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Abstract. High-cadence, high-resolution magnetograms have shown that the quiet-Sun photosphere
is very dynamic in nature. It is comprised of discrete magnetic fragments which are characterized by
four key processes – emergence, coalescence, fragmentation and cancellation. All of this will have
consequences for the magnetic field in the corona above.

The aim of this study is to gauge the effect of the behavior of the photospheric flux fragments
on the quiet-Sun corona. By considering a sequence of observed magnetograms, photospheric flux
fragments are represented by a series of point sources and the resulting potential field arising from
them is examined. It is found that the quiet-Sun coronal flux is generally recycled on time scales
considerably shorter than the corresponding time scales for the recycling of photospheric flux. From
the motions of photospheric fragments alone, a recycling time of coronal flux of around 3 h is found.
However, it is found that the amount of reconnection driven by the motions of fragments is comparable
to the amount driven by emergence and cancellation of flux, resulting in a net flux replacement time
for the corona of only 1.4 h.

The technique used in this study was briefly presented in a short research letter (R. M. Close et al.,
Astrophys. J., 612, L81, 2004); here the technique is discussed in far greater depth. Furthermore, an
estimate is made of the currents required to flow along separator field lines in order to sustain the
observed heating rates (assuming separator reconnection is the key mechanism by which the solar
corona is heated).

1. Introduction

Observations have shown that the outer atmosphere of the Sun, the corona, is heated
to a temperature of several million Kelvin, some two orders of magnitude hotter than
the chromosphere below. It is believed that the energy required for such heating
originates in the turbulent convection zone below the photosphere. This energy
is channeled through the solar surface into the chromosphere and corona by the
magnetic field.
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The presence of the magnetic field is the product of complex dynamo pro-
cesses. In the case of active regions, this is most probably the direct consequence
of a global magnetic field generation mechanism situated at the base of the con-
vection zone, where differential rotation generates a toroidal field from poloidal
field (Moffat, 1978). The origin of the quiet-Sun field, on the other hand, is not
known with such certainty. One possibility is that it is a by-product of the same
large-scale solar dynamo that gives rise to the active regions (Spruit, Title, and
Ballegooijen, 1997). However, the continued presence of the quiet-Sun fields at
solar minimum (when active regions are generally absent) has led to the sugges-
tion that the quiet-Sun photospheric flux is generated by local dynamo action just
below the Sun’s surface driven by granular and supergranular flows (Meneguzzi
and Pouquet, 1989; Durney, Young, and Roxburgh, 1993; Petrovay and Szakály,
1993; Lin, 1995; Hughes, Cattaneo, and Kim, 1998; Tobias, 2002). In practice, it is
likely that both mechanisms are at work, so that the problem lies with determining
how substantial a role each mechanism plays in the generation of the quiet-Sun
magnetic fields.

In the photosphere, new flux is seen to be constantly emerging. Hagenaar (2001)
measured the rate of this emergence and showed that enough flux is emerging for
the entire quiet-Sun flux to be recycled in around only 14 h. (This figure was revised
to 8–19 h by Hagenaar, Schrijver, and Title (2003)). The continual emergence of
flux is matched by continued cancellation between merged and fragmented flux
concentrations, so that the picture that emerges is one of a very dynamic quiet-Sun
magnetic field. Schrijver et al. (1997) showed that observed flux distributions are
not consistent with a source function that is just the distribution of flux that disap-
pears from the solar surface. Hence, the magnetic fields are not simply bobbing up
and down through the photosphere, and are instead being continually reprocessed.
Supergranular flows sweep magnetic fields to supergranular cell boundaries, frag-
menting, canceling or merging them along the way. Upon reaching a cell boundary,
flux fragments then move along the boundary with the flow along it and are again
subjected to fragmentation, cancellation or mergence.

The complicated motions of magnetic flux fragments in the quiet-Sun network
will drive reconnection higher in the upper atmosphere, as magnetic fields con-
stantly realign themselves in response to the ever-changing footpoint configura-
tions. Moreover, new flux that emerges through the photospheric surface will at
some stage reconnect with the overlying field.

Several models have been presented for the way in which energy is dissipated
in the corona. In particular, reconnection of magnetic field lines in the corona may
result in energy being deposited there (Priest and Forbes, 2000, and references
therein). This process of magnetic reconnection is thought to occur in many quiet-
Sun coronal events, including X-ray bright points, X-ray jets and nanoflares.

Reconnection driven by the magnetic carpet is important, since it is thought that
this is the mechanism by which the ambient corona is heated (Levine, 1974; Parker,
1981, 1983, 1988; Parnell and Priest, 1994, 1995; Schrijver et al., 1998; Longcope
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and Kankelborg, 1999; Priest, Heyvaerts, and Title, 2002). It may also play a role
in accelerating the fast solar wind (McKenzie, Banaszkiewicz, and Axford, 1995).

Thus, the aim of this study is to try to put a handle on the amount of reconnection
that occurs as a consequence of the dynamic nature of the magnetic carpet. This is
approached by taking observed magnetograms, identifying and tracking individual
fragments, and extrapolating the magnetic field using a potential field approxima-
tion. By comparing domain fluxes between successive magnetogram images, the
amount of reconnection that must have taken place to move from one configuration
to the next is gauged. Section 2 discusses how photospheric flux fragments are
treated using the general approach of Longcope (2001) for mapping the connectiv-
ity of the field, whilst Section 3 details various assumptions in the analysis. This
is followed up with an analysis whereby emergence and cancellation are prohib-
ited in Section 4. Section 5 starts with a discussion regarding changes in source
fluxes, which is followed by calculations of flux recycling times due to emergence
and cancellation. An estimate of the amount of reconnection that takes place when
emergence and submergence are allowed is then presented. The study is rounded off
with a discussion of energy dissipation due to separator reconnection in Section 6.
A concluding discussion is given in Section 7.

2. Photospheric Flux Fragments

To study the effects of granular and supergranular flows on the connectivity of
magnetic carpet fields, a sequence of high-resolution MDI magnetograms (each
240 Mm × 240 Mm) is used for the analysis, and the central 80 Mm × 80 Mm
is studied. After averaging over sequences of 15-magnetograms spaced by 1 min
(in order to reduce the effects of 5 min oscillations), this leaves a series of 50
magnetograms, each spaced by 15 min and covering a 12-h period.

Discrete fragments are located spatially and labeled in each of the 50 magne-
tograms in turn. On average, there are 286 fragments in total per frame, although
naturally this number varies from frame to frame. Subsequent magnetograms are
then compared in order to track the motions of individual fragments. Thus, the
unique labels given to each fragment are projected temporally through the set of
magnetograms (Parnell, in preparation).

