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Abstract. Solar synoptic charts are normally displayed using Carrington Coordinates with each Car-

rington rotation being centered at a Carrington longitude of 180◦ and with a full 360◦ of solar surface

properties included. For the case of reproducing solar magnetic fields in the corona and heliosphere,

these maps are wrapped onto the solar surface to provide the boundary conditions for a solution to

a set of modeling equations such as the potential field theory equations. Due to differential rotation,

the full solar surface cannot be reproduced in this fashion since different parts of the solar surface

are observed at different times. We describe here the proper technique for combining observations of

the solar magnetic or velocity fields made at different times into a representation of the whole solar

surface at a particular specified time that we refer to as a “snapshot heliographic map”.

1. Introduction

The display of properties of the solar surface in terms of time, location, and strength
depends on the definition of a coordinate system for the Sun. Since the Sun is gaseous
and has no permanent demarcation points to use as a reference, the convention
established by Carrington (1863) has been followed based on a fixed rotation rate
and an arbitrary zero point. For any observation of a feature or physical quantity on
the apparent solar disk, standard methods of spherical astronomy, such as described
by Smart (1962), can be used to convert the position of measurement expressed as
an angular offset relative to fixed points on the apparent solar disk (typically x, y
angular distances relative to the disk center based on the solar axis of rotation as the y
axis) to a heliographic latitude and longitude with the latter taken relative to the zero
point defined by Carrington. The detailed methods of converting solar observations
into modern coordinate systems have been described recently by Thompson (2006).
When a number of observations from many days are combined and plotted relative
to the Carrington longitude and latitude, the resulting figure is called a “synoptic
chart”, and Carrington (1863) was the first to produce such charts. The rotation
rate was chosen by Carrington to track the apparent movements of sunspots across
the solar disk. Carrington also recognized that many features move relative to
these coordinates, and he used what is now called a stackplot to illustrate these
displacements.
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Full-Sun magnetic maps can be used either to represent conditions on the solar
surface at a particular point of time in the past in the most satisfactory manner or
to project conditions into portions of the solar surface that are not observed. For
the first purpose, it has been common to create synoptic charts based on the best
observed portions of the solar surface near the Sun’s central meridian, and this is
the format usually encountered. For the projection into portions of space and time
where observations are not available, physics-based, flux-transport models have
been used by a number of workers (Devore et al., 1985; Worden and Harvey, 2000;
Schrijver, 2001; McCloughan and Durrant, 2002; Durrant and McCloughan, 2004)
to make predictions of magnetic-field strength. These predictive treatments have
been careful to treat the solar surface in coordinates at a particular instant in time
through a remapping process. We are concerned in the present paper with the task
of representing observed properties of the Sun in the most reliable manner and in
the preparation and interpretation of synoptic charts. Such charts have been used
by for example Worden and Harvey (2000) as input to the physics-based model
and by Arge and Pizzo (2000) in the computation of properties of the solar wind.
We provide in the present paper methods of treating the variables used in standard
synoptic charts in a manner that properly accounts for the distorting effects of
differential rotation.

Solar longitude is an angle giving position on the solar surface at a particular
moment of time. A traditional synoptic chart extracts properties of the solar surface
that are near the central meridian at the time of observation and includes only a
limited range of central meridian angle. For central meridian angles larger than about
±20◦, differential rotation causes features to change their heliographic longitude
as a function of observation time so that averages over multiple observations are
smeared. Synoptic charts are most commonly prepared using Carrington’s rotation
rate to define longitude. The smearing we correct comes from the difference between
a feature’s rotation rate at a particular latitude and the Carrington rate. Generally the
feature rates are smaller than the Carrington rate because the higher latitudes rotate
much more slowly than the near-equator regions. Some features such as magnetic
patterns have a rotation rate greater than the Carrington rate near the equator. The
methods described here apply to all forms of differential rotation rate although
the figures have been prepared using the magnetic feature rate. If we had used the
rotation rate appropriate to the Doppler-shift velocities, all portions of the solar
surface would rotate more slowly than the Carrington rate.

