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Abstract Improvements to an existing method for calculating nonlinear force-free mag-
netic fields (Wheatland, Solar Phys. 238, 29, 2006) are described. In particular a solution
of the 3-D Poisson equation using 2-D Fourier transforms is presented. The improved non-
linear force-free method is demonstrated in application to linear force-free test cases with
localized nonzero values of the normal component of the field in the boundary. These fields
provide suitable test cases for nonlinear force-free calculations because the boundary con-
ditions involve localized nonzero values of the normal components of the field and of the
current density, and because (being linear force-free fields) they have more direct numerical
solutions. Despite their simplicity, fields of this kind have not been recognized as test cases
for nonlinear methods before. The examples illustrate the treatment of the boundary condi-
tions on current in the nonlinear force-free method, and in particular the limitations imposed
by field lines that connect outside of the boundary region.

Keywords Active regions: magnetic fields · Active regions: models · Corona: models ·
Magnetic fields: corona · Magnetic fields: models

1. Introduction

Coronal magnetic fields govern solar activity, so there is considerable interest in their accu-
rate modeling. The most detailed determinations of magnetic field values on the Sun come
from polarization measurements of spectral lines in the low solar atmosphere. In principle
photospheric and chromospheric vector magnetic field values derived from these measure-
ments may be used as boundary values for calculating the overlying coronal field.

A popular approach involves assuming the coronal magnetic field B is force-free, that
is, has zero Lorentz force (e.g., McClymont, Jiao, and Mikic, 1997; Amari et al., 1997;
Neukirch, 2005). The problem then consists of solving the nonlinear force-free equations
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(∇ × B) × B = 0 together with ∇ · B = 0 subject to suitable boundary conditions derived
from the data. An alternative statement of the equations is

∇ × B = αB (1)

and

B · ∇α = 0, (2)

where α is the force-free parameter. In this form the appropriate boundary conditions are the
specification of Bn, the normal component of B in the boundary, together with α over one
polarity of Bn (one sign of Bn). The values of α over one polarity together with Bn specify
the normal component of the current density Jn = αBn/μ0 over the polarity. Typically the
curvature of the Sun is neglected and the problem is considered in the half space z > 0, with
z = 0 as the boundary.

There are many difficulties with the nonlinear force-free approach to coronal field mod-
eling. Key difficulties include uncertainties in the inversion of spectropolarimetric measure-
ments to yield magnetic field values, the problem of the 180-degree ambiguity in the az-
imuthal angle of the field component transverse to the line of sight (e.g., Metcalf et al.,
2006), the intrinsic difficulty of solving the coupled nonlinear partial differential equations,
and the inconsistency of the boundary data with the force-free assumption (e.g., Metcalf
et al., 1995, 2007). All of these problems need to be overcome before the approach can be
routinely applied to solar data.

A variety of numerical solution methods have been proposed for the nonlinear force-
free equations, including current-field iteration (e.g., Grad and Rubin, 1958; Sakurai, 1981;
Amari, Boulmezaoud, and Mikic, 1999; Wheatland, 2006), magnetofrictional methods (e.g.,
Chodura and Schlueter, 1981; Valori, Kliem, and Keppens, 2005), direct vertical integration
of the equations (e.g., Wu et al., 1990), the optimization approach (Wheatland, Sturrock,
and Roumeliotis, 2000; Wiegelmann, 2004), and the boundary element method (Yan and
Sakurai, 2000). Many of the methods are slow and may be too inefficient to be applied to
new, high-resolution boundary data (Schrijver et al., 2006). For three-dimensional problems
on grids with N3 points, the speed of a method may be described by the scaling of the time
taken as a function of N . Recently, Wheatland (2006) presented a nonlinear method based on
the current-field iteration approach (Grad and Rubin, 1958) that scales as N4, making it one
of the fastest approaches (see also Inhester and Wiegelmann, 2006). Work on understanding
and improving nonlinear force-free methods continues (e.g., Amari, Boulmezaoud, and Aly,
2006).

