSE, RHESSI), we find mean values of αP = 1.73 ± 0.07 for peak fluxes (Fig-
ure 1), αE = 1.62 ± 0.12 for fluences (Figure 2), and αT = 1.99 ± 0.35 for flare durations
(Figure 3). Investigating variations of the flare statistics as a function of time, we find evi-
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dence for a significant variation of the powerlaw slope of the frequency distributions during
the solar cycle. We find that the powerlaw slope is systematically flatter during the solar
cycle maxima compared with the following solar cycle minimum, for each of the three so-
lar cycles and instrumental periods (on the order of �α ≈ 0.1), in anti-correlation with the
sunspot number.

Why is our result of the anti-correlation of the powerlaw slope of flare count rates with the
solar cycle not evident from previously published values? First of all, the datasets have been
subject to inconsistent analysis methods by different authors, differing in the type of linear
regression fits (weighted versus unweighted), the fitted range [P1,P2], selection effects of
events (flare catalogs versus automated microflare search algorithms), background treatment
(with or without background subtraction), as discussed in Section 3. Part of the solar-cycle
variation could be due to instrumental effects, especially since the absolute values of the
powerlaw slopes vary by different amounts between solar-cycle maxima and minima for the
three instrumental periods. It is also suspected (B.R. Dennis, private communication, 2011)
that the generally higher values obtained from HXRBS data before 1989 and from RHESSI
after 2006 are not real but rather reflect a difference between the instruments, and the pre-
and post-anneal phases of RHESSI observations. Nevertheless, despite the uncertainties of
the absolute values, there seems to be a tendency of flatter powerlaw slopes during the
solar maxima, compared with the following solar-cycle minimum. The fact that the Sun
produces flatter occurrence-frequency powerlaw slopes during periods of high flare activity
indicates that hard X-ray spectra are systematically flatter, so that more nonthermal energy
is contained in a bremsstrahlung spectrum, for the same amount of detected photons above
an energy of E > 25 keV. This is not unexpected, since a correlation between the hard X-ray
flux and the spectral slope was already noticed early on (Dennis, 1985).

Marginal variations of the powerlaw slope with flare activity have been noted before.
Crosby, Aschwanden, and Dennis (1993; Figure 12 therein) found variations of the power-
law slope during the solar cycle in excess of the statistical uncertainties of the linear regres-
sion fits, but no clear functional dependence on the solar cycle was found. Biesecker (1994)
noticed slight differences of the powerlaw slope during low-activity (αP = 1.71 ± 0.04) and
high-activity periods (αP = 1.68 ± 0.02), with the powerlaw slope usually flatter for high-
activity periods, which is analogous to our finding a flatter slope during solar-cycle maxima.
Bai (1993) devised a special maximum-likelihood method to determine the powerlaw slope
of flare distributions from SMM/HXRBS and found some variation of the powerlaw slope
correlated with a 154-day periodicity of flare rates. He found that the size distributions are
steeper during the maximum years of Solar Cycle 21 (1980 and 1981) than in the declining
phase (1982 – 1984). Thus, the three studies (Bai, 1993; Biesecker, 1994; and this study)
agree in the result that a flatter powerlaw slope is correlated with a higher flare activity,
either on periods of recurrent flare activity (153.8 days) or solar cycles (12.6 years).

What does our novel result suggest for the physical interpretation? A flatter frequency
distribution implies an over-proportional amount of larger events, compared with an aver-
aged distribution. This means that the physical conditions vary during the solar cycle. One
possible explanation could be that the magnetic complexity increases during solar maxi-
mum, which produces more stressing of magnetic fields and larger energy releases. The
magnetic fields during the maximum of the solar cycle are dominated by the toroidal com-
ponent of the solar dynamo, which entails higher magnetic stresses. The magnetic field
during the minimum of the solar cycle is simpler and is dominated by the dipolar poloidal
field that spans from the North to the South Pole. It appears that the relative amount of en-
ergy released in flares is modulated by the magnetic-field complexity of the solar dynamo.
Theoretical models that reproduce the statistical distributions of solar flares in terms of the
concept of self-organized criticality are discussed in Paper II (Aschwanden, 2011).
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