The Mt. Wilson group has corrected each observation for the effect of differential
rotation prior to summing (Ulrich et al., 2002; Ulrich and Boyden, 2005). In order
to distinguish these synoptic charts from traditional synoptic charts we use the term
“Differential Rotation Corrected” synoptic charts or “DRC” charts for the resulting
representations. We have also reversed the abscissa and plotted multiple DRC charts
next to each other to create what we term a supersynoptic chart. In the supersynoptic
chart format, the abscissa is in fact the time of central meridian crossing for each
point. This paper gives the details of the transformations needed to carry out this
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differential-rotation correction in order to produce one of two types of synoptic
map: (1) a DRC synoptic chart in which the abscissa is not a longitude angle and
(2) a “Snapshot Map” which is a DRC heliographic map in which the abscissa is a
longitude angle at a specific time.

Our treatment is based on the correspondence between Carrington longitude
and time. The central meridian (CM) crossing time of Carrington longitude 0◦ for
Carrington rotation zero defines a starting point for a time–like variable which then
progresses forward at a rate of one unit per synodic Carrington rotation period. This
definition is presented in more detail in the next section of the paper. The Carrington
Rotation Number (N ) is the integer number of Carrington rotations from this starting
time. We can denote the time that a point crosses the CM as the real number of
Carrington units including the fractional part of the rotation. The convention of
having the longitude increase from East to West while the western parts of the solar
surface cross the CM before the eastern parts means that within each Carrington
rotation, the heliographic longitude of the CM decreases with time. Consequently,
the fractional part of the rotation appropriate to Carrington longitude L (in degrees)
crossing the CM is 1 − (L/360◦) instead of L/360◦. To make it explicit that this
longitude-like time of CM crossing measured in Carrington rotation units is not an
integer, we term this variable the “Carrington time” of the point and use the symbol
τ N . The superscript N denotes the Carrington rotation number on which the point
crosses the CM and is included for reasons discussed below.

We illustrate with a specific example of the calculations needed to carry out
this differential rotation correction. Figure 1 shows an arbitrary sample observation
of the solar surface at a time when the CM is at Carrington longitude 140◦ and
a sample point is observed at a. We have picked point a so that it will cross the
CM three-quarters of a Carrington rotation after the most recent CM crossing
of Carrington longitude 0◦. At the time of this observation, the point is not at
Carrington longitude 90◦ because it rotates more slowly and is at a negative Central
Meridian Angle (CMA) closer to zero as shown. If we replace the point’s observed
heliographic longitude by its heliographic longitude at the time it crosses the CM,
we will have a longitude-like variable which will remain constant provided we have
adopted the proper rotation rate for the latitude in question. The shift in the effective
longitude brings the point from a to b in Figure 1. Notice that for this observation,
the time of CM crossing is (140 − 90)/360 Carrington rotations later than the time
of observation; i.e. the CMA offset is negative while the time offset is positive due
to the conventional definition of heliographic longitudes. This example illustrates
the tranformations we need to carry out in general in order to correct for differential
rotation.

Each magnetic feature on the solar surface has a unique CM crossing time τ N

during Carrington rotation N . At higher latitudes, the time interval between suc-
cessive CM crossings by a magnetic feature is greater than the Carrington rotation
period; i.e. the Carrington time interval between successive CM crossings is greater
than unity. Because the Carrington time advances one unit per Carrington rotation,
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Figure 1. The smearing effect of differential rotation and the shift needed to correct for the effect by

shifting the position of the observed point. The heavy outer rectangle defines the edges of the map of

the full solar surface at the time of observation based on the solar axis of rotation. The heavy solid

lines within the rectangle give the solar equator and central meridian. The heavy dashed lines show the

location of the Carrington longitude 0◦ and 180◦ points for this example. A typical point is observed

at position a with a central meridian angle CMA. Based on its latitude, we can determine the time

required to reach the central meridian. The locus of points requiring this length of time is shown as

the light solid line passing through a. We shift the point to location b so that it would take that same

interval of time if it were rotating with the Carrington rate. Points from separate observations will

have a different central meridian angles but they all have the same central meridian crossing time and

are shifted by an angle calculated according to the above geometry, they will all represent the same

solar surface feature and will not be smeared.