It is important to have appropriate test cases for nonlinear force-free methods. The ax-
isymmetric nonlinear examples of Low and Lou (1990) have been widely used (e.g., Wheat-
land, Sturrock, and Roumeliotis, 2000; Wiegelmann et al., 2006; Schrijver et al., 2006; In-
hester and Wiegelmann, 2006; Amari, Boulmezaoud, and Aly, 2006), but they are limited in
that the boundary conditions on α are not very localized. Solar magnetic field measurements
provide lower boundary values for the normal component of the field and α over restricted
regions on the Sun. Hence appropriate test cases should have all boundary information lo-
calized in spatial extent. Titov and Démoulin (1999) constructed a force-free equilibrium
consisting of a twisted flux tube embedded in a background potential field, which has local-
ized nonzero α. This example has also been considered as a test case for nonlinear force-free
methods (Wiegelmann et al., 2006). However, the Titov – Démoulin equilibrium is also not
localized in that the background potential field is produced in part by a (buried) infinite line
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current, so the boundary conditions on Bn are not localized. The calculations in Wiegel-
mann et al. (2006) highlighted this limitation in that the Titov – Démoulin equilibrium was
not well reproduced by the nonlinear methods using localized lower boundary data.

This paper presents some specific improvements to the Wheatland (2006) method for
calculation of nonlinear force-free fields. In particular a new method of solving the Poisson
equation in three dimensions using 2-D Fourier transforms is exploited. This solution is
analogous to the Fourier solution to the linear force-free equations commonly used in the
solar context (Nakagawa and Raadu, 1972; Alissandrakis, 1981). This paper also presents
the application of the improved nonlinear force-free code to a class of linear force-free
fields that have Bn = 0 everywhere except in localized spots. For these fields the boundary
conditions on both Bn and Jn = αBn/μ0 for the nonlinear method are localized, so they are
well suited to testing nonlinear force-free methods. This point does not appear to have been
noticed in the literature before.

The layout of the paper is as follows. The improvements to the nonlinear force-free
method are outlined in Section 2. The application to linear force-free test cases is given
in Section 3, and conclusions are presented in Section 4.

2. Improvements to Method

2.1. Current-Field Iteration

Wheatland (2006) presented a fast version of current-field iteration (Grad and Rubin, 1958),
and a variety of implementations of current-field iteration have been proposed (e.g., Sakurai,
1981; Amari, Boulmezaoud, and Mikic, 1999; Inhester and Wiegelmann, 2006). The general
approach in a half space z > 0 (where z = 0 is the boundary) involves solution, at iteration
k, of the linear equations

∇ × Bk+1 = αkBk (3)

and
(
Bk+1 · ∇)

αk+1 = 0 (4)

subject to the boundary conditions

ẑ · Bk+1
∣∣
z=0

= ẑ · Bobs
∣∣
z=0

(5)

and

αk+1(x, y,0)
∣∣
Bz>0

= αobs(x, y,0)
∣∣
Bz>0

, (6)

where αobs and Bobs denote given boundary values and ẑ is the unit vector in the z direction.
Alternatively, the last boundary condition may be replaced by

αk+1(x, y,0)
∣∣
Bz<0

= αobs(x, y,0)
∣∣
Bz<0

; (7)

that is, boundary values of αobs on the negative polarity may be used. The iteration is gen-
erally started with B0 chosen to be the potential field matching the boundary conditions on
the right-hand side of Equation (5).
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2.2. Wheatland (2006) implementation

The Wheatland (2006) implementation solves Equation (3) as follows. The field in z > 0 is
separated into potential and nonpotential components: Bk+1 = B0 + Bk+1

c , with the potential
component B0 satisfying

∇ × B0 = 0 (8)

and

ẑ · B0

∣
∣
z=0

= ẑ · Bobs
∣
∣
z=0

. (9)

The potential field is calculated initially by using a Fourier solution (Alissandrakis, 1981).
The nonpotential component Bc satisfies

∇ × Bk+1
c = αkBk (10)

in z > 0, subject to

ẑ · Bk+1
c

∣∣
z=0

= 0. (11)

Equation (10) is recast as Poisson’s equation by introducing the vector potential Bk+1
c =

∇ × Ak+1
c , and adopting the Coulomb gauge (∇ · Ak+1

c = 0). The current distribution in all
space is assumed to be

Jk
c =

{
αkBk/μ0 for z ≥ 0,[−J k

cx(x, y,−z),−J k
cy(x, y,−z), J k

cz(x, y,−z)
]

for z < 0.
(12)

Poisson’s equation

∇2Ak+1
c = −μ0Jk

c (13)

is then solved using 3-D Fourier transforms. The symmetry of the current distribution (12)
ensures the boundary condition (11) in the plane z = 0.

