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Abstract In this paper we use the notion of multifractality to describe the complexity in Ho
flare activity during the solar cycles 21, 22, and 23. Both northern and southern hemisphere
flare indices are analyzed. Multifractal behavior of the flare activity is characterized by cal-
culating the singularity spectrum of the daily flare index time series in terms of the Holder
exponent. The broadness of the singularity spectrum gives a measure of the degree of mul-
tifractality or complexity in the flare index data. The broader the spectrum, the richer and
more complex is the structure with a higher degree of multifractality. Using this broadness
measure, complexity in the flare index data is compared between the northern and south-
ern hemispheres in each of the three cycles, and among the three cycles in each of the two
hemispheres. Other parameters of the singularity spectrum can also provide information
about the fractal properties of the flare index data. For instance, an asymmetry to the left
or right in the singularity spectrum indicates a dominance of high or low fractal exponents,
respectively, reflecting a relative abundance of large or small fluctuations in the total energy
emitted by the flares. Our results reveal that in the even (22nd) cycle the singularity spec-
tra are very similar for the northern and southern hemispheres, whereas in the odd cycles
(21st and 23rd) they differ significantly. In particular, we find that in cycle 21, the north-
ern hemisphere flare index data have higher complexity than its southern counterpart, with
an opposite pattern prevailing in cycle 23. Furthermore, small-scale fluctuations in the flare
index time series are predominant in the northern hemisphere in the 21st cycle and are pre-
dominant in the southern hemisphere in the 23rd cycle. Based on these findings one might
suggest that, from cycle to cycle, there exists a smooth switching between the northern and
southern hemispheres in the multifractality of the flaring process. This new observational
result may bring an insight into the mechanisms of the solar dynamo operation and may also
be useful for forecasting solar cycles.
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1. Introduction

Many physical processes evolve over a multitude of time and/or spatial scales and are gov-
erned by complex dynamics. In recent years there has been a great deal of interest in quan-
tifying the complexity of these multiscale processes. However, no clear and unambiguous
definition of complexity has been established in the literature. Intuitively, complexity is asso-
ciated with “meaningful structural richness” (Grassberger, 1991). The notion of entropy has
been introduced as a measure of complexity. A higher value of entropy is usually associated
with a more irregular, more complex process. Beginning with the information-theoretic defi-
nition of Shannon, several other definitions of entropy have been proposed by researchers to
describe complexity in a more precise way (see, for example, Pincus, 1991). But, as Costa,
Goldberger, and Peng (2002) have pointed out, these traditional entropy measures are pos-
tulated on the basis of a single scale, and do not take into account the multiscale features.
Based on the idea of coarse-graining the time series, Costa, Goldberger, and Peng (2002)
introduced the concept of multiscale entropy (MSE) and used it to describe the nature of
complexity in physiological time series such as those associated with cardiac dynamics and
gait mechanics. A different form of multiscale entropy, based on wavelet transform has been
proposed by Starck, Murtagh, and Gastaud (1998), and is used in astronomical applications
(Starck et al., 2001). An alternate approach is to use fractal-based measures of complex-
ity. If the process under consideration is self-similar or scale-invariant, its dynamics can
be described by means of a single power-law scaling exponent called the Hurst exponent.
Such homogeneous processes are referred to as monofractal and their complexity can be
interpreted in terms of a single fractal dimension. However, many complex processes are
heterogeneous in the sense that they cannot be described by a single power-law exponent
or a fractal dimension, and it is necessary to use more than one scaling exponent or fractal
dimension to assess their complexity. Due to the need for using a range of fractal dimen-
sions to describe the scaling properties, these processes are called multifractal, and their
complexity can be measured by the degree of multifractality.

By their very nature, solar flares are intermittent, consisting of sudden bursts of large fluc-
tuations separated by intervals of small fluctuations or almost quiescent periods. The large
fluctuations (or singularities) in an intermittent process contribute significantly to the statis-
tical moments which lead to multifractality (Frsich, 1995). In fact, intermittency and multi-
fractality are considered to be two different terms for the same phenomenon, with the for-
mer typically referring to time series and the latter used for spatial objects (Takayasu, 1990;
Frsich, 1995; Cheng, 1999). The purpose of this paper is to characterize the intermittent
behavior of solar flares in terms of their multifractality and interpret the degree of multifrac-
tality as a measure of their complexity.