In the model considered here, the photosphere is treated locally as the plane
z = 0, and the corona is the region z > 0. Since magnetograms show that the
photospheric magnetic field is generally assembled into isolated fragments of
strong magnetic field (a small section of which is illustrated in Figure 1 (left)), with
relatively little field outwith these concentrations, each fragment is represented by
a single point source, placed at its centroid. As only the region z ≥ 0 is considered
here, the sources are treated as points where flux passes through the z = 0 plane
and are thus not isolated monopoles (which are not allowed since ∇ · B = 0). The
potential field is obtained using the point-source Poisson solution, which gives the
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Figure 1. (Left) A small section of one of the Magnetogram images showing a typical quiet-Sun region
containing mixed-polarity fragments. The field shown here consists of three positive fragments, P1,
P2 and P3, and two negative fragments, N1 and N2. The background shown in grey is, by comparison
with the flux fragments, unmagnetized. (Right) A possible domain graph for the region, with the
domain fluxes ψi (i = 1 . . . 5) indicated.

magnetic field B(r) at a point r = x x̂ + yŷ + zẑ by the following sum over all the
sources

B(r) =
∑

i

εi (r − ri)

|r − ri|3 , (1)

where ri = xi x̂ + yi ŷ + zi ẑ is the position of the i th source, with strength εi .
As there are no magnetic monopoles within the Sun, the net flux crossing the

complete solar surface must be zero. However, in a case such as the one studied
here, where only a particular section of the photospheric surface is studied, there
will undoubtedly be, unless one is extremely lucky, some amount of flux imbalance.
Thus, if a flux imbalance in a particular region is found, and the sum of all the source
fluxes is

∑

a

�a = �Tot, (2)

then this requires the inclusion, at infinity, of a source with flux −�Tot. Thence,
each system may be considered to be in flux balance.

Aside from topologically defining field lines, such as fan field lines, spine field
lines and separator field lines, every field line in the corona begins at a positive
source and ends at a negative source. In this scenario, the coronal volume may be
viewed as being comprised of a multitude of flux domains, each characterized by
the end-points of its field lines.

It is, of course, possible that a pair of sources may be connected by field lines
from multiple domains. However, in this study, only changes in the total flux con-
necting pairs of sources will be considered, and any reconnection that relates to
reapportionment of flux between any multiple domains connecting the given pair
of sources will be neglected, just as any redistribution of field lines within domains
will not be accounted for.
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The fluxes of the Nd domains that interconnect the Ns sources will be denoted
by ψn . If a source a is considered, with a flux �a , then the Nd domain fluxes may
be related to the flux of source a through the incidence matrix

�a =
Nd∑

n=1

Manψn. (3)

The domain fluxes ψn are defined as positive quantities. An unsigned-flux con-
vention is adopted here, whereby �a > 0 for all sources, and the entries in Man are
either +1 or 0. Longcope and Klapper (2002), by contrast, use a signed-flux conven-
tion, where �a < 0 if a is a negative-polarity source, and along the corresponding
row Man = −1 for each domain n connected to it. The unsigned-flux convention
is opted for here so as to avoid confusion with the terms “increase” and “decrease”
when referring to changes in source fluxes. This will become important when com-
paring emergence and cancellation of flux in a given domain with reconnection in
that domain.

Figure 1 (right) shows an example of how a magnetic field may be interpreted
in terms of graph theory. In this example,
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whereDi denotes the domain within which the flux ψi is contained. The relationship
(3) may be stated more explicitly as
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3. Analysis

The sequence of 50 magnetograms gives a total of 49 sets of consecutive pairs
of magnetograms with which to compare domain fluxes. Henceforth, the first
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magnetogram in a pair shall be denoted with the letter ‘i’ for initial, and the second
magnetogram with the letter ‘ f ’ for final. In order to obtain the domain fluxes ψn ,
the same method as in Close et al. (2003) is used. This involves calculating a num-
ber of field lines from starting points close to each source. Hence, from each source
within the inner region, m field lines are traced, with m equal to the integer part of
ε/ε1 (where ε1 = 7.73 × 1015 Mx). Thus, each field line represents essentially the
same amount of flux.

The connectivity for each magnetogram is stored in a connectivity matrix, where
columns represent positive-polarity fragments and rows represent negative frag-
ments. Naturally, the nature of the connectivity matrix will change from one mag-
netogram to the next, as fragments may emerge, fragment, coalesce or disappear
from one magnetogram to the next. Thus, positive and negative index vectors are
kept for each frame, and the history of which fragments have fragmented and which
have coalesced is also stored. This enables a comparison of domain fluxes for each
of the 49 pairs. To accommodate for the fact that field lines may close outwith the
inner region, all the flux represented by such field lines is recorded in the connectiv-
ity matrix; however, only half the flux represented by a field line closing within the
inner region is recorded because, at least in optimal conditions, the other half of the
flux represented will be recorded when tracing back from the fragment at which the
field line closed. Thus, all the flux within the inner region studied is accounted for.

3.1. COMPARING MAGNETOGRAM PAIRS

Taking each pair of magnetograms in turn, the aim is to have, for every fragment
in frame f , a corresponding fragment in frame i , and vice versa. However, a com-
plication arises due to the fact that fragments may split or coalesce. The exact
cause of fragmentation is not clear, but it is suspected that granulation may play
a role (Parnell, 2001). A given network element may cover a region containing as
many as 25 granules, so it is quite probable that granulation flows will constantly
buffet the many intense flux tubes comprising the magnetic fragments, resulting in
a continuous redistribution of the flux within each fragment. Supergranular flows
will tend to hold these fragments together as they drift towards the downflow re-
gions at supergranular boundaries. However, whenever there is a weakening in the
supergranular flows, then granular motions will prevail, causing fragmentation to
occur.

Sketched in Figure 2 are three possible scenarios that may occur involving
fragmentation and coalescence. Figure 2(a) shows a fragment in frame i that has
split into several smaller fragments by frame f . Figure 2(b) shows the converse of
this, where several distinct fragments in frame i have merged into a single, larger
fragment by frame f . However, a third possibility, shown in Figure 2(c), is that
several fragments in frame i coalesce into a single, larger fragment, which itself
is viewed to have split by frame f . Note the suggestion here is that coalescence
occurred, followed by fragmentation. Of course, one cannot know what happened
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Figure 2. Sketches of the possible scenarios that may arise when (a) a single fragment in frame i has
split into several smaller fragments by frame f , (b) several fragments in frame i have merged into a
single, larger fragment by frame f , and (c) several fragments merge to form a single larger fragment
in frame i , whilst this single fragment has split into several smaller fragments by frame f . The various
� values represent the flux in the given fragments.

between frames, so it is equally plausible that fragmentation occurred, followed by
coalesence. Indeed, both processes may have occurred at the same time. However,
the way such cases are treated is independent of the order of the processes.