These steps solve Equation (3). To solve Equation (4), field line tracing is used. For
each point r on the computational grid, the field line threading the point is traced in both
directions. If the field line leaves the box by the side or top boundaries of the grid, then α(r)
is assigned to be zero. If the field line connects to z = 0 at both ends, α(r) is assigned equal
to the value of α at the positive polarity end of the field line (or, alternatively, the negative
polarity end may be used). The prescription that field lines that leave the grid by the side or
top boundaries carry no current provides a simple way to deal with the problem of missing
boundary information on z = 0 outside of the region at the base of the computational grid.
Other approaches are also possible, and we will return to this question in Section 4.

Convergence of the method may be determined by monitoring the change in the current-
weighted average angle between the current density and the magnetic field at each iteration
(Wheatland, Sturrock, and Roumeliotis, 2000), or the change in the magnetic energy at each
iteration.

The time taken to solve Equation (3) scales as N3 logN , and the time taken to solve
Equation (4) scales as N4. The number of iterations is not dependent (or is only very weakly
dependent) on N . The overall time taken then scales with the slowest step (i.e. as N4).
Because of this relatively fast scaling, the method may be applied to larger grids. For ex-
ample, in a recent workshop (Metcalf et al., 2007), the code was applied to test cases on a
320 × 320 × 256 grid.
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2.3. Modifications

The method of solution of Equation (3) just described is simple and fast, but it has a draw-
back. To calculate a field on an Nx × Ny × Nz grid, the current density Jk

c is constructed
on a grid with size Nx × Ny × 2Nz. The doubling of the vertical dimension is undesirable
when large grids are used, because of the memory use involved in storing the arrays associ-
ated with the calculation. The problem is exacerbated if the arrays are enlarged by padding
with zeroes in all three dimensions. In the code described in Wheatland (2006) the arrays
are padded to the nearest power of two in all three dimensions, so that the size of the grid
involved in the Fourier transform solution is 2ceiling(log2 Nx) × 2ceiling(log2 Ny) × 2ceiling(log2 2Nz).
The padding with zeroes is not strictly required; it is done to reduce the appearance of pe-
riodicity introduced by discrete Fourier transforms, and to permit the use of simple fast
Fourier transform (FFT) routines. Provided the current density is localized near the center
of the computational grid, the padding makes little difference. As an example, for the tests
performed on a 320 × 320 × 256 grid described in Metcalf et al. (2007), the arrays used
in the Fourier transform solution have size 512 × 512 × 512. A vector field represented in
single precision on a grid this size requires 1.5 GB of memory. In the following we describe
a method of solution of Equation (3) that does not require doubling the vertical dimension
of the arrays and hence has smaller memory requirements.

We consider solution of Poisson’s equation

∇2Ak+1
c = αkBk (14)

in the half space z > 0. Hereafter we write −μ0Jk to represent the right-hand side of this
equation. The boundary condition (11) is satisfied if we choose

Ak+1
cx

∣
∣
z=0

= Ak+1
cy

∣
∣
z=0

= 0, (15)

and the gauge condition implies the additional boundary condition

∂Ak+1
cz

∂z

∣∣
∣∣
z=0

= 0. (16)

We also require the boundary conditions Ak+1
c → 0 as z → ∞.

Equation (14) may be solved subject to the stated boundary conditions by Fourier trans-
forming in x and y. The transformed equation is

d2Ãk+1
c

dz2
− κÃk+1

c = −μ0̃Jk, (17)

where Ãk+1
c = Ãk+1

c (u, v, z), J̃k = J̃k(u, v, z), and κ = 4π2(u2 + v2), with u and v repre-
senting wave numbers. The Fourier-transformed boundary conditions are

Ãk+1
ci

∣
∣
z=0

= 0 for i = x, y, (18)

dÃk+1
cz

dz

∣∣
∣∣
z=0

= 0, (19)

and

Ãk+1
c → 0 as z → ∞. (20)
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Equation (17) is a linear, nonhomogeneous, second-order ODE, and the general solution
may be represented in terms of the sum of the two independent solutions of the homoge-
neous ODE and a particular solution of the nonhomogeneous ODE (e.g., Arfken and Weber,
2001). This general solution contains six constants of integration, which may be determined
by imposing the boundary conditions (18) – (20). The resulting solutions for the Fourier-
transformed vector potential are

