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Abstract. We employ a 2 1
2 -dimensional reconnection model to analyse different aspects of the en-

ergy release in two-ribbon flares. In particular, we investigate in which way the systematic change of
inflow region variables, associated with the vertical elongation of current sheet, affects the flare evo-
lution. It is assumed that as the transversal magnetic field decreases, the ambient plasma-to-magnetic
pressure ratio increases, and the reconnection rate diminishes. As the transversal field decreases due
to the arcade stretching, the energy release enhances and the temperature rises. Furthermore, the mag-
netosonic Mach number of the reconnection outflow increases, providing the formation of fast mode
standing shocks above the flare loops and below the erupting flux rope. Eventually, in the limit of a
very small transversal field the reconnection becomes turbulent due to a highly non-linear response
of the system to small fluctuations of the transversal field. The turbulence results in the energy release
fragmentation which increases the release efficiency, and is likely to be responsible for the impulsive
phase of the flare. On the other hand, as the current sheet stretches to larger heights, the ambient
plasma-to-magnetic pressure ratio increases which causes a gradual decrease of the reconnection
rate, energy release rate, and temperature in the late phase of flare. The described magnetohydrody-
namical changes affect also the electron distribution function in space and time. At large reconnection
rates (impulsive phase of the flare) the ratio of the inflow-to-outflow magnetic field strength is much
smaller than at lower reconnection rates (late phase of the flare), i.e., the corresponding loss-cone
angle becomes narrower. Consequently, in the impulsive phase a larger fraction of energized electrons
can escape from the current sheet downwards to the chromosphere and upwards into the corona –
the dominant flare features are the foot-point hard X-ray sources and type III radio bursts. On the
other hand, at low reconnection rates, more particles stay trapped in the outflow region, and the ther-
mal conduction flux becomes strongly reduced. As a result, a superhot loop-top, and above-the-loop
plasma appears, as sometimes observed, to be a dominant feature of the gradual phase.

1. Introduction

Soft X-ray observations reveal that during solar flares the magnetic field topology
changes from an initially intricate, clearly non-potential configuration, to a relaxed,
nearly potential system of post-flare loops (e.g., Sakurai, 1993; Aurass et al., 1999).
So, the field lines connect different foot-points before and after the flare, implying
that they have to reconnect in the course of flare. Consequently, the flare is consid-
ered to be a result of a reconnection-associated release of free energy contained in
the initial configuration.
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The powerful energy release such as observed in flares requires a sufficiently
fast-reconnection process. An important step in finding the appropriate physical
mechanism was accomplished by Furth, Kileen, and Rosenbluth (1963), who re-
alized that a long current sheet becomes unstable to the tearing instability. Such a
process was subsequently identified in laboratory plasma experiments (e.g., Irby,
Drake, and Griem, 1979), which were soon applied also to the solar flare research
(e.g., Bulanov, Dogel, and Frank, 1984; Brown et al., 2002).

According to the fast-reconnection model proposed by Petschek (1964), the
reconnection itself takes place within a tiny diffusion region (DR) which is thin
enough to provide the balance of the magnetic flux inflow and the magnetic field
diffusion. On the other hand, the DR must be also short enough to provide the
balance of the plasma inflow and outflow even at the high reconnection rates required
for a powerful energy release.

Furthermore, Petschek (1964) predicted a bifurcation of the current sheet into
two pairs of standing slow-mode shocks (SMSs). Such shocks have been identified
in numerical simulations (e.g., Sato and Hayashi, 1979), and in the Earth’s mag-
netotail (e.g., Feldman et al., 1984, 1985; Smith et al., 1984). There is also some
evidence which suggests they may occur in laboratory experiments (Stenzel and
Gekelman, 1979, but see also Shay et al. 1998, 2001) and solar flares (Tsuneta,
1996).

The fast-reconnection mechanism is fruitfully incorporated into the two-ribbon
flare models. The two-ribbon flare occurs during the eruption of a sheared magnetic
field arcade, which may (e.g., Low, 2001) or may not (e.g., Antiochos, DeVore, and
Klimchuk, 1999) contain a flux rope. After the arcade lift-off, a current sheet is cre-
ated below a flux rope (see right panel of Figure 1) even if a flux rope was not present
initially (Martens and Kuin, 1989; Lin and Forbes, 2000; Lin, 2004). As the flux
rope rises, the current sheet elongates, and when its length-to-width ratio becomes
large enough, the tearing instability sets in (see, e.g., Furth, Kileen, and Rosenbluth
(1963), Ugai (1987), Gekelman and Pfister (1988), and Vršnak et al. (2003), for
the analytical, numerical, experimental, and observational results, respectively).

Reconnection in two-ribbon flares has been extensively studied using numer-
ical MHD. The studies successively included effects of the photospheric line ty-
ing (Forbes and Priest, 1982), change of the DR height (Forbes, 1986), different
plasma-to-magnetic pressure ratio (Magara et al., 1996; Yokoyama and Shibata,
2001), radiation (Forbes and Malherbe, 1991), thermal conduction (Yokoyama and
Shibata, 1997, 2001), anomalous resistivity (Ugai, 1992; Yokoyama and Shibata,
2001), the effects of chromospheric “evaporation” (Yokoyama and Shibata, 2001),
the presence of the transversal field (Cheng et al., 2003), etc.

On the other hand, analytical studies mainly consider the conditions in the
current sheet itself (e.g., Somov and Titov, 1985; Somov, 1986; Litvinenko and
Somov, 1993; Somov and Kosugi, 1997; Craig and Litvinenko, 2002; Litvinenko,
2003, etc.), only occasionally addressing the evolutionary aspect (e.g., Martens and
Kuin, 1989; Vršnak et al., 1989; Lin and Forbes, 2000; Lin, 2004), or the actual
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Figure 1. Left: The reconnection model (only one quadrant shown). Flows (bold-black arrows),
magnetic field (thin-black arrows), and discontinuities (SMS – slow-mode shock; RD – rotational
discontinuity), are shown together with the definition of angles and various vector components. Note
that φ, θ , and δ′ are oversized. Right: The reconnection model incorporated into a two-ribbon flare
configuration; EP – eruptive prominence, Hα – chromospheric flare ribbons, FL – hot flare loops,
PFL – post-flare loops. The plasma inflows are directed in the horizontal ± x-direction (MA00) and
the outflows are in the vertical ±y-direction. The photospheric magnetic inversion line lies in the
horizontal z-direction. The magnetic X-line is aligned with the z-axis at the height h.

two-ribbon flare topology (Tsuneta, 1996; Tsuneta and Naito, 1998; Somov and
Kosugi, 1997).