A solar flare represents a sudden rise in activity of the Sun accompanied by a large in-
crease in the intensity of radiation emitted around the sunspots. This leads to an intense re-
lease of energy which can be as high as 1032 ergs. The origin of solar flare occurrences is not
clearly understood. It has been suggested that solar flares are the result of rapid conversion
of large amounts of energy stored in the magnetically active areas of the Sun and dissipated
through magnetic reconnections. A typical flare has a rise time on the order of a few minutes
and a decay time on the order of tens of minutes to several hours. Since the first observa-
tion of a solar flare by Carrington and Hodgson in 1859, numerous flares have been moni-
tored and studied by researchers (Atac and Ozguc, 2001; Atac, Ozguc, and Rybak, 2005;
Bai, 2003; Bazlevskaya et al., 2001; Charbonneau et al., 2001; Joshi and Joshi, 2005;
Joshi and Pant, 2005; Li, Schmieder, and Li, 1998; Maris and Popescu, 2004; Ozguc, Atac,
and Rybak, 2003; Ozguc et al., 2004; Rybak et al., 2005; Temmer et al., 2001, 2004; Veronig
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et al.,2002). The flare activity is customarily described by a flare index, Q, which represents
the total energy emitted by the flare. It is defined as the product Q = it, where i denotes the
intensity scale of importance of the flare spectral class and ¢ is the duration of the flare
in minutes (Kleczek, 1952). Extensive data on solar flare indices are available at several
websites.

In recent years multiscale methods have attracted more and more attention in the
analysis of solar phenomena in both spatial (Cadavid et al., 1994; Lepreti et al., 2000;
Abramenko et al., 2002; Abramenko, 2005; McAteer, Gallagher, and Ireland, 2005), and
temporal domains (Ozguc et al., 2004; Macek, 2005; Rybak et al., 2005). Here we perform
a multifractal analysis of the intermittent Ho flare activity and describe their complexity in
terms of the degree of multifractality. In particular, we examine the He flare activity in both
northern and southern hemispheres during the solar cycles 21, 22 and 23. A multifractal
analysis of the flare activity consists of constructing a singularity spectrum of the flare index
time series in terms of a regularity parameter called the Holder exponent. The singularity
spectrum provides a precise quantitative description of the multifractal measure in terms of
interwoven sets with a Holder exponent o, whose Hausdorff dimension is f(c). The com-
plexity in flare activity can be assessed from the broadness of the singularity spectrum. The
broadness of the singularity spectrum denotes the range of fractal exponents present in the
signal and thus gives a measure of the degree of multifractality of complexity. Using the
broadness measure, complexity in the flare index data are compared between the northern
and southern hemispheres in each of the three cycles, and also among the three cycles in
each of the two hemispheres. Other parameters of the singularity spectrum can also provide
information about the fractal properties of the flare index data. For instance, an asymmetry
in the spectrum indicates a dominance of high or low fractal exponents, reflecting a relative
abundance of large or small fluctuations of energy emitted by the flares.

It can be shown that for a monofractal process, the singularity spectrum reduces to a sin-
gle point. On the other hand, if the singularity spectrum does not reduce to a single point,
it is indicative of multifractal behavior. A multifractal process may be considered to be lo-
cally self-similar and the Holder exponent in a singularity spectrum may be treated as a
local Hurst exponent. In other words, a multifractal may be thought of as a superposition
of an infinite number of monofractals. Multifractal analysis has been used to describe inter-
mittent processes in a wide variety of applications (see, for example, Meneveau and Sreeni-
vasan, 1991; Davis et al., 1994; Carreras et al., 2000; Schmitt, Schertzer, and Lovejoy, 2000;
Fedi, 2003; Zheng et al., 2005). Analysis of solar magnetic fields using fractal and multi-
fractal theories has also been carried out by Abramenko et al. (2002), Abramenko (2005),
Georgoulis (2005), and McAteer, Gallagher, and Ireland (2005), among others.