Ãk+1
ci = μ0

2κ
(I1i + I2i − I3i ) , (21)

for i = x, y, and

Ãk+1
cz = μ0

2κ
(I1z + I2z + I3z) , (22)

where

I1i =
∫ ∞

z

e−κ(s−z)J̃ k
i (u, v, s)ds, (23)

I2i =
∫ z

0
e−κ(z−s)J̃ k

i (u, v, s)ds, (24)

and

I3i =
∫ ∞

0
e−κ(z+s)J̃ k

i (u, v, s)ds. (25)

We note that Equations (21) and (22) could be written in somewhat simpler forms using
sinh(κz), etc. However, from a computational point of view the stated forms are preferable
in that each of the integrals (23) – (25) explicitly approaches zero as z → ∞. Alternative
forms require numerical cancellation of large terms as z → ∞.

The Fourier transform of the field Bk+1
c may be obtained from Equations (21) – (25) by

using the Fourier transform of Bk+1
c = ∇ × Ak+1

c . The results may be written as

B̃k+1
cx = −μ0

2κ

[
2π iv(I1z + I2z + I3z) + κ(I1y − I2y + I3y)

]
, (26)

B̃k+1
cy = μ0

2κ

[
κ(I1x − I2x + I3x) + 2π iu(I1z + I2z + I3z)

]
, (27)

and

B̃k+1
cz = μ0

2κ

[−2π iu(I1y + I2y − I3y) + 2π iv(I1x + I2x − I3x)
]
. (28)

The computational procedure is as follows. The current density Jk = αkBk/μ0 is calcu-
lated on an Nx ×Ny ×Nz grid. The arrays are then padded with zeroes in the x and y direc-
tions to the nearest power of two (i.e., the grid size is 2ceiling(log2 Nx) ×2ceiling(log2 Ny) ×Nz). The
padding is again not essential, but it reduces the appearance of periodicity in the solution
and permits the use of simple FFT routines. The padded current density arrays are then nu-
merically 2-D Fourier transformed (in x and y) at each value of z, and Equations (26) – (28)
are used to construct the 2-D Fourier transform of Bk+1

c at each z. The integrals (23) – (25)
are performed by using the extended trapezoidal rule. Because of the method of construction
of α(r) the current density is zero above some height in the box, and hence the integrals (23)
and (25) are performed to this height rather than to the upper limit of infinity. The results
are then numerically inverse Fourier transformed at each z to yield Bk+1

c .
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The new method of solution of Poisson’s equation has a different scaling for the time
taken. The time-limiting step is that, at each point on the grid, integrals in one dimension
need to be performed. The integrals require of order N operations for each of N3 points,
so this step scales as N4. Hence the new method of solution of Equation (3) has the same
scaling as the solution of Equation (4), and overall the method is expected to scale as N4.
Numerical experiments confirm this expectation, so the new method has the same overall
scaling as the previous approach. The advantage of the new method is that it requires only
half as much storage space for the arrays holding values of the current density and the vector
potential. This is expected to provide a substantial advantage when the method is applied to
high -resolution data.

A number of other modifications of the method described in Wheatland (2006) have also
been implemented. Some of these are simple changes to improve the efficiency of the code.
For example, in the solution of Equation (4) the field line tracing is started from grid points
in the plane z = 0 and progresses upward through the grid. The code now identifies (at each
iteration) the minimum height zmin at which α(x, y, zmin) = 0 for all x and y. This is the
maximum height of field lines that connect to z = 0 at both ends. The values of α(x, y, z)

for z > zmin are then immediately set to zero, without further field line tracing. The value
zmin is also used as the upper limit in the integrals (23) and (25), as mentioned previously.

A further modification concerns the choice of the boundary conditions on α. As already
stated, there is a choice in the assignment of α(r) between the value α+ at the positive
polarity end of the field line threading the point r and the value α− at the negative polarity
end. This may be used to safeguard against inconsistent boundary values of α, as suggested
by Inhester and Wiegelmann (2006). Those authors suggest using a weighted average of
α+ and α−, the weights depending on the relative reliabilities of the boundary values. We
consider instead the equally weighted average α(r) = 1

2 (α+ + α−). For simple (consistent)
test cases such as the Low and Lou (1990) fields, we find that this choice gives comparable
results to the choices α±.