Fragmentation and coalescence may be dealt with in the following way. Consider
two fragments, a and b, in frame f , with fluxes �

f
a and �

f
b , respectively. If these two

fragments are connected by an amount ψ
f

n , then the change in the flux connecting
a and b from frame i to frame f may be written as

�ψn = ψ f
n − κAκBψ i

N . (6)

The term κAκBψ i
N is essentially ψ i

n , the amount of flux connecting the equivalents
of the fragments a and b in the frame i . The values of κA and κB , which deal with
fragmentation, and ψ i

N , which deals with mergence, are found in the following
manner. If fragment a in frame f has been formed by fragmentation, then

κA = �
f
a

�
f
A

, (7)

where �
f
A is the sum of the fluxes of all the fragments that were involved in the

fragmentation. Otherwise κA = 1. κB is defined in a similar way for the fragment
b. Thus, it is assumed that, at the point of fragmentation, each fragment receives a
portion of the connected flux proportional to its own flux strength.

The value of ψ i
N is defined in one of the following three ways.

1. If both the fragments a and b consist of fragments that merged between the
frames i and f , then

ψ i
N =

∑

j,k

Flux connecting ai
j to bi

k,
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where the ai
j are the fragments associated with a that have merged by frame f ,

and the bi
j are the fragments associated with b that have merged by frame f .

2. If only a consists of fragments that merged between the frames i and f , then

ψ i
N =

∑

j

Flux connecting ai
j to bi ,

where the ai
j are the fragments associated with a that have merged by frame

f , and bi is the fragment associated with b in the frame i .
3. If neither a nor b consist of fragments that merged between the frames i and

f , then

ψ i
N = Flux connecting ai to bi ,

where ai is the fragment associated with a in the frame i , and bi is the
fragment associated with b in the frame i .

Births and deaths of fragments cause a slight problem, as it is of course not
possible to find corresponding fragments in both frames when fragments simply
appear/disappear between frames. The way in which this problem is overcome is
as follows. If a fragment in magnetogram i has died by magnetogram f , then either
(i) the fragment is removed from frame i or (ii) the fragment is copied into frame
f , giving it the same flux and the same position as it has in frame i . Both of these
options are deployed in different scenarios later on. Fragments that are newly born
in frame f are treated in an analogous manner.

3.2. EMERGENCE, CANCELLATION AND RECONNECTION

In complex magnetic configurations, such as those found in the mixed-polarity
quiet Sun, the motions of photospheric fragments will inevitably, at the very least,
lead to a redistribution of flux between the domains that have their flux rooted
in these fragments. Also, from a topological viewpoint, these motions will drive
bifurcations, as old domains are destroyed or altered and new ones are created
(Brown and Priest, 1999, 2001; Beveridge, Priest, and Brown, 2002). In a potential
field, the system is entirely current-free, so the configuration permits no stress and
therefore changes in connectivity occur instantly. Here, however, the details of
how the reconnection occurs are not considered; instead, snapshots of the field are
examined as the process evolves, and regions where reconnection has occurred are
identified.

The motions of the flux fragments are not the only reason for changes in domain
fluxes, though. In a system as dynamic as the quiet-Sun photosphere, emergence
and cancellation of flux through the photospheric boundary will also alter domain
fluxes, so that the resulting changes that are recorded from one magnetogram to
the next will be the net effect of emergence, cancellation and reconnection. In light
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of this, recycling times for coronal flux in two different scenarios are considered
here. In the first, reconnection is driven purely through the motions of the frag-
ments by prohibiting emergence and cancellation. In this case, fluxes are averaged
between frames, so that fragment strengths are kept fixed and only the effects of
the motions of the fragments are measured. In the second scenario, emergence and
cancellation are allowed, so that the fluxes of the fragments may vary between
frames. Births and deaths of fragments are exceptions to this; by either (i) copying
the newly born/just died fragments into the frame in which they are not present, or
(ii) removing the newly born/just died fragments completely (both of these tricks
were discussed in Section 3.1), it is essentially assumed that these fragments have
witnessed no emergence or cancellation. Although this will introduce slight errors
into the analysis, the alternative, whereby the fragments are copied into the frame
in which they are absent but have their fluxes set to zero (these would essentially
be “ghost fragments”, existing solely for the purpose of quantifying the change in
domain fluxes), would introduce far greater errors into the analysis. This is mainly
because the cadence of the magnetogram images is not high enough to trace the
deaths (births) smoothly, resulting in a vanishing effect whereby fragments sud-
denly disappear (appear), rather than having their strengths decrease (increase) to
(from) zero. This shall be discussed further later on.

From a coronal heating viewpoint, a measure of the amount of reconnection that
occurs is what is of greatest interest. Changes in source fluxes are accompanied by
changes in domain fluxes, related by the expression

��a =
Nd∑

n=1

Man �ψn. (8)

This assumes that the connectivity does not change, so that, if a domain is absent
from either the initial or final field, then it is simply included in the incidence matrix
and given the value ψn = 0. Magnetic reconnection is a change in domain fluxes,
�ψn = Rn , which occurs in the corona and therefore does not affect the source
fluxes. Thus

Nd∑

n=1

Man Rn = 0. (9)

The processes of emergence and cancellation of flux will alter the fluxes of the
photospheric sources, which in turn will inject flux Sn into the domains. In general,
domain fluxes combine reconnection, emergence and cancellation (the adoption of
an unsigned-flux convention means that Sn > 0 relates to emergence, while Sn < 0
relates to cancellation). Hence

�ψn = Rn + Sn. (10)
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This decomposition, however, is not unique, as can easily be seen by the fact that

��a =
Nd∑

n=1

Man Sn, (11)

which is consistent with no reconnection (Rn = 0). Thus, in order to quantify
the reconnection Rn occurring in a field in which ��a and �ψn are measured,
additional information that allows the determination of Sn must first be introduced.

In the following section, the scenario in which emergence and cancellation of flux
are prohibited is considered, so that only the time taken to recycle coronal flux due
to fragment motions is measured. Section 5 then deals with the effects of emergence
and cancellation on the recycling time of coronal flux due to reconnection.