In this paper, we investigate and systemize some aspects of the 2 1
2 -dimensional

(2 1
2 -D)1 reconnection problem, which might be relevant for comprehending the

onset and development of solar flares. The analysis is based on the 2 1
2 -D extension

of the Petschek’s model (Petschek and Thorne, 1967; Soward, 1982). In particular,
we use analytical solutions based on the jump relations at the current sheet
previously obtained by Skender, Vršnak, and Martinis (2003), to infer in which
way the change of inflow region parameters affects the energy release in the flare.
We apply the results primarily to two-ribbon flares since they can be represented
well by a 2 1

2 -D model. Furthermore, flares of this type are usually large, providing
spatially resolved measurements of plasma parameters (e.g., Tsuneta, 1996;
Uchida et al., 2001; Sui and Holman, 2003; Kundu et al., 2004), as well as an
insight into plasma flows and changes of the coronal magnetic field configuration
(e.g., Yokoyama et al., 2001; Innes, McKenzie, and Wang, 2003; Vršnak et al.,
2003; Wang et al., 2003; Chen et al., 2004).

12-D model means that the magnetic field and plasma flow have only two (coplanar) components
and that all quantities are invariant in the third direction. In 2 1

2 -D models, the third component of the
magnetic field and flow is allowed, but all quantities are still invariant in the third direction.
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In Section 2 we first briefly describe the reconnection model used by Skender,
Vršnak, and Martinis (2003) and place it into an idealized two-ribbon flare am-
bience, to link the model quantities with the flare parameters. The model results
relevant for the flare process are shown in Sections 3 and 4. The expressions used
in evaluating the presented results are displayed later in Appendix A. In addition,
in Appendix B we present the approximate solution by Soward (1982). The impli-
cations of our results are discussed in Section 5.

2. The Reconnection Model and Two-Ribbon Flares

According to the 2 1
2 -D extension of Petschek’s model, a rotational discontinuity

(RD) forms upstream of the SMS (Petschek and Thorne, 1967; Soward, 1982).
Furthermore, under conditions appropriate for solar flares, the reconnection out-
flow is supermagnetosonic (e.g., Forbes, 1986; Forbes and Malherbe, 1986) and a
standing fast-mode shock (FMS) is formed at the location where the jet encounters
an obstacle (Aurass, Vršnak, and Mann, 2002; Aurass, 2004). This is depicted in
Figure 1-right, where one FMS is sited above the flare loops and the other below the
eruptive prominence. The quantities that characterize the inflow region upstream of
the RD are denoted by the subscript “0”, the intermediate region between the RD
and the SMS by “1”, the outflow region between the SMSs by “2”, and the region
downstream of the FMS by “3”.

The coordinate system used in the analysis (Figure 1) has the y-axis aligned
with the symmetry axis of the system (corresponding to the vertical direction in the
corona), whereas the x-axis is oriented perpendicular to the current sheet (horizontal
direction in the corona). The angle between the SMS and the y-axis is denoted by φ,
whereas the RD is inclined to the SMS at the angle θ (Figure 1-left). The xy-plane
components of vectors are denoted by the subscript “r”.

It is assumed in the model that the plasma flows into the RD at the velocity v0,
having only the xy-plane component, �vr0, which is inclined to the symmetry axis
of the system at the angle α (Figure 1-left). The Alfvén Mach number is defined by
MA0 = v0/vA0, where vA0 = B0/

√
µρ0 is the Alfvén velocity in the inflow region.

We define also the dimensionless reconnection rate, representing the Alfvén Mach
number based on the vx0 component of the inflow velocity, and the By0 compo-
nent of the inflowing magnetic field, MA00 = vx0/vA0y , where vA0y = By0/

√
µρ0.

In the Petschek’s regime it amounts to 1–10% of the Alfvén speed (cf., Priest,
1982).

In the employed (anti)symmetric model, the z-component of the flow velocity
appears only in the intermediate region (Soward, 1982). Its inclination with re-
spect to the xy-plane is depicted by the angle �V , defined by vz1/vr1 = tan �V .
In an analogous way, we describe the z-component of the magnetic field (transver-
sal field), Bzi/Bri = tan �i (Figure 1-left), where i = 0, 1, 2 denotes the inflow,
intermediate, and the outflow region, respectively (Figure 1-left).
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The coupled system of RD–SMS jump relations has been solved in an
approximate form by Soward (1982).2 Recently, the problem was solved in its
complete form by Skender, Vršnak, and Martinis (2003) – the set of jump relations
(see Section II.B in Skender, Vršnak, and Martinis, 2003) is transformed into
a system of 17 equations containing 21 dimensionless quantities (see Section
II.D in Skender, Vršnak, and Martinis, 2003). Four of these quantities describe
the physical state of the inflow region, and represent the input parameters that
determine the reconnection geometry, the energy release rate, and the outflow
plasma parameters. These quantities are:

(i) the plasma-to-magnetic pressure ratio β0 = p0/pm0, where pm0 = B2
0/2µ;

(ii) the ratio of the transversal and the xy-plane magnetic field components
Bz0/Br0 = tan �0;

(iii) the dimensionless reconnection rate MA00 = vx0/vA0y;
(iv) the incidence angle α of the inflow, α ≡ ∠(�v0, �y).

Each of these four parameters is expected to change in the course of a flare at least
due to inhomogeneous coronal structure. However, in two-ribbon flares, beside such
stochastic variations, the inflow parameters experience also a systematic evolution,
as outlined in the following.