while magnetic features have a rotation rate different from the Carrington rate, the
Carrington time for a feature on successive CM crossings does not advance by
unity. For example at a latitude near 60◦, the rotation rate is about 20% slower
than the Carrington value so that a feature crossing the CM at a Carrington time
of, say, 1950.5 will cross the CM after the Carrington time advances by 1.25 at
a Carrington time of 1951.75. Successive transits of the CM are not separated by
unity in Carrington units except at that latitude where the rotation rate equals the
Carrington value. This is why high latitude features drift relative to the Carrington
longitudes when plotted using a stackplot format. This property of a tracked feature
is expressed formally by the statement: τ N±1 �= τ N ± 1. Clearly, we need to spec-
ify N in order to fully define the Carrington time of the feature. Pairs of points at
different latitude but identical τ N are aligned in a North/South configuration when
they cross the CM on Carrington rotation N . By using τ N as the longitude-like
variable to define position on the solar surface, we avoid the smearing effect and
can include observations from more than one Carrington rotation so that we can
carry out time-series analyses restricted only by the lifetimes of features.
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It is possible to treat the Carrington time as a combination of Carrington rotation
number (N ) and a longitude offset angle. The resulting chart has a form identical
to that of a traditional synoptic chart. Although the abscissa has units of longitude
angle, it is not a true longitude in that pairs of points along lines of constant latitude
are not separated by this angular difference except on a latitude which rotates at
the Carrington rate. We call a plot of magnetic fields made in this way a DRC
synoptic chart and refer to the longitude calculated this way as a Carrington-time
equivalent longitude. It is important to remember that a DRC synoptic chart never
represents the whole solar surface at a single time; time and space are intermingled
in the abscissa values. If a chart of the surface using true longitudes is required, it is
necessary to select a mapping time and then distort the synoptic chart in a manner
that reverses the original differential rotation correction and yields the longitude
of each point. We call these redistorted plots “snapshot heliograph maps”. The
following section gives the explicit transformations for both summing quantities
into a DRC synoptic chart and for recovering snapshot heliographic maps from the
charts.

One of our objectives is to apply time series analysis methods to the prediction
and interpolation of solar properties for times when a point is not on the visible
portion of the solar surface. As a first step in this direction, the final section provides
a simple extension of the methods introduced by Shrauner and Scherrer (1994) for
treating the effect of solar rotation on the projections of vector quantities onto the
line of sight.

2. Map Transformations

2.1. THE APPROACH

The correction for the effects of differential rotation involves the following steps:� Observation: Shift each observed point in space to a position in the final chart
where it remains fixed according to some differential rotation law.� Summing: Carry out an appropriate time series analysis to derive quantities of
interest such as for example the correlation of magnetic field with viewing angle
or a dense-pack ring diagram analysis with helioseismic techniques (Haber et al.,
2002; Komm et al., 2004). These results are presented in the DRC synoptic chart
format.� Mapping: Distort the DRC chart back into a snapshot heliographic map. This
step is essentially the inverse of the first step.

We start the discussion of an implementation of the above steps by casting the
equations in terms of the Carrington time. As noted above, the Carrington longi-
tude has the undesirable properties of running backwards relative to time modulo
360◦ while the Carrington rotation number moves forward in time. Consequently,
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a time-like variable cannot be composed out of the Carrington longitude and the
Carrington rotation number by adding L/360 to N . This property of the Carrington
longitude makes it difficult to present simple formulae for the treatment of differ-
ential rotation. The use of the Carrington time as an intermediary simplifies the
exposition.

2.2. CARRINGTON TIME

As a convention for this paper we measure time in Carrington units which are
the real number of solar rotations at a fixed synodic rate of 27.2753 days per
rotation beginning at a zero time defined by Carrington (1863) for which Carrington
rotation 1 commenced November 9, 1853. This convention applies to both times of
observation indicated by tobs as well as the definition of the longitude-like Carrington
time τ N . Our methods can be applied to observations spanning multiple Carrington
rotations but in such applications it is important to remember that for most latitudes
τ N±1 �= τ N ± 1. Charts and maps prepared with our methods must always specify
the Carrington rotation number to which they apply; hence, we include N in the
definition of τ N . When a point is on the CM, the time of observation, tobs is equal
to τ N . Since τ N is a real number, the integer Carrington rotation number must obey
N = �τ N� where the lower bracket symbols denote the floor function which returns
the largest integer N not greater than τ N . Although, we mostly use values of τ N

where N = �τ N�, this is not a requirement and for some applications of time series
analysis, it is necessary to include observations which violate this equality. In that
case it is important to treat these observations according to the formalism below,
since positions on successive rotations do not line up at all latitudes.