4. Scenario 1: Excluding Emergence and Cancellation

Initially, fields with ��a = 0 are considered. By Equation (11), this means that
Sn = 0 for all n. This is achieved in the following way: if a fragment a is identified,
which exists in both the initial and final frames, then the flux of a is adjusted in
both frames so that it is equal to the mean of its values in frame i and frame f .
However, since the four processes of emergence, fragmentation, coalescence and
cancellation occur, this must also be taken into account when adjusting the fluxes.

Generally, if fragments that are born or die between frames i and f are excluded,
the fluxes in frame i are adjusted in one of the following two ways.

1. If the fragment a in frame i is not just about to coalesce, then its flux �i
a is

adjusted such that

�i
a → �

f
A + �i

a

2
,

where �
f
A is its corresponding flux in the frame f . If the fragment a is not

about to fragment, then �
f
A = �

f
a , the fragment’s flux in frame f . If a is just

about to fragment, then

�
f
A =

p∑

j=1

� f
a j

,

where �
f
a j are the fluxes of the p fragments into which a fragments.

2. If m fragments in frame i are just about to coalesce, then the fluxes of each
of the a j fragments ( j = 1, . . . , m) are adjusted such that

�i
a j

→
�i

a j

�i
A

(
�

f
A + �i

A

2

)
,
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where �
f
A is as previously defined and

�i
A =

m∑

j=1

�i
a j

,

namely, the sum of the fluxes of the m fragments that are about to coalesce.

Similarly, if fragments that are born or die between frames i and f are again
excluded, then the fragments in frame f must also have their fluxes adjusted in one
of the following two ways.

1. If the fragment a in frame f has not just been involved in fragmentation,
then its flux �

f
a is adjusted such that

� f
a → �

f
a + �i

A

2
,

where �i
A is its corresponding flux in the frame i . If the fragment a does not

consist of newly merged fragments, then �i
A = �i

a , the fragment’s flux in
frame i . If a is comprised of newly merged fragments, then

�i
A =

p∑

j=1

�i
a j

,

where the �i
a j

are the fluxes of the p fragments that merged.
2. If the fragment a has just merged with m fragments, then the fluxes of each

of the a j fragments ( j = 1, . . . , m) is adjusted such that

� f
a j

→ �
f
a j

�
f
A

(
�

f
A + �i

A

2

)
,

where �i
A is defined as above and

�
f
A =

m∑

j=1

� f
a j

,

namely, the sum of the fluxes of the fragments that just merged.

The results obtained by these measures are provided in the following subsection.

4.1. CORONAL FLUX RECYCLING TIME DUE TO RECONNECTION DRIVEN

BY FOOTPOINT MOTIONS ALONE

By prohibiting the emergence and cancellation of flux between magnetogram pairs,
it is possible to measure the changes in domain fluxes resulting from the motions
of the fragments alone.
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Assuming that each domain is either a “donor” or a “recipient” of reconnected
flux, then the total amount of reconnected flux is

�R = 1

2

Nd∑

n=1

|Rn|. (12)

In this scenario, Rn ≡ �ψn , since Sn = 0 in all domains.
The fraction of flux reconnected over time �t is given by

fR = �R

F
, (13)

where F , the total flux in the system, is given by

F ≡
Nd∑

n=1

ψn = 1

2

Ns∑

a=1

�a. (14)

If fR � 1, then all field lines will be re-mapped after a time

τr ≡ �t

fR
= �t

∑Ns
a=1 |�a|∑Nd
n=1 |Rn|

, (15)

where �t is the time lapse between successive magnetograms, which here is 15 min.
In the first instance, where all fragments that have just been born or just died are
removed, the total flux F in the system is 1.91 × 1021 Mx. It is found that an
average 8.12% ± 0.14% of this flux (around 1.55 × 1020 Mx) is recycled between
each pair of magnetograms. Using Equation (15), this results in a recycling time
of τr = 3.08 h (ranging from 3.03 and 3.13 h) for coronal field lines by motions of
their footpoints alone.

By copying fragments that have just been born or have just died into the frame
in which they are not present, similar figures are obtained. With F naturally being
slightly higher here at 1.93 × 1021 Mx, it is found that, on average, 7.88% ± 0.14%
of flux (around 1.52×1020 Mx) is re-mapped between each pair of magnetograms,
resulting in a period of τr = 3.17 h for all the coronal field lines to be recycled.
This has a range of 3.12–3.23 h if errors are taken into account.

However, the constant emergence and cancellation of flux through the photo-
sphere is likely to have an effect on the re-mapping time for coronal field lines.
The next section therefore details how an estimate of the effects of emergence and
cancellation may be obtained.

5. Scenario 2: Including Emergence and Cancellation

In this section, changes in the strengths of the fragments from one frame to the
next are included. Therefore, a boxcar smoothing method is applied to the time
sequence of each fragment in order to remove spurious fluctuations in the fragment
strengths. The effects of such smoothing are described in Appendix A.
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Any effort to take into account emergence and cancellation of flux requires prior
knowledge of the changes in source fluxes. In general, the change in the flux of a
fragment a from frame i to frame f will be given by

��a = � f
a − �i

a.

However, it is again necessary to approximate what happens when fragments split
or merge. Thus, in such cases, the change in flux of a fragment a is approximated
by

��a = �
f
a

�
f
A

(
�

f
A − �i

A

)
.

If a is involved in fragmentation, then �
f
A is the sum of the fluxes of all the

fragments that were involved in the fragmentation. Otherwise, � f
A = �

f
a . Similarly,

if a consists of newly merged fragments, then �i
A is the sum of the fluxes of all

the fragments in frame i that have merged by frame f . Otherwise, �i
A = �i

a , the
corresponding flux for a in frame i .

Since infinity is included as a balancing source, then it too will have a change
in strength. Thus, as changes from one system of flux balance to another are con-
sidered, the difference in these two fields comprises equal amounts of positive
and negative flux. Hence, it is now possible to start thinking about obtaining a
decomposition of Equation (11).