All the He flare index data analyzed in this paper have been recorded at Kandilli solar
observatory from 1976 to 2003. These data were obtained from the archives maintained at
the National Geophysical Data Center (NGDC) through the website http://www.ngdc.noaa.
gov/stp/SOLAR/ftpsolarflares.html. The data for cycle 21 covers the period from January
1976 to December 1985, cycle 22 data are from January 1986 to October 1996, and the
data for cycle 23 range from January 1996 to December 2003. The daily flare index time
series for the various cycles are depicted in Figure 1. In this figure, the top two plots are
for the northern and southern hemisphere flare indices in cycle 21, the middle two plots
are for similar data in cycle 22, and the lower two plots are for the northern and southern
hemisphere flare indices during cycle 23. Instead of considering the total flare index in the
two hemispheres, it is important to examine the flare index in each hemisphere separately
in order to avoid the overlapping effects of the activity of both hemispheres in a full-disk
consideration. We will find that the multifractal properties of the flare indices may vary
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Figure 1 Time series plots of the daily northern and southern hemisphere flare indices. The top two panels
(21N and 218) are for cycle 21, the middle two panels (22N and 22S) are for cycle 22 and the two lower
panels (23N and 23S) are for cycle 23. The letters N and S refer to the northern and southern hemispheres,
respectively.

between the northern and southern hemispheres during the same cycle and also from one
cycle to another in each hemisphere.

The remainder of this paper is organized as follows. In Section 2, we describe the method
of multifractal analysis and apply it to the flare index time series. This is followed in Sec-
tion 3 by a discussion of the results, and in Section 4, some concluding remarks are given.

2. Multifractal Analysis

There are several techniques available for calculating the singularity spectrum of a time se-
ries. We have used the method based on a box counting algorithm which was developed
by Chhabra and Jensen (1989), and applied by Chhabra et al. (1989) and Meneveau and
Sreenivasan (1991) to characterize the intermittent structure of turbulent flows. This is a
direct method for computing the singularity spectrum without the need for calculating the
generalized fractal dimension or applying the Legendre transform (Kravchenko, Boast, and
Bullock, 1999). Since its inception, this method has been used by researchers in a wide
variety of applications (see, for example, Balfas and Dewey, 1995; Pinzon et al., 1995;
Ramirez-Rejas et al., 2004; Posadas et al., 2005). It has been found to be a practical and
efficient method for direct computation of the singularity spectrum of observed or experi-
mental data.
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In a multifractal process, if we divide the support of a measure (e.g., a measured quantity)
into boxes of size £, then the probability of the measure in the i-th box is found to vary as:

pi(6) ~ €%, ey

where the exponent «; may be defined as a singularity strength characterizing the scaling in
the i-th box. If we count the number of boxes N («) where the probability p; has singularity
strength between « and « 4+ do, we can define a function f (o) such that

N() ~ ¢ T@, 2

Consider a signal x(¢) given by the positive time series {x,},n =1,2,3,..., N. Divide
the time series into boxes or segments of length ¢ and introduce the probability measure:

N() N
pi(6)=2xj/2xn. 3)
j=1

n=1

Here the subscript i refers to the i-th box, x;is the magnitude of the signal at location j
inside the i-th box, and N (€) is the number of boxes of length £. Based on the above mea-
sure we introduce a one-parameter family of normalized measures ; (g, £) according to the
expression:

Lpi (01
(g, ) = <POT
il 0 =5 o

The parameter ¢ may be considered to be a microscope for exploring different regions of
the singular measure. For values of ¢ > 1, the more singular regions are enhanced; for g < 1
on the other hand, the less singular regions are accentuated, and for ¢ = 1, the original
measure is replicated (Chhabra and Jensen, 1989). Using the normalized measure given
by (4), Chhabra et al. (1989) derived the following expressions for the Holder exponent and
Hausdorff dimension.