The relationship between the CM longitude, L N
0 , (in degrees) and the Carrington

time, τ N , is1

L N
0 = 360◦(N + 1 − τ N ) . (1)

Using standard geometric relationships we can calculate the longitude of each
observed point L N ′

obs where N ′ may differ from N if the CM is on a different
Carrington rotation. The longitude increases in the direction of rotation and the
time of CM crossing becomes earlier than the time of observation as the longitude

1The CM is displaced from this location by a small amount due to the eccentricity of the Earth’s orbit.

An easy way to understand this offset is to imagine solarians (dwellers on the surface of the Sun)

observing the Earth from an “observatory” on the Sun rotating at a fixed Carrington rate. Synodic

Carrington time would be local mean time kept by the solarians if they adopted transits of the Earth as

their local midnight. A time lapse photograph of the Earth taken by the solarians with a camera pointed

in a constant direction relative to their observatory co-ordinates and with exposures made at a fixed

time on the basis of their local mean time throughout the Earth’s year would produce an analemma.

We include this offset in calculating the actual location of the CM but do not include changes in this

offset as part of the differential rotation correction. Formulae in the text omit this offset for clarity.
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becomes more positive. The angular separation between the observed point and the
central meridian δLobs is then given by:

δLobs = L N ′
obs − L N

0 − 360◦(N ′ − N ) . (2)

2.3. DIFFERENTIAL ROTATION CORRECTION

In order to treat differential rotation, we note that at latitude B the time offset in
seconds relative to the time of CM crossing is −δLobs/�(B) where longitude is
measured in radians, � is in radians per second, and a positive time offset applies to a
CM crossing prior to the time of observation. This offset is converted to a fractional
Carrington rotation through multiplication with the Carrington rotation rate. The
synodic rotation curve we use gives magnetic stackplots with the minimum drift in
time:

�(B) = 2.730 − 0.4100[sin2(B) + 1.0216 sin4(B)]μrad/s . (3)

This rate is faster than the widely-used Snodgrass (1983) and Snodgrass and
Ulrich (1990) rates which are based respectively on cross-correlations of Doppler
velocities and magnetic features over intervals of one to three days. Our rate tracks
the longer-lived features which are of interest over periods of one or more solar
rotations. The Carrington time for the point for each observation is the Carrington
time at the CM of the observation (i.e. the time of the observation in Carrington units)
corrected by the time displacement of the point from the CM crossing measured in
Carrington rotations. For completeness, we note that the synodic Carrington rotation
rate �Carr is 2.66622375 μrad/s (the precision given here reflects the conversion
from sidereal to synodic units; the Carrington rate is typically stated in sidereal
units whereas our rate in Equation (3) has been determined in synodic units). If we
represent the longitude in degrees we can express the Carrington time referenced
to rotation N for this point when it is observed as:

τ N
obs = tobs − δLobs �Carr

360◦ �(B)
. (4)

Figure 2 illustrates this transformation. The blue grid represents the angular
position of points on the solar surface. For the sake of illustration we have shown
a sample point as the dark red circle. Lines of constant Carrington time are shown
in black.

Time series analysis can be carried out by incorporating data from a number of
observations each having a different tobs. The resulting parameters describing the
solar surface apply to a grid of latitudes and Carrington times: B, τ N . We can apply
the equivalent of Equation (1) to obtain a longitude-like quantity L̃ which would
be the Carrington longitude if the Sun rotated rigidly at the Carrington rate:

L̃ N = 360◦(N + 1 − τ N ) (5)
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Figure 2. The observed heliographic longitudes as the grid of blue lines and the Carrington times

as the grid of black lines. It can be applied at the time of each observation in which case the central

meridian is labeled as τ N = tobs and at the time of mapping a synoptic chart back to heliographic

coordinates in which case the central meridian line is labeled as τ N = tmap. The central meridian

is shown as the heavy green line near the map center. The boundaries of the portion of the map

representing the entire solar surface are also shown as a pair of heavy green lines a distance of ±180◦
from the central meridian. This figure is intentionally not centered on a Carrington longitude of 180◦
so that the edges of the surface do not correspond to 0◦ to 360◦. The nearest Carrington rotation

boundaries and center line are shown as the heavy blue lines. Note also the convention of plotting the

time as increasing from right to left. This is done so that the longitude projected onto the sky increases

from left to right when the images are plotted as seen. A particular point on the image is shown as the

dark red circle along with dark red lines representing the appropriate latitude and longitude for the

point. The observed Carrington longitude for the point is marked on the bottom of the figure with the

blue L . The Carrington time of the point is indicated on the top of the figure as the black T N . After

the differential-rotation correction, the point is shifted to the Carrington time equivalent longitude

indicated by the light red circle.

with the value of N being given as before from N = �τ N�. Following the definition
in the preceeding section, we refer to L̃ N as the Carrington-time equivalent longi-
tude. Synoptic charts of the derived quantity (such as a simple average) can then be
plotted as a function of L̃ and appear as a normal synoptic chart but to distinguish
these from the traditional synoptic charts, we refer to them as the “differential ro-
tation corrected synoptic charts” (DRC charts). The DRC chart has points shifted
further from the CM since they rotate more slowly at higher latitudes and the pro-
gression of points across the DRC chart is uniform at the Carrington rate. However,
L̃ cannot be used to represent the longitude of a point at any specified time since
the values of L that go into the average are different for each observation.

The final step in the process is to select a mapping time (tmap), and carry out
the reverse distortion so that the position of features on the solar surface can be
properly represented. The Carrington longitude of the CM is given by:

L N
0 = 360◦(N + 1 − tmap) . (6)
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with the value of N being given by the floor function applied to tmap. The longitude
of any point on the solar surface can be considered as:

Lmap = L N
0 + δLmap . (7)

We then consider all values of δLmap between −180◦ and 180◦ and locate the
appropriate positions on the DRC charts that correspond to these points. We are not
required in this calculation to constrain Lmap to the range 0◦ to 360◦ but for a final
display will need to label the points with values within this range using the modulo
function. A rotation number similar to a Carrington rotation number could be used
to label the portions of the plot altered by the modulo function following the layout
illustrated in Figure 2. With δLmap in degrees, the Carrington time for each point
on the snapshot map is found from:

τ N
map = tmap − δLmap �Carr

360◦ �(B)
. (8)

As before, the synoptic map longitude corresponding to this Carrington time
can be found and the value of the desired quantity calculated by interpolation from
the stored data. When displayed in this format, the abscissa is a true longitude and
not a Carrington-time equivalent longitude.

2.4. SAMPLE REDUCTIONS

We illustrate the three forms of charts and maps in Figure 3, which utilize all
available Mt. Wilson observations for Carrington rotation 1952. For the traditional
synoptic chart and the DRC synoptic chart, 464 observations are included. For the
snapshot heliographic map, 513 observations are included. The number is larger for
the snapshot map because points on the edge come from a larger time interval. Note
that structure is much more visible in the lower two maps than in the traditional
case. This is true even at high latitude where features usually do not appear. The
snapshot map retains the visible structure but shows that the zones of dominant
polarity become distorted at the edges. Evidently, the larger scale structure rotates
more like the Carrington rate in contrast with the smaller scale features which follow
the differential rotation law found with smaller scale magnetic/Doppler structures
and the differential rotation law found directly from the Doppler shift velocities.

3. Rotation, Vectors and Time Dependence

We illustrate the use of the differential-rotation-correction approach by showing its
application to the study of magnetic field vector components. The formulae here
represent a simple extension of the method of Shrauner and Scherrer (1994) and
are a minimal way to include a time-series analysis into the representation of solar
magnetic field evolution. Solar rotation causes a stationary vector to have a variable
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Figure 3. The three forms of synoptic chart discussed in the text. The top figure is a traditional syn-

optic chart where each observation is added to the Carrington longitude appropriate for its time of

observation. We have included all available observations for each point. The second figure carries out

the differential rotation correction and plots the points according to their Carrington-time-equivalent

longitude. The bottom figure gives the snapshot map for the Carrington time of 1952.5 and so is cen-

tered on Carrington rotation 1952. This restriction is done to allow easy comparison to the traditional

map on top which follows the convention of restricting the plot to just those longitudes that fall on