A natural starting point for considering emergence and cancellation is to assume
that the processes of emergence and cancellation must occur at the photosphere,
resulting in Sn = 0 for any domain n which is purely coronal. Assuming intuitively
that emergence and cancellation occur through a set of flux tubes crossing the
photospheric surface, then each flux tube will correspond to a domain, with the set
of flux tubes forming a subset T of all domains. Henceforth, this shall be referred
to as pair-wise emergence/cancellation. In the most straightforward version of this
scenario, no source may belong to more than one flux tube, meaning that each flux
tube links a pair of sources that must increase or decrease in tandem. However,
even if pair-wise emergence/cancellation were occurring in practice, one could not
realistically expect that measured changes in source fluxes ��a , with inherent
noise and other errors, will be exactly equal in each pair of sources. Thus, in order
to make the analysis robust and mathematically well-posed, enough domains must
be included in the set T so that its graph forms a tree. A tree is a graph in which all
the vertices (here sources) are connected by a number of edges (domains) that is
one fewer than the number of vertices, here Ns −1. Consequently, there will be one
and only one path connecting any pair of vertices, thus ruling out the possibility of
circuits (a circuit is a closed path containing a route that starts and ends at the same
vertex, passing through other vertices along the way ).

However, a general set of photospheric domains will contain many circuits,
meaning that there will be numerous tree subgraphs that span the entire set of
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sources. Thus, further information must be supplied so that the choice of tree is
unique and is related to emergence and cancellation. An obvious assumption is that
emergence/cancellation occurs between the closest pairs of sources, leading to a
minimum spanning tree. Of course, infinity has been included as a source, which
doesn’t have a position. However, this minor difficulty is overcome by writing Da∞,
the distance between the source a positioned at xa and infinity, as

Da∞ = Dmax + 1

|xa − x0| .

where x0 is the centroid of all the sources and Dmax is the maximum distance
between any pair of sources. Thus, sources located at the edge of the region are
preferentially chosen as the sources through which infinity is included in the tree.

So, with knowledge of the distances between pairs of sources, the minimum
spanning tree is obtained, with the distances between the connected pairs of sources
subject to the minimization. The minimum spanning tree is obtained using Prim’s
algorithm (Prim, 1957).

The incidence matrix M (T )
an may now be introduced, defined such that

M (T )
an =

{
Man, Dn ∈ T

0, Dn /∈ T , (16)

where Dn represents the domain n. This allows Equation (11) to be rewritten as
Nd∑

n=1

M (T )
an Sn = ��a, (17)

under the assumption that Sn = 0 for Dn /∈ T . Since T is a tree, the matrix MT
an is

of full rank and may be inverted, giving

Sn =
Ns∑

a=1

[
M (T )

]−1
na ��a. (18)

In practice, Equation (16) is solved by locating a “leaf” on the tree, which
is a vertex, representing source y, say, connected to only one edge, representing
domain Dx , say. This gives the relationship Sx = |��y|, which is trivial to solve.
The vertex corresponding to source y and the edge corresponding to domain Dx

are then “removed” from the graph, and the flux of the source z at the other end
of domain x is decremented, such that ��z → ��z − Sx . Hence, row a and
column n are removed from Equation (16). The new graph still has one fewer
edges than vertices, and is therefore still a tree. The process is repeated, solving for
the next leaf and so forth, until all the Sn have been found. The final equation will
contain two sources coupled by a single domain, and as such will be mathematically
over-specified. However, since the system is in over-all flux balance, both of the
remaining fluxes will be equal, and the remaining Sn may be determined from either
one.
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If T were unconnected, then, since complete flux balance is far from guaranteed
for each disconnected component, Equation (16) would be over-constrained and
could not be solved in general. Therefore, after obtaining the tree T , a quick check
is performed to ensure that the graph T is connected, which, of course, it always
is.

In pair-wise emergence, at least in optimal conditions, the ��a vector takes the
form of equal pairs corresponding to the emerging flux tubes. It can be shown that in
this scenario Sn is non-zero in only those domains linking the pairs being considered,
independent of which domains supplemented the graph T in order to obtain a tree.
In practice, the addition of errors to a set of pair-wise emergences/cancellations will
be manifested in non-zero (but presumably small) fluxes in additional domains.

5.1. PHOTOSPHERIC RECYCLING TIMES

By considering the change in the source fluxes, an estimate for the recycling time of
photospheric flux due to emergence and cancellation may be obtained. The amount
of emergence in all the sources is given by

�S+ = 1

2

Ns∑

a=1

|��a|�(��a), (19)

where the Heaviside function �(x) picks out only the cases where the flux is
increasing as emergence. The factor of 1/2 is present since emergence affects a
positive and a negative pole equally. Conversely, the amount of cancellation is
given by

�S− = 1

2

Ns∑

a=1

|��a|�(−��a). (20)

In a statistical steady state, one may define an average quantity �S that accounts
for either emergence or cancellation as

�S 	 1

2
(�S+ + �S−) ≡ 1

4

Ns∑

a=1

|��a|. (21)

The fraction of flux that emerges, which by the assumption of a statistical steady
state is equal to the amount that cancels, is

fS ≡ �S

F
, (22)

where F is the total flux in the system, as given by Equation (14). Provided that
the system is indeed in a statistical steady state, then all photospheric flux will be
“recycled” by emergence or cancellation after a time

τp ≡ �t

fS
= �t

∑Ns
a=1 |�a|

1
2

∑Ns
a=1 |��a|

. (23)
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By including all changes in source fluxes in the calculation (i.e. changes due to births
of fragments, deaths of fragments and fluctuations in their fluxes throughout their
lifetimes), around 3.07 × 1019 Mx (some 1.6%) of the 1.92 × 1021 Mx of the flux
F in the system is recycled every 15 min. Subsequently, by deploying Equation
(15), a photospheric flux recycling time of 15.66 h is obtained. This figure is in
fairly good agreement with that of Hagenaar (2001) who obtained a slightly shorter
recycling time of 14 h for photospheric flux. Important factors that account for the
difference in these estimates include the size of the area being studied – the region
studied here is significantly smaller than that studied by Hagenaar (2001), plus the
data set used here is of a much higher resolution too. Also, the two methods of
calculating the recycling time differ greatly, with Hagenaar (2001) generally being
much stricter in what is accepted as an emergence. (Hagenaar, Schrijver, and Title
(2003) revised the previous figure by Hagenaar (2001) of 14 h to 8–19 h, which is
still in agreement with the estimate obtained here).