Since the pre-flare arcade is strongly sheared, there is a non-zero transversal
magnetic field component, Bz , associated with the current sheet. If too strong, the
Bz component prevents an efficient energy release (Nishikawa and Sakai, 1982;
Soward, 1982; Forbes and Malherbe, 1986; Frank, Bogdanov, and Markov, 2002;
Heitsch and Zweibel, 2003). However, as the erupting flux rope rises, the arcade
field lines are stretched vertically, so Bz gradually diminishes. In other words, the
rapid energy release characterizing the impulsive phase of a two-ribbon flare, can
start only after the eruption attains a sufficient height at which Bz , i.e., the angle
�0, becomes sufficiently small. After the flare onset, �0 continues to decrease due
to the ongoing vertical stretching of the arcade, and it is reasonable to assume that
at a given point it becomes �0 ≈ 0.

Another relevant parameter which changes during the flare is the reconnection
rate MA00. This is indicated by decreasing expansion speed of flare ribbons (e.g.,
Wang et al., 2003), and a slower late-phase growth of the loop system (e.g., Forbes
and Acton, 1996).

As the current sheet elongates vertically, there are also considerable environ-
mental changes which have to be taken into account. The magnetic field becomes
weaker, the coronal density decreases, whereas the plasma-to-magnetic pressure
ratio β0 increases (Gary, 2001; Vršnak et al., 2002). Furthermore, the effects of the

2Soward (1982) considered perpendicular inflow (α = 90◦) of low Mach number (MA00 � 1). Fur-
thermore, it was assumed that in the intermediate region the transversal magnetic field component
Bz is much larger than the reconnection-plane component Br . Hereinafter, we call that “Soward’s
approximation” (see Appendix B).
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solar wind might become important, affecting the incidence angle α of the inflow
(Cargill and Priest, 1982).

3. Outflow Jet

3.1. SMS-RELATED QUANTITIES

The basic physical characteristics of the outflow region, such as temperature,
density, magnetic field strength, and flow velocity, are determined primarily
by �0 and β0, whereas the effect of MA00 is generally very weak, resulting
in deviations smaller than 1% (Skender, Vršnak, and Martinis, 2003). The
influence of the inflow incidence angle α is somewhat more important, but only
at large MA00 combined with substantial deviations from α = 90◦. On the other
hand, the basic geometrical properties, such as e.g., the inclination of the SMS,
or the angle between the SMS and the RD, depend primarily on MA00 (see
Appendix B).

Figures 2a and 2b show the density and temperature jumps at the SMS (n2/n1

and T2/T1, respectively) as a function of �0 for different values of the ambient
β0. Note that differences caused by various MA00 cannot be resolved in Figure 2,
demonstrating that Soward’s approximation (see Appendix B) represents well the
behaviour of n2/n1 and T2/T1. The magnetic field strength, density, and tempera-
ture do not change at the RD (Priest, 1982), i.e., B1 = B0, T1 = T0, and n1 = n0,
implying also β1 = β0. Consequently, the temperature and density jumps at the
SMS represent also the outflow values expressed relative to the ambient coronal
conditions, since n2/n1 = n2/n0 and T2/T1 = T2/T0.

The bold lines, representing the outcome for β0 = 0.01 and 0.1, depict roughly
the limits of the flare conditions. The former value gives (T2/T1)max ≈ 40, and the
latter one (T2/T1)max ≈ 5. Adopting for the coronal temperature, T0 ≡ T1 = 1–2
MK (Withbroe, 1988), it gives T2 = 40 –80 MK and T2 = 5 –10 MK, respectively.
The former values are close to (or higher then) the upper limit of the observed tem-
peratures (Uchida et al., 2001; Aschwanden, 2002). On the other hand, an event
characterized by temperatures below, e.g., 5 MK is usually not considered to be
a flare. Actually, the values in the range β0 ≈ 0.01– 0.1 are consistent with other
estimates of β0 in the active region corona (Gary, 2001; Vršnak et al., 2002). Fol-
lowing the same argument, one also finds that the flare conditions (in the case of
β0 ≈ 0.01) become fulfilled only if �0 � 45◦ (�0 = 45◦ represents the perpendic-
ularly oriented inflowing fields). In the case of β0 = 0.1, the inflowing fields have
to be practically antiparallel (�0 ≈ 0) in order to achieve a five-fold temperature
increase.

In Figure 2c we show the plasma-to-magnetic pressure ratio in the outflow, β2,
as a function of �0. The graph shows that the outflow is generally dominated by the
plasma pressure. However, note that despite the condition β2 	 1, the geometry
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Figure 2. Conditions in the outflow jet shown for perpendicular inflow (α = 90◦), and different values
of β0 (written at the curves): (a) density jump at the SMS – the dashed line represents the β0 = 0
limit; (b) temperature jump; (c) plasma-to-magnetic pressure ratio in the outflow; (d) magnetosonic
Mach number (only supermagnetosonic regime shown); (e) the angle between the SMS and the RD,
θ (black), and the angle between the SMS and the y-axis, φ (gray), shown for MA00 = 0.1; (f) the
angle between the xy-plane component of the inflowing magnetic field �Br0 and the y-axis, shown for
MA00 = 0.1.

and properties of the outflow are controlled magnetically due to the strong inflow
field, where β1 = β0 � 1.

Unlike the temperature and density, the magnetosonic Mach number of the
outflow, M2, depends not only on �0 and β0, but also on the direction of the
inflow (α), especially if the velocity component in the y-direction, vy0, is large
(caused by, e.g., solar wind or evaporation flow; see Cargill and Priest, 1982). In
Figure 2d, the dependence M2(�0) is shown for α = 90◦, whereas the dependence
on α is presented later, in Figure 3. Figure 2d shows that the function M2(�0) peaks
between �0 ≈ 10 and 20◦, depending on β0, and that M2 is smaller at larger β0.

Figures 2e and 2f expose the behaviour of parameters which depict the basic
geometry of the reconnection system. The angle φ defines the inclination of the SMS
with respect to the y-axis, whereas θ represents the angle between the SMS and the
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Figure 3. Magnetosonic Mach number of the outflow presented as a function of: (a) the incidence
angle α for MA00 = 0.01 (thin) and 0.1 (bold), at �0 = 0 (dashed) and 20◦ (full); (b) the reconnection
rate MA00 for α = 30, 90, and 150◦, at �0 = 0 (dashed) and 20◦ (full).