In common with the Wheatland (2006) code, the new code is parallelized by using
OpenMP (e.g., Chandra et al., 2002), for use on shared memory parallel computers. The
method is also well suited to parallelization for distributed memory architectures, e.g., using
MPI (e.g., Gropp, Lusk, and Skjellum, 1999), as discussed in Section 4.

3. Demonstration on Linear Force-Free Test Cases

The modified method has been tested on the cases considered in Wheatland (2006) and
found to give very similar results. This is as expected, since the method differs only in the
treatment of the vertical boundary conditions. In this section we consider the application to
a different problem, a class of linear force-free fields, to illustrate both the utility of these
test cases and the method.

3.1. Linear Force-Free Test Cases

We consider linear force-free fields with Bn = 0 except in restricted patches. Linear force-
free fields have α constant in space, in which case the force-free equations reduce to the
Helmholtz equation, which has well-known solutions (e.g., Nakagawa and Raadu, 1972;
Alissandrakis, 1981). Choosing Bn = 0 except in local patches has the advantage that the
boundary conditions for application of the nonlinear methods (e.g., Bn together with the
value of α where Bn > 0) are localized.
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Figure 1 Test Case 1: (a) The linear force-free field. (b) The nonlinear force-free reconstruction.

As a specific example we consider a bipole consisting of two circular pillboxes in the
boundary 0 ≤ x ≤ L, 0 ≤ y ≤ L:

Bn(x, y) =
⎧
⎨

⎩

B0 if (x − 1
2L)2 + (y − 1

2L + R)2 ≤ a2,
−B0 if (x − 1

2L)2 + (y − 1
2L − R)2 ≤ a2 ,

0 otherwise.

(29)

To keep the bipole relatively localized we choose a = 0.05L and R = 0.06L (referred to as
Case 1). We also need to choose a value of α. A solution with finite energy exists provided
the Fourier components of the boundary conditions on Bn are zero for wave numbers u and
v such that (u2 + v2)1/2 ≤ |α|/(2π) (Alissandrakis, 1981). This solution is known as the
small-scale solution. We assume the boundary conditions are represented on an M ×M grid
over the region 0 ≤ x ≤ w, 0 ≤ y ≤ w with w ≥ L, the greater extent being padded with
zeroes. The smallest nonzero wave numbers associated with discrete Fourier transforms of
the boundary conditions then have magnitude umin = vmin = 1/(M�x), where �x is the
spatial step. (The Fourier component for u = v = 0 is zero because the flux is balanced.)
This implies the limit α ≤ 2π/(M�x) for the small-scale solutions. In the following we
consider calculations on a 200×200×200 grid, so there are N = 200 points between x = 0
and x = L, and �x = L/(N − 1). For the Fourier transform solution of Poisson’s equation
we pad with zeroes in the x and y directions to size M = 256. In that case the limit is
αL ≤ 2π(N − 1)/M ≈ 4.88. We consider αL = 4.85, very close to the maximum value.

The results for Case 1 are shown in Figure 1. Panel (a) in the figure shows the linear
force-free test case calculated using the small scale solution (Alissandrakis, 1981). The view
is looking down on the central part of the computational domain from above. The boundary
values of Bn are shown as a gray-scale image in the lower boundary, and some representa-
tive field lines are shown as tubes. Panel (b) in the figure shows the nonlinear force-free field
obtained with the current-field iteration method after 10 iterations. The method converges
rapidly, and at the tenth iteration the fractional change in the energy is ≈ 10−6. The calcula-
tion (on a 200 × 200 × 200 grid) took approximately two hours using four processor cores,
and the peak memory use was 600 MB. The view in panel (b) is the same as in panel (a),
and in particular field lines are drawn from the same starting points. There is good agree-
ment for the low-lying field lines linking the two poles, but the higher field lines disagree.
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Table 1 Measures of agreement
between the linear force-free test
case and the nonlinear
reconstruction.