CR 1952. Although the abscissae for the three plots are all indicated as longitude, they are in fact

each different. The top abscissa is the Carrington longitude, the center abscissa is the Carrington-

time-equivalent longitude, and the bottom abscissa is the heliographic longitude at the Carrington

time 1952.5.
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line-of-sight projection. This permits us to resolve the vector magnetic field into
two components: one called the zonal magnetic field that is perpendicular to the
axis of rotation and the other called the meridional magnetic field that is projected
onto the plane of the local longitude. Figures illustrating this decomposition have
been given previously (Ulrich et al., 2002; Ulrich and Boyden, 2005). The zonal
magnetic field is in an East–West direction while the meridional component is
made up of a part that is radial and another that is parallel to the solar surface and
in a North–South direction. The method we use cannot distinguish between the
two parts of the meridional field. By using more than a single rotation, we can also
take account of some time dependence. For each latitude (B) and Carrington time
(τ N ) we combine data from observations taken at times ti and use these to find the
magnetic field components at time t0 = τ N . The time dependence is then found as
a function of the time difference:

�ti = ti − t0 . (9)

For observation i we use the observed CMA δLi to resolve the slowly varying
part of the Sun’s magnetic field (B) into meridional and zonal (Bm and Bz) com-
ponents by representing the line-of-sight component of the magnetic field Bsi for
each observation i as:

Bsi = cos(δLi )Bm + sin(δLi )Bz + �ti cos(δLi )Ḃm + �ti sin(δLi )Ḃz . (10)

We may define weighted sums as follows:

sb =
∑

i

sin(δLi )Bsi = sc Bm + ss Bz + sct Ḃm + sst Ḃz (11)

cb =
∑

i

cos(δLi )Bsi = cc Bm + sc Bz + cct Ḃm + sct Ḃz (12)

sbt =
∑

i

�ti sin(δLi )Bsi = sct Bm + sst Bz + sctt Ḃm + sstt Ḃz (13)

cbt =
∑

i

�ti cos(δLi )Bsi = cct Bm + sct Bz + cctt Ḃm + sctt Ḃz (14)

where

ss =
∑

i

sin2(δLi ), sst =
∑

i

�ti sin2(δLi ),

sstt =
∑

i

�t2
i sin2(δLi ) (15)

sc =
∑

i

sin(δLi ) cos(δLi ), sct =
∑

i

�ti sin(δLi ) cos(δLi ),
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sctt =
∑

i

�t2
i sin(δLi ) cos(δLi ) (16)

cc =
∑

i

cos2(δLi ), cct =
∑

i

�ti cos2(δLi ),

cctt =
∑

i

�t2
i cos2(δLi ) . (17)

In terms of these definitions, we may determine the average zonal and merid-
ional fields by solving the system of Equations (11) to (14). The values for Bm and
Bz at the time t0 = τ N have �t = 0 so Bm and Bz are independent of Ḃm and Ḃz .
Surface maps of the magnetic field can then be provided using the snapshot recon-
struction. Use of a different mapping time (t0), will produce a different result for
the magnetic fields. Field projections using the method of Shrauner and Scherrer
(1994) treat the underlying magnetic field as static so that the resulting maps at
different times change only because of the varying distortion. By including a mini-
mal representation of the time dependence using the above formulae, the effects of
both time variability and variable distortion are present in a series of such snapshot
maps.

4. Conclusion

We have defined a variable we term the “Carrington time” and recommend its usage
in the context of synoptic charts of solar features. This quantity can either be used
in time units or in equivalent angular units. In the latter case, it is desirable to use
an alternate symbol or clarify in some manner that the coordinate is not a true
longitude. We hope that the use of such labeling will help prevent confusion as
to the nature of quantities plotted in synoptic charts. When applying solar data as
boundary conditions or input to models, the quantities used should always be taken
from a snapshot or instantaneous chart of the variable and not from a synoptic chart.
When a synoptic chart is prepared from multiple observations, smearing of features
can be reduced by differential rotation correction; and if this method is used, it is
important to make explicit which rotation law has been applied.
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