RD (Figure 1). The angle σ represents the inclination of the xy-plane component of
the inflowing magnetic field �Br0 with respect to the y-axis. The angle between �Br0

and RD, δ′, does not depend on �0 (see Appendix B; the deviations from Soward’s
approximation are negligible). We show the results only for MA00 = 0.1, since all
of these angles are basically proportional to MA00 (Appendix B). In the transition
�0 → 0, the RD and the SMS merge, i.e., θ → 0.

Figure 3 illustrates in which way the outflow Mach number M2 depends on the
incidence angle α and the reconnection rate.3 The results are shown for �0 = 0 and
20◦, at β0 = 0.01. In Figure 3a, M2 is shown as a function of the incidence angle α,
for two values of the reconnection rate, MA00 = 0.01 and 0.1. The perpendicular
inflow means α = 90◦, whereas α > 90◦ represents an inflow inclined in the direc-
tion of the outflow. The graph shows that the outflow Mach number is increased
for α > 90◦, and decreased for α < 90◦, but the outcome is not a simple addition
(subtraction) of the y-component of inflow velocity (note a slight asymmetry of the
pattern with respect to α = 90◦). In Figure 3b we show the dependence of M2 on
the inflow velocity for three incidence angles (α = 150, 90, and 30◦).

In order to illustrate the role of the incidence angle α in the coronal environ-
ment, let us assume that the reconnection takes place at such heights where the solar
wind is not negligible anymore. As an example, we take for the wind speed at the
particular height w = 50 km s−1, the ambient Alfvén velocity vA = 1000 km s−1,
and the reconnection rate MA00 = 0.1. This means that the inflow velocity amounts
to |vx0| = MA00vA0 = 10 km s−1, implying that tan |α| = |vx0/vy0| = |vx0/w| =
10/50 = 0.2, i.e., |α| = 11◦. The inflow is inclined upwards, and at such an angle
one finds out (see Figure 3a) that the downward jet becomes submagnetosonic,

3The role of incidence angle was treated analytically also by Cargill and Priest (1982), but only for
�0 = 0 (2-D case).
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Figure 4. Characteristics of the FMS in the flare domain, shown for different values of β0 (indicated
by the curves), at α = 90◦. (a and b) The temperature and density jumps at FMS. (c and d) The
downstream FMS temperature and density normalized with respect to the inflow region values. The
breaks in the β0 = 0.1 and 0.5 curves depict the transition to the submagnetosonic regime.

whereas in the upward direction (α = 180◦ − 11◦ = 169◦) the Mach number in-
creases to M2 ≈ 2.7. Analogously, if the vortices behind the erupting flux rope
(Cargill et al. 1996) create a downward flow component of, e.g., 50 km s−1 the
plasma in the upward jet becomes submagnetosonic, whereas the downward one
achieves M2 ≈ 2.7.

3.2. FORMATION AND CHARACTERISTICS OF THE FMS

Figures 4a and 4b show the temperature and density jump at the FMS for the
perpendicular inflow case, α = 90◦. One finds out that in the flare-domain, the
temperature is increased by a factor 1.6 –1.8, and the density is increased by a factor
of 1.8–2.1. These results are consistent with numerical simulations (e.g., Forbes,
1986; Yokoyama and Shibata, 2001). Note that the FMS is a perpendicular shock, so
the jump of the magnetic field strength is equal to the density jump, B3/B2 = n3/n2

(Priest, 1982). The maximum amplitude of the FMS is achieved at �0 ≈ 10–20◦,
when the outflow has the highest magnetosonic Mach number (Section 3.1).

According to Figure 3, at a large incidence angle and a large inflow speed MA00,
the outflow Mach number, and thus the FMS amplitude, can differ significantly
from the values representing the perpendicular inflow. For example, in the α = 169◦

case considered in Section 3.1, the FMS temperature and density jump amount to
T3/T2 = 3.2 and n3/n2 = 2.9.
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It should be emphasized that according to Figure 2c the FMS is basically a
hydrodynamical shock (β2 	 1), if only the flare domain is considered.

3.3. MAGNETIC MIRRORS AT SMS AND FMS

One of significant characteristics of the fast-reconnection geometry is a large differ-
ence of the magnetic field strength in the inflow and outflow region – the energy is
released at the expense of the inflowing magnetic field, so the magnetic field strength
in the outflow is much smaller than upstream of the SMS. The value of B1/B2 ≡
B12 depends primarily on �0 and MA00 (Figure 5a). The dependence on the
plasma-to-magnetic pressure ratio β0 is weak, which is demonstrated in Figure 5a,

Figure 5. Magnetic mirrors at the SMS (left) and the FMS (right): (a) The jump of the magnetic field
strength at the SMS presented as a function of �0 for different reconnection rates MA00 at β0 = 0.01
(the dashed line attached to the MA00 = 0.01 curve represents β0 = 0.1). (b) The corresponding
loss-cone angle ϑ12. Note the logarithmic scale at the x-axis in (a) and (b). (c) The loss-cone angle
presented as ϑ12(MA00) for �0 = 0, 1, 2, and 5◦. (d) The jump of the magnetic field strength at the
FMS presented as a function of �0 for different values of the inflow plasma-to-magnetic pressure
ratio β0, in the case of the perpendicular inflow, α = 90◦. (e) The corresponding loss-cone angle ϑ23.
(f) The loss-cone angle presented as ϑ23(β0) for �0 = 0 and 20◦.
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where the B12(�0) dependence at MA00 = 0.01 is shown for β0 = 0.01 (full) and
β0 = 0.1 (dashed).

The background of the dependence B12(MA00) can be outlined considering the
�0 = 0 case. A larger reconnection rate implies a larger angle between SMSs, 2φ,
since φ ∼ MA00 (see Appendix B). Consequently, the inflowing magnetic field lines
also become more inclined, which implies that B12 decreases.