Field Cvec CCS E′
n E′

m ε

Case 1 0.999 0.956 0.901 0.729 0.994

Case 2 1.000 1.000 0.985 0.972 1.000

This disagreement occurs because points r on the computational grid threaded by field lines
that leave the grid by the side or top boundaries have α(r) = 0, according to the procedure
described in Section 2.2. Hence there is an absence of current in “open-field” regions, by
comparison with the linear force-free solution. This difference means that the nonlinear cal-
culation will never exactly reproduce the linear force-free solution. This point illustrates the
handling of the boundary conditions on current in the present method.

To quantify the agreement (and disagreement) between the linear force-free solution and
the nonlinear reconstruction in Case 1, we consider the metrics presented in Schrijver et al.
(2006), namely the vector correlation (Cvec), the Cauchy – Schwarz correlation (CCS), the
complement of the normalized vector error (E′

n), the complement of the mean vector error
(E′

m), and the relative magnetic energy (ε). These quantities should all be unity for a perfect
reconstruction. For a solution field Bi and a reconstructed field bi defined at S points the
metrics are

Cvec =
∑S

i=1 Bi · bi

(
∑S

i=1 |Bi |2)1/2(
∑S

i=1 |bi |2)1/2
, (30)

CCS = 1

S

S∑

i=1

Bi · bi

|Bi ||bi | , (31)

E′
n = 1 −

∑S

i=1 |Bi − bi |
∑S

i=1 |Bi |
, (32)

E′
m = 1 − 1

S

S∑

i=1

|Bi − bi |
|Bi | , (33)

and

ε =
∑S

i=1 bi · bi
∑S

i=1 Bi · Bi

. (34)

The first row of Table 1 presents the stated metrics for Case 1 calculated for the inner
one-third of the computational grid, which just encompasses the boundary location of the
poles (indices 67:122, 67:122, and 0:65, in the x, y, and z directions). There is reasonable
agreement, although the discrepancy is clear, in particular for the metrics E′

n and E′
m.

We also consider a second case (Case 2) in which the bipole is reduced in size by half
(a = 0.025L and R = 0.03L), for the same value of α (α = 4.85) and the same grid size
(200 × 200 × 200). In this case the bipole is more localized, so we expect a better repro-
duction using the nonlinear force-free method. Figure 2 shows the boundary conditions and
field lines for Case 2, in the same presentation as Figure 1 (in particular the field of view
is the same). Once again the field lines close to the bipole are accurately reproduced, but
the field lines further from the bipole are less well reproduced. The second row of Table 1
also presents metrics for Case 2. In this example the metrics are calculated for the inner
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Figure 2 Test Case 2: (a) The linear force-free field. (b) The nonlinear force-free reconstruction.

one-sixth of the grid (indices 84:115, 84:115, and 0:31, in x, y and z, respectively), which
is the appropriate subsection of the grid for comparison with Case 1. The metrics are signif-
icantly improved compared to Case 1 because a smaller fraction of field lines originating at
the poles leave the computational grid by the side or top boundaries.

4. Conclusions

This paper presents improvements to a method for calculating nonlinear force-free fields
(Wheatland, 2006). The modified approach uses a novel solution to Poisson’s equation in
three dimensions using 2-D Fourier transforms (Section 2.3). The advantage of this ap-
proach, rather than the original approach using 3-D Fourier transforms, is that the arrays
holding the field values are halved in size. This permits the method to be applied to larger
grids, which is important given the advent of high-resolution vector magnetic field data
from new solar observing instruments, including the Solar Optical Telescope on Hinode
(Shimizu, 2004) and the upcoming Helioseismic and Magnetic Imager on the Solar Dynam-
ics Observatory. The method of solution of Poisson’s equation is analogous to the method
of solution of the Helmholtz equation commonly used to calculate linear force-free fields
(e.g., Nakagawa and Raadu, 1972; Alissandrakis, 1981).

The new method is demonstrated in application to linear force-free test cases with iso-
lated patches of nonzero Bn, the normal component of the field in the boundary. The bound-
ary conditions for nonlinear calculations are Bn together with the force-free parameter α

specified over the region with Bn > 0 (or the region where Bn < 0). Hence our test cases
have localized boundary conditions on both Bn and Jn = αBn/μ0, and so they are suitable
test cases for nonlinear force-free methods. In particular the method is applied to a bipole
pillbox configuration. The nonlinear method provides an approximate reconstruction of the
test field. It does not perfectly reproduce the field because points r on the computational
grid threaded by field lines that leave the grid via the side or top boundaries are assigned
α(r) = 0. In this way the nonlinear force-free method addresses the problem of the missing
information associated with the boundary conditions on field and current outside of the spec-
ified boundary region. This example highlights a general problem: All nonlinear force-free
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methods (and indeed potential and linear force-free methods) must make some assumptions
and approximations to deal with missing boundary information.