5.2. CORONAL RECYCLING TIME DUE TO EMERGENCE AND CANCELLATION

An estimate for the time taken to recycle the coronal field due to emergence and
cancellation may also be obtained by considering the domains with Sn 
= 0. The
total amount of emergence/cancellation in all domains is given by

�S′
± ≡

Nd∑

r=1

|Sn|�(±Sn), (24)

Again, the Heaviside function picks out cases where flux is increasing/decreasing
as emergence/cancellation. Following the same reasoning for �S±, an average
quantity to account for either emergence or cancellation is defined:

�S′ ≡ 1

2
(�S′

+ + �S′
−) = 1

2

Nd∑

n=1

|Sn|. (25)

Using �S′ instead of �S provides a time for coronal flux recycling due to emer-
gence and cancellation:

τe/c ≡ �t
F

�S′ = �t

∑Ns
a=1 |�a|∑Nd
n=1 |Sn|

. (26)

The photospheric recycling time should be longer than the corresponding coronal
recycling time for recycling due to emergence/cancellation. This can be seen by
taking the absolute value of Equation (17) and applying the triangle inequality:

|��a| ≤
Nd∑

n=1

M (T )
an |Sn|. (27)

The equality only holds in the case that no source is involved in both emergence
and cancellation simultaneously (since in this case all terms M (T )

an Sn are of the
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same sign for a given source a). Although this is automatically true in the pair-wise
emergence scenario, when each source is part of only one emerging flux tube, in the
more general case of a tree of emergence domains it is possible for one source to
simultaneously connect to both emerging and canceling domains at the same time.
Substituting the inequality in expression (21) yields

�S ≤ 1

4

Ns∑

a=1

(
Nd∑

n=1

M (T )
an

)
|Sn| = �S′. (28)

Here use has been made of the fact that
∑

a Man = 2 for any incidence matrix, since
each domain connects exactly two sources. This inequality leads immediately to
τe/c ≤ τp.

At this point, it is not possible to obtain a value of the coronal recycling time
due to emergence and cancellation that includes effects of the births and deaths of
fragments. Since a birth (death) can inject (remove) a relatively large amount of flux
in one go (due to the low cadence of the sequence of magnetograms studied here),
this would wreak havoc on the decomposition for Sn . Such a problem would not be
so pronounced with a much higher cadence, since the births (deaths) of fragments
would be more smoothly traced, and there wouldn’t be such a large amount of flux
simply appearing (disappearing) between frames. Nevertheless, by including only
the fluctuations in fragment fluxes throughout their lifetimes, coronal recycling
times of τe/c = 2.25 h and τe/c = 2.29 h are found (the first figure is obtained
by copying newly born/just died fragments into the frame in which they are not
present, the second figure is obtained by removing said fragments from both frames
altogether). The corresponding photospheric times, calculated by prohibiting births
and deaths of fragments, are τp = 20.84 h and τp = 21.01 h. Thus, the time taken
to recycle all the coronal flux due to emergence and cancellation is much less than
the time taken to recycle all photospheric flux. This, as shall be seen, has dramatic
consequences for the time taken for all coronal field lines to be re-mapped by
reconnection.

5.3. CORONAL RECYCLING TIME DUE TO RECONNECTION DRIVEN

BY EMERGENCE, CANCELLATION AND MOTIONS OF FRAGMENTS

Having obtained an estimate for the amount of flux in each domain that may be at-
tributed to emergence and cancellation, it is now possible to consider reconnection.

Changes in domain fluxes related to reconnection are given by subtracting the
flux due to emergence/cancellation from each domain:

Rn = �ψn −
Ns∑

a=1

[
M (T )

]−1
na ��a. (29)
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An estimate of the amount of the coronal flux that is involved in magnetic recon-
nection may be obtained from

τr ≡ �t
F

�R
, (30)

where �R is found by substituting the Rn found here into Equation (12). In doing so,
it is found that 17.87% ± 0.21% (around 3.45×1020 Mx) of the 1.93×1021 Mx of
coronal flux is re-mapped every 15 min, giving a recycling time of 1.399 h (ranging
from 1.382 and 1.416 h). These figures are obtained by copying newly born/just died
fragments into the frame in which they are not present; when the newly born/just
died fragments are removed from the frame in which they are present, it is found
that 17.61% ± 0.21% (around 3.36 × 1020 Mx) of the 1.91 × 1021 Mx of coronal
flux is re-mapped every 15 min, giving a recycling time of 1.420 h (ranging from
1.403 and 1.437 h).

The calculation of the flux (Sn) that has emerged or canceled in a given domain
n linking a pair of sources is often larger than the observed net change in flux
(�ψn) when �ψn > 0, so that the reconnected flux (Rn) is of the opposite sign to
Sn (similarly, for �ψn < 0, it is sometimes found that Sn < �ψn). This implies
that the field, initially assumed potential, reacts to emergence and cancellation of
flux between frames by rearranging itself through the process of reconnection to a
new equilibrium field (which is assumed to be potential). This is reasonable, since it
would be unlikely that coronal domains simply swell from injection of flux without
reconnection occurring. Thus, the changing of photospheric flux continually drives
reconnection in the corona, enabling the field to remain close to potential.

6. Energy Dissipation

In this section, energy dissipation by means of separator reconnection is considered.
Generally, a given domain will be encircled by a closed ring of separators (Lau

and Finn, 1990; Longcope and Klapper, 2002). The flux ψ i
n in such a domain n

may be obtained by defining a closed curve K which, for a coronal domain, is
just the engirdling ring of separators, whilst for a photospheric domain, K is the
section of the engirdling curve that is situated in the region z ≥ 0, running from
the photospheric points P to Q, combined with a line segment in the z = 0 plane
joining P to Q. Integrating the magnetic potential A along K gives

ψ i
n =

∮

K
A · dl, (31)

where the direction of the integration proceeds parallel to the magnetic field along
the separator.

Of course, there will also be isolated systems of flux where the field from a given
source is completely enclosed by an unbroken fan surface from a single null – around
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8.8% of nulls give rise to such domains in the region studied here. However, these
domains account for only a small fraction of the total number of domains and, due to
their nature, their fluxes will be altered primarily through emergence/cancellation
of flux through the photospheric boundary. Thus, the consequences of the presence
of these types of domain will not be considered here.

If the photospheric fragments are displaced so that the domain flux changes from
ψ i

n to ψ
f

n , then this will typically alter the net vacuum flux that K encloses by an
amount �ψn . However, Longcope (1996) points out that if the plasma is a perfect
conductor, it will not permit any change in flux through K. Therefore, a current
ribbon with a total current I forms along the separator, with I flowing such that it
generates a self-flux ψ (cr )

n (I ) which cancels �ψn . Hence

ψ f
n + ψ (cr )

n (I ) = ψ i
n + �ψn + ψ (cr )

n (I ) = ψ i
n. (32)

Longcope and Cowley (1996) found that the quantities ψ (cr )
n (I ) and I are related

by

ψ (cr )
n (I ) = µ0 IL, (33)

where L is the differential inductance of the current ribbon. The precise expres-
sion for L can be quite complex, depending upon the current it carries; however,
the purpose here is adequately served by approximating L by the length of the
separator, L .