The behaviour of the corresponding magnetic mirror loss-cone angle, defined
by sin2 ϑ12 = B2/B1, is illustrated in Figures 5b and 5c. In the flare domain, the
loss-cone angle ranges from very narrow ϑ12 ≈ 5◦, up to 40◦ (Figure 5b). The
ϑ12(�0) variation is larger at lower reconnection rates. At large �0 the value of ϑ12

does not depend significantly on MA00.
Although in the idealized model geometry the FMS is a perfect perpendicular

shock, in reality the shock front (or magnetic field lines) is at least a bit curved
(Somov and Kosugi, 1997; Tsuneta and Naito, 1998; Vršnak, 2004). So, the FMS
can be treated as a quasi-perpendicular shock, and the loss-cone angle ϑ23 can be
attributed to the magnetic field jump B23 ≡ B2/B3.

The magnetic field jump at the FMS generally depends on �0 and β0 (Figure 5d),
reflecting the M2(�0, β0) dependence illustrated previously in Figure 2d. However,
inspecting the related change of ϑ23 (Figure 5e), one finds out that in the flare
domain (e.g., �0 < 45◦ for β0 = 0.01; see Section 3.1) the value of ϑ23 depends
only weakly on �0. A similar conclusion can be drawn if attention is paid in
Figure 5f to the flare domain, β0 < 0.1.

The loss-cone at the FMS is generally much broader than at the SMS (ϑ23 � 45◦).
However, since M2 depends on the inflow incidence angle α (Figure 3), the loss-
cone width depends on α, too. Under favourable conditions (large α and MA00),
the loss-cone can become somewhat narrower. Considering the α = 169◦ example
presented in Section 3.1, one finds ϑ23 ≈ 30 – 40◦.

4. Intermediate Region

4.1. GEOMETRICAL CHANGES IN THE TRANSITION �0 → 0

Skender, Vršnak, and Martinis (2003) found that the geometry of the system changes
very rapidly in the limit �0 → 0. As shown therein, in the range �0 � 1◦ the
transversal magnetic field component Bz in the intermediate region becomes com-
parable to, or smaller than the xy-plane component Br , meaning that Soward’s
approximation is not valid anymore (see footnote “2” in Section 2.1).

In Figure 6 we show various geometrical parameters of the intermediate region,
presented as a function of �0 for α = 90◦. The x-axis is displayed on a logarithmic
scale to expose more transparently the changes at small �0.

Figure 6a depicts in which way the angle between the plasma flow and the
magnetic field, ζ , changes at �0 → 0. If we trace the change from larger to smaller
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Figure 6. Change of various intermediate region quantities at �0 → 0, shown for different recon-
nection rates MA00. (a) The angle between the plasma flow and the magnetic field, ζ . (b) The same
for the xy-plane components. (c) The inclination of the magnetic field from the xy-plane, �1 (black)
and the inclination of the flow, �V (gray), shown for MA00 = 0.01 (thin) and MA00 = 0.1 (thick).
(d) Magnetosonic Mach number M1 of the intermediate region flow, shown for β0 = 0.01 (full) and
β0 = 0.1 (dashed).

values of �0, Figure 6a shows that ζ first gradually decreases to the minimum
ζmin ≈ 45◦ and then sharply increases towards ζ ≈ 90◦ – the increase happens
within a fraction of a degree.

Figure 6b outlines the change of the angle between the xy-plane components
of the magnetic field and flow, γ ≡ ∠( �Br1, �vr1) (see Figure 1). In the transition
�0 → 0, the angle γ first increases from 90 to 180◦, which is followed by a steep
decrease back to 90◦. At low reconnection rates, the entire change happens within
�0 � 1◦ i.e., the change is very sharply peaked.

Figure 6c shows the associated change of the inclination of the intermediate
region magnetic field, �1 (black lines) and the plasma flow, �V (gray lines). In
the transition �0 → 0, the transversal magnetic field exposes a sharp decrease
(�1 → 0) within �0 � 1◦. The flow direction shows a more complex behaviour
before the transversal flow component eventually ceases (�V → 0) at extremely
small values of �0.

The dependencies shown in Figures 6a – 6c do not depend on β0 significantly –
the difference between β0 = 0.1 and β0 = 0.01 cannot be resolved in the graph.

In a real situation, it is hardly possible that �0 = 0 is strictly satisfied. Certainly,
fluctuations larger than ��0 = 1◦ should be present along the current sheet. So, two
neighbouring current sheet segments, although exposing only a slightly different
�0 in the inflow region, are characterized by a large difference in the field/flow
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direction (up to 90◦) in the intermediate region. The presence of such large field/flow
distortions strongly implies that MHD turbulence sets in as �0 → 0 (to be discussed
in Section 5.3).

4.2. MACH NUMBER OF THE INTERMEDIATE REGION FLOW

Another potentially important characteristic of the intermediate region is depicted
in Figure 6d. In the flare domain, there is an �0 interval where the intermediate
region flow becomes supermagnetosonic, M1 > 1. Since in the transition �0 → 0
the value of M1 sharply decreases to the submagnetosonic regime, M1 < 1, one
can expect that the supermagnetosonic flow elements intermittently create shocks
at locations where they meet submagnetosonic elements (the flow direction is also
different for these elements, see Figure 6c). Note that shocks can be formed only if
such a flow pattern persists for a time longer than needed for the shock completion
(Vršnak and Lulić, 2000).

The magnetosonic Mach number M1 and the associated shock amplitude depend
on β0 only weakly (Figure 6d), unlike the Mach number of the outflow jet, M2

(Figure 2d). Inspecting in Figure 6a the field/flow angle ζ in the �0 interval where
M1 > 1, one finds out that the supermagnetosonic flow creates an oblique fast-mode
shock with the inclination of the magnetic field to the shock front of �45◦. Finally,
in contrast to the FMS formed in the outflow, where β2 	 1, the intermediate region
shock is created in the β1 � 1 environment.

The regime of supermagnetosonic flows in the intermediate region partly over-
laps with the �0 → 0 stage, in particular the decrease to the M1 < 1 regime at
small �0. Thus, the appearance of intermediate region shocks is closely associated
with the transition into the turbulent reconnection state.

5. Implications

The evolutionary changes of the inflow region variables, described in the second
part of Section 2, should be reflected in a systematic change of the flare plasma
parameters. In the following, we discuss the implications of our results, paying
attention primarily to the overall flare morphology and evolution.