The procedure of assigning α(r) = 0 at points threaded by field lines that leave the side
or top of the grid is not the only possible way to deal with the problem of missing boundary
information. For example, another self-consistent procedure (i.e., one ensuring ∇ · J = 0)
would be to assume α(r) is spatially periodic in x and y with period corresponding to the
lengths of the sides of the padded boundary region used in the Fourier solutions. In principle
this would permit α(r) to be determined for points threaded by field lines that connect at
only one end to the lower boundary by extending the field line tracing to allow crossing of
the boundaries. This would permit a more accurate reconstruction in the case of the linear
force-free solutions considered in Section 3, because the test case solutions are themselves
periodic. [The test case solutions are the Alissandrakis (1981) discrete Fourier solutions.]
However, the exact solution would not be reproduced even in these cases because some
field lines do not connect to the lower boundary at either end. We do not pursue this idea,
because in general it assumes an artificial periodicity, and it is not clear to what extent
it would be useful for reconstructions based on real solar data. We consider the present
handling of assignment of α(r) to be an appropriate, simple solution to the problem of the
“missing information” presented by field lines that connect outside of the boundary region
in the solar reconstruction problem. We note that it does not imply restrictions of balanced
flux or current in application to real magnetograms. Real magnetograms may have current-
carrying field lines that leave the region for which boundary values are available: we are
simply ignoring that current, because to model it accurately requires information that is
unavailable.

The present method is a promising candidate for modeling coronal magnetic fields from
spectropolarimetrically derived solar boundary data, in particular because of its speed. [In
common with the Wheatland (2006) method, the time taken scales as N4 for a calcula-
tion on a grid with N3 points, making it at least as fast as any other method.] However,
high-resolution data will still require long computation times, and parallelization is desir-
able. The code used here is parallelized using OpenMP, for use on shared memory parallel
computers (Chandra et al., 2002). The method is also well suited to parallelization for dis-
tributed memory architectures, e.g., using MPI (Gropp, Lusk, and Skjellum, 1999). The two
steps in current-field iteration – solution of Equation (3) and solution of Equation (4) – may
both be parallelized in simple ways. Specifically, in solving Equation (3) the 2-D Fourier
transforms for different values of z on the grid may be performed in parallel, and in solving
Equation (4), the field line tracing from different points on the grid may be performed in
parallel. These approaches may be implemented using either OpenMP or MPI. In future an
MPI version of the code will be written, to permit large-scale parallelization.

In a recent test of nonlinear force-free methods on a solar-like test case (Metcalf et al.,
2007), the two best performing methods were the present method and the optimization
method (Wheatland, Sturrock, and Roumeliotis, 2000; Wiegelmann, 2004). The two meth-
ods appear to have various advantages and disadvantages. Optimization is comparably fast,
and in particular it has been implemented with an N4 scaling for computation time (Inhester
and Wiegelmann, 2006). A possible advantage of the present method is that the optimiza-
tion method uses all three components of the vector field in the boundary, in which case
the boundary value problem is not well posed (Amari, Boulmezaoud, and Aly, 2006). This
problem is not important for test cases with consistent boundary data, but it is likely to
be important in application to real data. However, the “preprocessing” procedure appears
to go some way toward solving this problem (Wiegelmann, Inhester, and Sakurai, 2006;
Metcalf et al., 2007), and conversely it may be argued that the present method relies on ac-
curate determination of boundary values of α, which is difficult with present data. A possible
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advantage of the present method is that it may be applied to cases for which vector mag-
netic field values are available over only one polarity (provided Bn is available on the other
polarity). In general it may be said that the application to solar boundary data is a difficult
problem and the utility of methods is hard to anticipate without actual numerical experimen-
tation. It will also be hard to assess the success of reconstructions. In this regard the ability
to choose between the positive polarity and negative polarity of the boundary field for the
specification of α(r) may be seen as an additional advantage of the present method, in that
it allows a simple test of the dependence of the reconstruction on the choice of boundary
conditions on current.
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