In order that non-potential energy may be stored in the corona, this requires
that current densities are present without an accompanying electric field. Longcope
(1996) proposed a scenario where the corona remains ideal for a period, during
which currents gradually build up along each separator loop. When the build-up
of current along a given loop exceeds a threshold value, it is assumed that some
instability occurs, which permits an electric field E‖ that in turn allows a change
in flux through the loop K, and reduces ψ (cr )

n . Longcope (1996) also assumed that,
when this process occurs, ψ (cr )

n → 0, so that all the energy above that of the potential
energy is liberated and the field is returned to its vacuum state.

Here the aim is to obtain an estimate for the mean threshold current, I ∗, at which
the reconnection process is triggered. Time differentiating Equation (31) results in
a version of Faraday’s law

dψn

dt
=

∮

K

∂A
∂t

dl = −
∫

E‖ dl = Vn, (34)

where Vn is the voltage along the loop K. Here the approximation

�Rn

�t
≈ dψn

dt
(35)
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is made, where �Rn is the amount of reconnection associated with the domain n.
Withbroe and Noyes (1977) obtained a heating rate of H = 300 W/m2 for the quiet
Sun. This may be related to this study by

H = I ∗〈Vn〉sep

A
= I ∗

A

〈
�Rn

�t

〉

sep

Nsep, (36)

where A is the area of the region, 〈Vn〉sep is the mean voltage, I ∗ is the mean current
along each separator, and Nsep is the number of separators in the region. Using
the figures obtained by prohibiting emergence/cancellation, an I ∗ of 5.33 × 1010

A is obtained by removing all fragments that have just been born or died, and a
similar figure of I ∗ = 5.45 × 1010 A is found by copying the newly born/just died
fragments into the frame in which they are not present.

However, in the example where emergence and cancellation during the lifetimes
of fragments are allowed, much lower values of I ∗ are found. By using �R in order
to obtain 〈Vn〉sep, a value of 2.42×1010 A is found in the scenario whereby fragments
that are newly born/just died are copied into the frame in which they are not present
(by removing newly born/just died fragments from the frame in which they are
present, a similar figure of 2.44 × 1010 A is found).

These values make sense when the difference in recycling times for the two
representations (i.e. including and excluding emergence and cancellation) are con-
sidered. By disallowing emergence and cancellation, it is found that much less re-
connection takes place. Thus one should naturally expect larger currents to build up.
In the case when emergence and cancellation are allowed, however, the abundance
of reconnection events means that the threshold current for allowing reconnection
and the subsequent dissipation of energy must be lower for the given heating rate.

The figures above provide an indication as to the sort of values that should be
expected from current-ribbon models of the quiet Sun, where currents are confined
to magnetic separators.

Longcope (1998), in contrast, applied a current ribbon model to the flare of 7
January 1992, and suggested maximum currents of the order 1011 A were flowing
along the associated separators. Here, the estimates for quiet-Sun separators suggest
figures between 1 and 10 times smaller.

7. Conclusions

Examining changes in the connectivity of potential fields based on observed mag-
netograms has shown that there is quite a gulf in the recycling time of coronal flux
compared with that for photospheric flux.

By identifying discrete fragments in a 12-h sequence of magnetograms, it is
found that the time taken for all photospheric flux to be recycled is around 15.7 h.
This is in fairly good agreement with the figures of 14 h obtained by Hagenaar
(2001) and 8–19 h obtained by Hagenaar, Schrijver, and Title (2003), considering
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the relatively small region and small time interval used here, and the completely
different approaches to the calculations.

Whilst the recycling time for photospheric flux has been known for several years,
until now there have been no estimates for the time taken to recycle the magnetic
field in the corona. Such a calculation has been presented here. By considering
a pair-wise emergence/cancellation scenario, whereby new flux emerges/cancels
in flux tubes through a tree of domains linking pairs of closest photospheric flux
sources, it is estimated how much of the change in domain fluxes is a consequence
of emergence and cancellation of flux in the photosphere. In this way, it is found
that emergence and cancellation of photospheric flux will recycle all coronal field
lines in around 2.3 h.

The time taken to recycle the coronal field due to reconnection, which is of
particular interest since reconnection is believed to be the primary means of heating
the corona over the quiet Sun, has also been calculated here. By considering two
scenarios, one in which the processes of emergence and cancellation are prohibited,
and another in which the change in magnetic flux domains due to emergence and
cancellation is estimated, it is found that the coronal flux is reconnected much more
quickly in the presence of emergence and cancellation. If the motions of magnetic
flux fragments were the only mechanism driving reconnection in the corona, it is
surmised the process would take around 3 h to completely re-map all coronal field
lines. However, by allowing emergence and cancellation as well, a much lower
estimate of around 1.4 h is found.

This implies that the two main driving forces behind reconnection in the corona,
namely reconnection driven by motions of fragments and reconnection driven by
emergence and cancellation of flux, are comparable in their importance. The first
estimate of 3 h indicates that even if emergence and reconnection were not occur-
ring, the coronal magnetic field would still be entirely replaced in a relatively short
time interval. The second estimate of 1.4 h implies that reconnection continually
occurs in reaction to the emergence and cancellation of flux in the photosphere,
which seems reasonable, as the coronal field is unlikely to allow domains to swell
too much from injection of flux without responding in some way (similarly with
reduction of flux due to cancellation). Hence, the changing of photospheric flux
continually drives reconnection in the corona, enabling the field to remain close to
potential.

All this will naturally have consequences for coronal heating. In this study,
observed heating rates have been used, along with the findings presented here, to
predict the consequences for energy dissipation due to separator reconnection. It is
shown that the observed changes in domain fluxes will result in an average current
density of around 5 × 1010 A for reconnection due to motions of flux fragments
alone, whereas if reconnection due to emergence and cancellation is included, a
lower average current density is produced of around 2 × 1010 A. This points to the
fact that a higher rate of reconnection implies that the currents flowing along the
separators during reconnection will generally be lower, as expected.
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The model presented here does, however, have its limitations. Flux motions,
caused by granular flows, which are unobservable in current magnetograms and
occur within fragments (which have a finite geometrical extent), are neglected
here. These would in turn cause more reconnection of field lines within domains,
and would hence reduce the recycling time further. To some degree, however,
the effects of neglecting such dynamics in the model are offset by the fact that
potential fields are used to model the corona, since a potential field permits no stress
and therefore reconnection occurs instantaneously. Work by Parnell and Galsgaard
(2004), which examined reconnection between two driven flux patches initially
separate and connected to an ambient coronal field, showed that in a potential field,
the sources reconnect all their flux in a quarter of the time taken by a full MHD
evolution.