5.1. THE TEMPERATURE

The hottest plasma, with temperatures two to three times higher than in the rest
of the current sheet, should be located above the flare loops, downstream of the
FMS. Indeed, very hot sources are sometimes resolved above the flare loops (e.g.,
Tsuneta, 1996; Uchida et al., 2001; Petrosian, Donaghy, and McTiernan, 2002; Sui
and Holman, 2003, and references therein). Since β0 is generally larger at larger
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heights, the temperature downstream of the FMS located at the base of the erupting
flux rope should be lower than that above the flare loops.

Another interesting aspect regarding the influence of the plasma-to-magnetic
pressure ratio, concerns the case when the arcade eruption and the associated re-
connection process take place in a β0 > 0.1 environment. According to Figure 2b,
in such a case the outflow region plasma is not heated much, and the eruption
should not be accompanied by a flare. Indeed, after coronal mass ejections that are
associated with eruptions of quiescent filaments, a growing system of the so-called
post-eruption loops is frequently observed in the EUV range. Such a loop system is
morphologically quite similar to the flaring loop system, except for the fact that it is
not hot enough to be seen in X-rays. The quiescent filament eruptions take place in
quiet regions, where β is generally larger than in active regions (Wu et al., 2001).
So, it is reasonable to assume that the post-eruption loops appear as a result of the
reconnection process analogous to that in two-ribbon flares. The primary differ-
ence being that they occur in a higher β environment. Moreover, quiescent filament
eruptions generally start at relatively large heights (e.g., Feynman and Ruzmaikin,
2004), again being indicative of a larger-β ambience (Gary, 2001).

The dependence of the flare temperature on β0 is indirectly indicated by some
statistical scalings. For example, Ruždjak et al. (1989) have shown that on average
the temperature in spotless flares is lower than in spot-group flares, consistent with
larger values of β found in spotless regions (Wu et al., 2001). The hottest flares are
found to be those in which the Hα emission protrudes over major sunspot umbrae,
indicating that the energy release takes place in very strong fields. Moreover, it
was demonstrated by Vršnak et al. (1991) that in these flares the temperature is
correlated with the magnetic field strength of the involved sunspot. Such a behaviour
is consistent with the T (β0) dependence, since a stronger field implies a lower β.

5.2. THE DENSITY

The compression of plasma at both the SMS and the FMS has several important
observational consequences. When radio-heliographic data are not available, the
heights of radio sources are often estimated by assuming that the emission is excited
at the local plasma frequency. Neglecting the effect of the enhanced density, and
straightforward application of some coronal density model, leads to a significant
underestimate of the source height. The plasma behind the FMS can be up to
10 times denser than in the ambient corona (see the α = 169◦ example used in
Sections 3.1 and 3.2), which corresponds to the factor around 3 in the emission
frequency ( f ∼ √

n). Taking, e.g., a source emitting at f = 300 MHz and applying
the five-fold Saito (1970) coronal density model, being appropriate to describe the
active region corona (Vršnak et al., 2002), a nominal source height amounts to
h = 35 Mm. However, taking into account the effect of the compression, one finds
for the ambient plasma frequency f ∗ ≈ 100 MHz, and the real height turns out to
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be h∗ = 250 Mm. Thus, the effect of the compression is sufficient to explain why
radio sources of stationary type IV bursts, emitting at relatively high frequencies,
are found at unexpectedly large heights (Vršnak et al., 2003).

The next important aspect is the large density gradient at the SMS and the FMS.
If the plasma radio emission is excited at these discontinuities, the emission is
going to be broadband. For example, a pulsed electron beam passing across SMS
would excite a radio pulse of relative bandwidth � f/ f = √

n2/n0 − 1 ≈ 0.6 – 0.9.
Furthermore, assuming that the entire current sheet excites radio waves at the local
plasma frequency, and taking into account the overall density excess n3/n0 (see
Figure 4d, and the α = 169◦ example considered in Section 3.2), one finds that the
corresponding relative bandwidth amounts to (� f/ f )30 = 1–2. Such a bandwidth is
comparable with a typical type IV radio burst continuum: for example, for � f/ f =
1.5, one finds at f = 200 MHz a bandwidth of � f = 300 MHz, i.e., the emission
spans from 200 to 500 MHz.

On the other hand, if the plasma radio emission is excited at the FMS analogously
as in the type II radio bursts (Aurass, Vršnak, and Mann, 2002: Vršnak et al., 2002),
it should appear as a non-drifting emission pattern split into two lanes, one excited
in the upstream and the other in the downstream FMS region. The lanes should be
separated by � f/ f = √

n3/n2 − 1 = 0.1–0.2, consistent with the “band-split” re-
ported by Aurass, Vršnak, and Mann (2002). However, at a large incidence angle α,
the band-split can become significantly larger – taking again the α = 169◦ example,
one finds � f/ f ≈ 0.7. Furthermore, if the amplitudes of the two FMSs are affected
by fluctuations of α caused by large scale vortices behind the moving flux rope, the
variations of the amplitudes should be anti-correlated (see the example at the end of
Section 3.1). A radio-emission signature of this kind was noticed by Aurass (2004).

5.3. MHD TURBULENCE

As shown in Section 4.1, in the transition �0 → 0, the geometry of the system
becomes extremely sensitive to small changes of �0, which most likely leads to
MHD turbulence. The reason why turbulence is expected to appear in the �0 → 0
stage is found in the highly non-linear characteristics of the SMS/RD jump relations
in this regime. If a small perturbation of �0 is applied to an inflow region element,
the flow and magnetic field in the corresponding intermediate region segment will
have entirely different structures than in the adjacent elements (see Figure 6). Such a
distortion inevitably perturbs the neighbouring segments, creating there conditions
that do not match with the state of the corresponding inflow and outflow region
elements.4 So, these indirectly perturbed intermediate region segments have to
respond by creating large-amplitude MHD waves which try to establish a new
steady state by adjusting the inflow, outflow, and intermediate region parameters.

4A more detailed analysis shows that the intermediate region parameters can even attain values for
which there is no steady-state solution at all.
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However, this additionally perturbs the part of the inflow region where the initial
disturbance was applied, as well as the elements farther out along the intermediate
region. Due to the described feedback, it becomes impossible to create a new steady
state, and turbulence eventually spreads across the whole current sheet. In such a
state, many small-scale current sheets (X-points) and coalescing magnetic islands
(O-points) are formed (Dmitruk et al., 2003), presumably resulting in an avalanche
type of energy release (e.g., Isliker, Anastasiadis, and Vlahos, 2001).