“

o 2o i(g, O Inlp (g, 0)]

fl@) = }13% e , %)
2 i(g, O In[pi(0)]

=TT me ©

(See Chhabra and Jensen, 1989; Chhabra et al., 1989 for details.) These two equations pro-
vide a relationship between the Holder exponent and Hausdorff dimension as implicit func-
tions of the parameter ¢g. By evaluating f (¢)and «(g)for different values of ¢, the singularity
spectrum given by f (a)can be easily derived. For a chosen value of ¢, values of f(g)and
a(q)are estimated from the slopes of the functions given in the numerators of (5) and (6)
with respect to In £.

Using the direct method outlined above, we have computed the singularity spectrum of
the flare index data in the northern and southern hemispheres for each of the three cycles 21,
22 and 23 as follows. Consider, for example, the flare index data in the northern hemisphere
in cycle 21. We start with ¢ = —10 and find f(g) and «(g) from (3) and (4), respectively.
Next the value of ¢ is increased in steps of 0.1 to ¢ = 10, and for each ¢, f(g)and «a(q)
are found using (5) and (6). The collection of the pairs of points a(q) — f(g) yields the
singularity spectrum.
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Figure 2 A typical singularity
spectrum of a multifractal time
series. The broadness of the
singularity spectrum is given by
Ao = omax — &min, Where apip
and amax are the intersections of
the (extrapolated) singularity
spectrum on the «-axis.

S

Q b e e e o . e e e - ———

QL.

max 0 amax

3. Results and Discussion

To facilitate our discussion of the results, we begin by presenting a typical singularity spec-
trum of a multifractal time series. This is shown by the solid curve in Figure 2. The sin-
gularity spectrum has a characteristic unimodal (single-hump) appearance as seen in this
figure. The broadness or width of the singularity spectrum may be assessed by the range
of values of o where f(c«) > 0, by extrapolating the spectral curve at each end to meet the
abscissa as shown by the dashed lines. The broadness is given by Ao = &ax — ¥min, Where
Omin and oy are the smaller and larger values of the intersections of the extrapolated curve
with the abscissa. The broadness, A«, represents the range of possible fractal exponents
in the signal with f(«) > 0, and thus gives a measure of the degree of multifractality or
complexity of the time series. The broader the spectrum, the richer and more complex is the
structure with a higher degree of multifractality. A small value of broadness, on the other
hand, approaches a homogenous monofractal limit. As mentioned in the introduction, an
asymmetry in the shape of the singularity spectrum can also provide information about the
fractal properties of the time series. For instance, a left- or right-skewed spectrum implies
a dominance of high or low fractal exponents, respectively, and indicates a relative abun-
dance of large or and small fluctuations in the data (Kravchenko, Boast, and Bullock, 1999;
Posadas et al., 2005; Telesca, Lapenna, and Macchiato, 2005).

Figures 3, 4 and 5 depict the singularity spectra of the northern and southern hemisphere
flare index time series in the cycles 21, 22 and 23, respectively. Table 1 lists the broadness
and skewness parameters of the various singularity spectra. These results may be summa-
rized as follows:

(a) As revealed by the broadness of the singularity spectra, the flare index data in cycle 21
have a higher degree of multifractality in the northern hemisphere than in the southern
hemisphere (Figure 3). In cycle 22, the degrees of multifractality in the two hemispheres
are nearly the same (Figure 4), but in cycle 23, the northern hemisphere flare index
data possess a lower degree of multifractality in comparison to the southern hemisphere
(Figure 5). In other words, between the two hemispheres, the northern hemisphere flare
indices are richer and more complex in structure in cycle 21, less complex in cycle 23,
and have almost the same order of complexity as the southern hemisphere in cycle 22.
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Figure 3 Singularity spectra of 1.0
the northern and southern
hemisphere flare index time I
series for cycle 21. A broader osl |
spectrum for the northern
hemisphere indicates higher 1
multifractal complexity in this
hemisphere than that in the . et 1
southern hemisphere. In 3 |
Figures 3-7, the letters N and S Sy
denote, respectively, the northern 04k J
and southern hemispheres.
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Figure 4 Singularity spectra of 1.0
the northern and southern
hemisphere flare index time |
series for cycle 22. Because the ost ]
broadness of the singularity
spectra is nearly the same in both 1
hemispheres, there is no
.o . . 0.6} 8
significant difference in —
multifractal complexity between 5 J
the two hemispheres. S~
04 .
0.2 ‘ll 4
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0 . . . . .
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(b) Figures 3 and 4 also reveal that in each of the cycles 21 and 22, the singularity spectra
are right-skewed in both hemispheres, indicating a dominance of low fractal exponents
and reflecting a relative abundance of small fluctuations in the flare index data. By con-
trast, in cycle 23, the singularity spectrum for the northern hemisphere is left-skewed
denoting a dominance of high fractal exponents, whereas that for the southern hemi-
sphere is slightly right-skewed indicating a prevalence of low fractal exponents (Fig-
ure 5). Therefore, in this cycle there is a relative abundance of large fluctuations in the
northern hemisphere and a prevalence of small fluctuations in the southern hemisphere.