The mean reconnection time for coronal flux presented here will nevertheless
have a number of interesting applications in future. Indeed, the analysis may be
extended to provide a distribution of energy release magnitudes for the solar corona,
and it could also be adapted to show how reconnection in the quiet Sun may account
for the background population of non-thermal electrons observed by RHESSI.
Furthermore, the frequent reconnection episodes will most likely launch a spectrum
of waves that are a necessary input to models of solar wind acceleration (e.g. Axford
and McKenzie (2002)). Knowledge of the recycling rate of the coronal magnetic
field may also be of relevance to studies of the anomalous diffusion of plasma
through the corona and abundance variations.

Appendix: A. Effects of Data Smoothing

Preparing magnetogram data for the purpose of extrapolation requires the use of
thresholds in order to separate genuine signals from the noise that is inherent in
magnetic field observations. In the data studied here, where fragments are tracked
not only spatially but also temporally, two levels of threshold are used so that frag-
ments whose strengths fluctuate above and below the upper threshold are tracked
properly and not simply recorded as a series of births and deaths.

Despite the use of two thresholds to minimize the counting in and out of pixels
with values near the upper threshold level, the total flux in each of the fragments does
of course include contributions from noise in the pixels. As the method outlined
in Section 5 for calculating emergence and cancellation in the fragments counts
all changes in the fluxes of the fragments between frames as being emergences
or cancellations, this inevitably results in an over-estimation of the amount of
emergence and cancellation that is occurring.

Thus, in order to reduce the effects outlined above, data smoothing is applied to
the time sequence of each fragment’s flux. The algorithm used for the smoothing
is a boxcar smoothing algorithm. This essentially relies on an integer parameter w

which defines the width of the “smoothing window” (i.e. the number of neighboring
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data points used for the smoothing of a given data point). Varying the size of w

subsequently varies the amount of smoothing that occurs, therefore varying the
amount of emergence and cancellation that occurs.

Before proceeding any further, it is worth pointing out that since mergence and
fragmentation may occur within the region of interest, it is not always possible to
smooth over the entire lifetime of some fragments. In such cases, only the parts of the
time sequence of the fragment’s flux where no mergence or fragmentation occurs
are smoothed. Of course, this will lead to peculiar jumps in the time sequences
of such fragments across the points where mergence or fragmentation occur. In
order to remove these anomalies, the fluxes of the fragments that are affected by
mergence and fragmentation are adjusted in accordance with Section 4. In this
way, it is assumed that fragments that either merge or split between a given pair
of magnetograms witness no emergence or cancellation. This is an unavoidable
consequence of using observed data in which mergence and fragmentation occur.

Ideally, a sensible amount of smoothing should be applied so that one may be
certain that spurious fluctuations in the data due to noise in the magnetogram pixels
are eradicated without compromising the profiles of the fragment fluxes too much.
Whilst all recycling times given in the text are calculated using a smoothing window
of width 7 frames (1.75 h), it is interesting to observe what happens to the recycling
times when varying levels of smoothing are used. This is what is detailed here.

Figure 3 shows a couple of plots that demonstrate how the recycling time for pho-
tospheric flux, given by Equation (23), varies as the amount of smoothing deployed
varies. Plot (a) shows the photospheric recycling time calculated by measuring all
changes in the fluxes of the fragments, i.e. due to births of fragments, deaths of
fragments and fluctuations in the strengths of fragments. From an initial recycling
time of 10 h in the case where no smoothing is deployed, the graph asymptotes
towards a figure of around 46 h. This would essentially be the time taken to recycle
all photospheric flux were the strengths of each fragment constant over its lifetime.
Plot (b) in Figure 3 shows the recycling times calculated when changes in flux as-
sociated with the births and deaths of fragments are ignored. In such a scenario, one
would expect the recycling time to tend to infinity as the smoothing is increased,
since the profiles of the fragments tend to one in which the fragment fluxes are
constant over their lifetimes. This is clearly seen to be happening in the plots.

Corresponding coronal recycling times due to emergence and cancellation, given
by Equation (26), are shown in Figure 4(a). Again, the effects of the births and deaths
of fragments have been neglected in the calculation of these values, meaning that
as the amount of smoothing increases, the recycling time tends towards infinity.
Comparing plot (b) in Figure 3 with Figure 4(a) suggests that the photospheric
recycling time tends to infinity much more quickly than the coronal recycling time.
This is fairly intuitive behavior, since one would expect a given amount of recycling
in the photosphere to result in substantially more recycling in the corona, where the
flux is partitioned into complex domain structures that interconnect the multitude
of sources.
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Figure 3. (a) Time taken (in hours) to recycle all photospheric flux versus boxcar width w used in
the smoothing of the fluxes of the fragments. The diamonds indicate the values obtained for specific
values of w. In this plot, births and deaths of fragments, along with the fluctuations in their fluxes,
have been taken into account. (b) Time taken to recycle all photospheric flux when only fluctuations
in the fluxes of fragments over their lifetimes are considered. The solid line and diamonds indicate
values obtained when newly born/just died fragments are copied into the frame in which they are
not present, whilst the dashed line and squares indicate values obtained when newly born/just died
fragments are removed from the frame in which they are present.

The recycling times due to reconnection are displayed Figure 4(b). The times are
calculated using �R in Equation (30). It can clearly be seen how varying the amount
of emergence that is occurring affects the time taken to recycle all the coronal flux
due to reconnection. When there is very little data smoothing applied, reconnection
driven by emergence and cancellation of flux dominates over reconnection resulting
from fragment motions, giving a recycling time of ∼0.78 h. However, as the amount
of smoothing is increased, the flux recycling occurring as a result of emergence and
cancellation becomes increasingly less significant. This relates to a scenario in
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Figure 4. (a) Time taken (in hours) to recycle all coronal flux due to emergence and cancellation of
flux in the photosphere versus boxcar width w used in the smoothing of the fluxes of the fragments.
Again, the solid line and diamonds indicate values obtained when newly born/just died fragments
are copied into the frame in which they are not present, whilst the dashed line and squares indicate
values obtained when newly born/just died fragments are removed from the frame in which they are
present. (b) Time taken to recycle all coronal flux due to reconnection versus boxcar width w used in
the smoothing of the fluxes of the fragments.

which reconnection occurs only as a consequence of fragment motions. In the
infinity limit, footpoint motions take just below 5 h to recycle all the flux.
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