Since the perturbed layer is thin, the excited waves can have very short wave-
lengths, the shortest ones being scaled by the intermediate region width. In other
words, the characteristic spatial/time scale of the turbulence and the energy release
fragmentation can be estimated by considering a typical width of the intermediate
region where the turbulence originates. The width is determined basically by the
angle between the RD and SMS, which is found to be, e.g., θ ≈ 2◦ at MA00 = 0.1
(Figure 2f, gray lines). At such an angle the width-to-length ratio of the intermedi-
ate region amounts to λ/L ≈ 1/30. So, considering a range of reconnection rates,
it can be concluded that the turbulence reduces the overall length-scale by 10 –100
times. Taking for the overall current sheet length, scale L = 104–105 km, a typical
reduced length-scale turns out to be in the range λ = 100 –10 000 km. Bearing in
mind that the Alfvén velocity is of the order of 1000 km s−1, one deduces that
the turbulent regime is capable of creating fine structures on a wide range of time
scales, from 0.1 to 10 s, such as required to explain the fragmentation of energy
release in elementary flare bursts (De Jager, 1986).

In this respect, let us recall that the reconnection rate in the Petschek’s regime de-
pends on the magnetic Reynolds number as MA00 ∼ 1/ ln Rm (cf., Priest, 1982 and
references therein). Since the Reynolds number, Rm = Lv/η, is inversely propor-
tional to the resistivity η, it is important to take into account that in such small-scale
current sheets the kinetic plasma instabilities are excited (e.g., Hoyng et al., 1980;
Spicer and Brown, 1981). The instabilities generate anomalous resistivity which
can be more than 5 orders of magnitude larger (Kaplan and Tsytovich, 1973) than
the classical one (Spitzer, 1962). Taking into account also the effect of the reduced
length-scale (a factor of 10 –100), one finds that the reconnection rate can be in-
creased by a factor of 10 –20, implying that the energy release can be locally strong.

Thus, the impulsive phase of two-ribbon flares, generally rich in fine structures,
could be a consequence of the highly non-linear response of the system to small-
amplitude fluctuations of the magnetic field direction around �0 = 0.

5.4. THE FLARE MORPHOLOGY

The most basic morphological change concerns the thermal/non-thermal character
of flare. At higher reconnection rates (impulsive phase) the SMS loss-cone angle is
larger (Figure 5), i.e., the magnetic mirrors at the SMSs are more open, and a larger
number of energized electrons can escape from the outflow region along the field
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lines. The downwards escaping electron beams excite reverse type III radio bursts,
and cause strong electron precipitation at the foot-points, resulting in the non-
thermal hard X-ray (HXR) emission there. Analogously, opening of the loss-cone
in the outflow jet directed upwards from the diffusion region, provides for the escape
of electron beams along the outward directed field lines (Figure 1-right), exciting
metric-wavelength type III bursts. On the other hand, since the energy loss from the
outflow region is large, the plasma above the flare loops does not attain temperatures
which would provide the high-altitude HXR emission. Indeed, in the impulsive
phase of the energy release, when the reconnection rate is high (as evidenced by
fast expansion of ribbon fronts), the dominant features of the flare are non-thermal
footpoint HXR sources accompanied by type III and reverse type III radio bursts.

When the reconnection rate becomes low (post-impulsive phase), the loss-cone
angle at SMSs decreases from, say, 40 to 5◦. That significantly reduces the number
of escaping particles and the foot-point sources weaken. Similarly, the thermal
conduction flux from the outflow region is reduced (e.g., Dowdy, Moore, and Wu,
1985) and the current sheet attains the highest temperature. Consequently, a hot
source above the loop appears (Masuda et al., 1994; Aschwanden et al., 1996;
Sui and Holman, 2003), presumably being located downstream of the FMS (see
Section 5.1). If the FMS downstream plasma is dense enough, the source might even
show characteristics of a thick-target HXR emission (Veronig and Brown, 2004).

Another intriguing morphological characteristic of the late phase of two-ribbon
flares are “revivals” of type IV radio emission, usually showing up as several,
successively weaker and smoother, post-maximum increases. Such an intermittent
reawakening of electron acceleration during a predominantly thermal phase of
the flare, might be related to an intermittent appearance of the turbulence which
preferably happens at small �0, below some critical value �crit

0 . It is reasonable to
assume that due to the large-scale coronal inhomogeneities, the inflowing magnetic
field shows variations in orientation of at least several degrees. So, the turbulence
might be quenched in the periods with �0 > �crit

0 , and switched-on again when
�0 declines back to smaller values, �0 < �crit

0 . Since progressively larger scales
are involved (overall current sheet stretching), the spatial and time scales involved
become larger, and fine structures become blurred.

Gradually, the energy release diminishes due to increasing β0 in the ambient
plasma, and eventually the flare ceases. However, the reconnection can still be
going on long after the flare ends, as evidenced by a continuing growth of colder,
“post-eruption” loops.

Appendix A: Solutions of the Complete 2 1
2 -D Problem

The coupled system of jump relations at SMS and RD was transformed by Skender,
Vršnak, and Martinis (2003) into 17 equations containing 21 dimensionless quan-
tities. There are several possible choices of four input parameters that provide
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solutions in an explicit form. Unfortunately, that does not include the case where
the outflow and intermediate region parameters are presented as explicit functions
of the four inflow region parameters (�0, β0, MA00, and α). So, the problem has
to be inverted: we have to chose one of the explicit-solution options, and then
the four chosen variables have to be varied iteratively until the desired values of
�0, β0, MA00, and α are achieved. It turns out that most convenient option is to
employ as variables the density jump N12 = n2/n1 ≡ N and the angles δ, ε, and ξ ′

(see Figure 1-left for definitions of the angles used here and later).
In the following we present explicit expressions for all relevant quantities, in

the form of an algorithm that can be straightforwardly employed for a numerical
evaluation, and this is what we have used to obtain the results presented in this
paper. The ratio of specific heats is assumed to be 5/3.