Next we consider the flare index data in the northern hemisphere and southern hemi-
sphere separately in the three cycles. Figure 6 presents the singularity spectra of the north-
ern hemisphere flare indices for the cycles 21, 22 and 23. We observe that the data in cycle
21 possess the highest degree of multifractality whereas the degrees of multifractality of
the data in cycles 22 and 23 are nearly equal (see Table 1). Finally, the singularity spectra
of the southern hemisphere flare indices for the three cycles are displayed in Figure 7. In
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Figure 5 Singularity spectra of
the northern and southern
hemisphere flare index time
series for cycle 23. A broader
spectrum for the southern
hemisphere indicates higher
multifractal complexity in this
hemisphere than in the northern
hemisphere.

Table 1 Broadness and
skewness parameters of the
singularity spectrum for the
northern (V) and southern ()
hemispheres flare index data in
cycles 21, 22 and 23.

Figure 6 Singularity spectra of
the northern hemisphere flare
index time series for the cycles
21, 22 and 23. From the
broadness of the three spectra it
is apparent that the flare index
data in cycle 21 are more
complex than those in cycles 22
and 23, which have nearly the
same order of complexity.
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Figure 7 Singularity spectra of 1.0
the southern hemisphere flare
index time series for the cycles
21,22 and 23. From the ozl \
broadness of the three spectra it N R
is evident that the flares in cycle : 1
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this hemisphere, the degree of multifractality is seen to be the lowest in cycle 21, higher in
cycle 22 and even higher in cycle 23. Effects of asymmetry in the shape of the singularity
spectra in Figures 6 and 7 can be interpreted in the manner discussed above.

4. Concluding Remarks

By calculating the singularity spectra of the daily flare index time series in terms of the
Holder exponent, we have presented a multifractal characterization of the complexity in Ho
flare activity in the solar cycles 21, 22 and 23. The flare indices in the northern and southern
hemispheres have been analyzed separately in order to avoid any overlapping effects of the
two hemispheres in a full-disk consideration. The broadness of the spectrum is used for com-
paring the degree of multifractality or complexity of the intermittent solar flares between the
two hemispheres in the same cycle and also among different cycles in the same hemisphere.
An asymmetry to the left or right in the singularity spectrum reveals a dominance of high
or low fractal exponents and reflects a prevalence of large or small fluctuations in the total
energy emitted by the flares.

Our results reveal that in the even (22nd) cycle, the singularity spectra are very similar
for the northern and southern hemispheres, whereas in the odd cycles (21st and 23rd) they
differ significantly. In particular, we find that in cycle 21, the northern hemisphere flare
index data have higher complexity than those for its southern counterpart, with an opposite
pattern prevailing in cycle 23. Furthermore, small-scale fluctuations in the flare index time
series are predominant in the northern hemisphere in the 21st cycle and are predominant
in the southern hemisphere in the 23rd cycle. Based on these findings one might suggest
that, from cycle to cycle, there exists a smooth switching between the northern and southern
hemispheres in the multifractality of the flaring process. This new observational result may
bring an insight into the mechanisms of the solar dynamo operation and may be useful for
forecasting of the solar cycles.
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