Starting with the input values of N , δ, ε, and ξ ′, first we find the angles γ and
φ:

γ = ε − δ, (A.1)

φ = 1

2
arcsin

2 sin ε sin δ

N sin γ
, (A.2)

and the following three SMS-related parameters:

Vr ≡ vr2

vr1
= cos φ sin γ

sin δ
, (A.3)

Br ≡ Br2

Br1
= sin δ

cos φ
, (A.4)

MA1r ≡ vr1
√

µρ1

Br1
=

√
sin δ cos δ − B2

r sin φ cos φ

sin ε cos ε + N V 2
r sin φ cos φ

. (A.5)

Here, µ denotes the permeability and ρ is the plasma density. Now, the rest of
relevant xy-plane angles can be evaluated:

φ′ = arctan
sin γ

MA1r − cos γ
, (A.6)

ω = π − φ′ − γ, (A.7)

θ = δ − ω, (A.8)

α = (π − ξ ′) + φ + ϑ, (A.9)

δ′ = arctan
1

cot ω + cot φ′ − cot ξ ′ , (A.10)

σ = θ + φ − δ′. (A.11)
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After calculating two RD-related parameters,

B ′
r ≡ Br1

Br0
= sin δ′

sin ω
, (A.12)

V ′
r ≡ vr1

vr0
= sin ξ ′

sin φ′ , (A.13)

the direction of the intermediate region flow can be determined:

�V = arctan

√
H 2 − 1

D2 − G2 H 2
, (A.14)

where

H = sin ω

sin δ′ , (A.15)

D = M2
A1r

sin ε

sin δ
+ Br cos φ

(
sin δ − M2

A1r
sin2 ε
sin δ

)
Br sin ε cos φ − Vr sin φ sin δ

, (A.16)

G = D
B ′2

r sin ω

sin δ′ + V ′2
r sin φ′(B ′2

r sin ω cos ω − sin δ′ cos δ′)
sin δ′( sin ξ ′ cos ξ ′ − V ′2

r sin φ′ cos φ′) . (A.17)

The expressions for the inclination of the magnetic field in the inflow, intermediate,
and outflow region read

�0 = arctan (G tan �V ), (A.18)

�1 = arctan (D tan �V ), (A.19)

�2 = arctan
tan �1 sin ε − tan �V sin δ

Vr Br sin φ
, (A.20)

respectively.
The pressure jump at the SMS amounts to

P ≡ p2

p1
=

4F
5E + sin ε

Vr sin φ + 4F
5E

, (A.21)

where

E = 2M2
A1r

(
sin2 ε − N V 2

r sin2 φ
) + 1

cos2 �1
− B2

r

cos2 �2
, (A.22)

F = F1 + F2 + F3, (A.23)

F1 = −1

2
M2

A1r

(
sin ε

cos2 �V
− N V 3

r sin φ

)
− tan2 �1 sin ε, (A.24)

F2 = B2
r Vr tan2 �2 sin φ − cos2 δ sin ε + B2

r Vr sin3 φ, (A.25)

F3 = sin δ tan �1 tan �V + sin δ cos δ cos ε + B2
r Vr sin φ cos2 φ. (A.26)
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The physical state of the output is completed by evaluating the temperature jump
at the SMS,

T2

T1
≡ T = P

N
, (A.27)

and the magnetosonic Mach number of the outflow:

M2 ≡ v2√
B2

2
µρ2

+ 5ρ2

3ρ2

= Vr MA1r

√
N√

B2
r

cos2 �2
+ 5Pβ0

6 cos2 �1

. (A.28)

Finally, the plasma-to-magnetic pressure ratio in the inflow region, and the recon-
nection rate can be obtained from

β0 = β1 = E

P − 1
cos2 �1 (A.29)

and

MA00 = sin α sin δ′

sin(π − ξ ′) cos(δ′ + ϑ + φ)
, (A.30)

respectively.

Appendix B: Soward’s Approximation

Soward’s approximation (Soward, 1982) is sufficiently good to describe the be-
haviour of the temperature, density, and magnetic field strength for the α = 90◦

case. Since the outcome is relatively simple, it is possible to represent it in a com-
pact, ready-to-use form. In order to avoid duplication of the symbols, the parameters
denoted in the original paper as α and δ, we rename herein to a and d, respectively.
The parameter a ≡ n1/n2 represents the inverse of the density jump, a ≡ 1/N .

Neglecting small terms in the jump relations at the RD and the SMS, the system
of equations decouples into two partly independent subsets. The first subset relates
the inflow and outflow quantities and does not depend on the reconnection rate
MA00. The density ratio a can be expressed explicitly in terms of the transversal
magnetic field jump at the SMS, q = Bz2/Bz1:

a = 5β0 + 2 − 2q

5β0 + 5 − 2q − 3q2
, (B.1)

where we have taken the ratio of specific heats to be 5/3. Introducing the parameter
d,

d =
(

1 − q

1 − aq

)1/2

, (B.2)
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the angle �0 can be expressed as

sin �0 = q(1 + ad)

1 + d
, (B.3)

whereas β2 reads

β2 = β0 + 1 − q2

q2
. (B.4)

Finally, the temperature jump is

T2

T1
= T2

T0
= β2

β0
aq2, (B.5)

and the density ratio is by definition

n2

n1
= n2

n0
= 1

a
. (B.6)

Note that for a given value of β0, the parameters q and a cannot be expressed
as explicit functions of �0. So, the system has to be solved iteratively (varying q,
until �0 becomes adjusted to the prescribed value). Finally note, that for β0 � 1
and �0 ≈ 0, the pressure ratio behaves as p2/p1 = TN = T/a ≈ 1/β0.

The other subset of equations determines the behaviour of the angles φ, θ , δ′, and
σ (see Figure 1), which depend also on MA00. They can be expressed (in radians)
as

δ′ = MA00, (B.7)

φ = ad MA00, (B.8)

σ = (2 + ad − d)MA00, (B.9)

and

θ = σ − φ − δ′. (B.10)

All the angles are proportional to MA00, i.e., they increase with an increasing re-
connection rate.
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