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Abstract. We present the results of charged particle orbit calculations in prescribed electric and
magnetic fields motivated by magnetic reconnection models. Due to the presence of a strong guide
field, the particle orbits can be calculated in the guiding centre approximation. The electromagnetic
fields are chosen to resemble a reconnecting magnetic current sheet with a localised reconnection
region. An initially Maxwellian distribution function in the inflow region can develop a beam-like
component in the outflow region. Possible implications of these findings for acceleration scenarios in
solar flares will be discussed.

1. Introduction

The acceleration of huge numbers of charged particles to high energies in solar
flares is still very much an unsolved problem. Many different mechanisms have
been proposed but none can as yet explain all of the observational signatures in a
satisfactory way.

Apart from radio observations which can be made from the ground, the most
important signatures of high energy solar flare particles occur at X-ray and gamma-
ray wavelengths. As observations at these wavelengths can only be made outside
the Earth’s atmosphere, space missions like Yohkoh and the Compton Gamma Ray
Observatory (CGRO) have been essential in providing us with data of solar flares.
The RHESSI mission, launched in 2002, is dedicated to high-energy solar events
and has greatly improved observations of accelerated particle signatures at X-ray
and gamma-ray wavelengths by combining imaging capabilities with high spectral
resolution right up into the MeV range. First results already show surprising details,
e.g. in one flare gamma-ray sources of accelerated protons did not coincide with
hard X-ray electron sources (Hurford et al., 2003). For more comprehensive reviews
of the (pre-RHESSI) observations and a concise summary of the main constraints
facing any theory of particle acceleration in solar flares we refer to Miller et al.
(1997) and Aschwanden (2002).

It is generally accepted that the energy released in a flare is previously stored
in the magnetic field, and that the release process involves magnetic reconnection
at some stage. Direct acceleration by the reconnection electric field is therefore
one possible mechanism for the generation of high-energy particles during solar
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flares, and in the present paper we will focus exclusively on direct electric field
acceleration. In general, we expect that several different acceleration mechanisms
will be at work either simultaneously or sequentially during solar flares.

Apart from direct acceleration, it has also been suggested that magnetic recon-
nection could cause particles to be accelerated by turbulent magnetic fields in the
reconnection outflow (e.g. Moore, LaRosa, and Orwig, 1995; LaRosa et al., 1996)
or by the inductive field caused by the shrinkage of field lines having undergone re-
connection (collapsing trap model; Somov and Kosugi, 1997; Karlický and Kosugi,
2004). Another suggestion was that the interaction of the fast reconnection outflow
with the stronger magnetic field in the lower corona can lead to the formation of a
fast-mode shock (Somov and Kosugi, 1997; Tsuneta and Naito, 1998) which could
in turn accelerate particles.

Not directly connected to the magnetic reconnection process are acceleration
models based on stochastic acceleration (e.g. Miller and Roberts, 1995; Miller,
LaRosa, and Moore, 1996; Lenters and Miller, 1998) of particles in (small-
amplitude) turbulent electromagnetic fields. In these models, it is generally assumed
that the energy released during a flare is somehow deposited in the turbulent wave
fields and is then transferred into particle energy by a diffusive process in momen-
tum space. Compared with direct acceleration models, stochastic models usually
lack spatial information, but are more detailed in terms of, e.g., the evolution of
distribution functions of accelerated particle populations.

Direct electric field acceleration is usually studied in the framework of recon-
necting current sheets (e.g. Martens, 1988; Martens and Young, 1990; Litvinenko
and Somov, 1993; Litvinenko, 1996; Zharkova and Gordovskyy, 2004) or in X -point
like configurations (e.g. Bulanov and Sasorov, 1976; Bruhwiler and Zweibel, 1992;
Fletcher and Petkaki, 1997; Browning and Vekstein, 2001; Litvinenko and Craig,
2000; Craig and Litvinenko, 2002; Heerikhuisen, Litvinenko, and Craig, 2002). In
such studies, the electric and magnetic fields are usually assumed to be independent
of time and have a simple dependence on the spatial coordinates. In particular, a
spatially constant electric field is normally imposed, either by assumption or as a
consequence of stationarity and an assumed spatial invariance. Exceptions are stud-
ies which use fields from MHD simulations (e.g., Kliem, 1994) or time-dependent
solutions of the linearized MHD equations (e.g., Petkaki and Mackinnon, 1997;
Hamilton et al., 2003). The acceleration of charged particles is then investigated
by studying the particle orbits in the given electromagnetic fields.

This method has not only been applied to solar flares, but also to other astro-
physical phenomena, e.g the acceleration of particles to ultra-relativistic energies
in active galactic nuclei and jets (e.g. Schopper, Birk, and Lesch, 1999; Nodes
et al., 2003). It is interesting to compare these studies with those of solar flares,
even though the different parameter regimes do not necessarily allow for a direct
application of the results to the Sun. For example, the radiation reaction force or
the interaction of the particles with the energetic photons of a background radiation
field are negligible in the solar case.
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Magnetic reconnection is generically associated with a localised magnetic
field-aligned component of the electric field caused by the violation of the ideal
Ohm’s law (e.g. Hesse and Schindler, 1988; Schindler, Hesse, and Birn, 1991;
Hesse, 1995). This localization of the electric field component parallel to the
magnetic field is not included in the models of reconnecting current sheets or
X -points mentioned earlier. It is one of the objectives of the present paper
to generalize the previous models to include a spatially varying field-aligned
component of the electric field which drops to zero outside the reconnection
region.

We also aim at combining the pictures of reconnecting current sheet and X -point
configurations and study a current sheet configuration containing an X -point. For
simplicity, we will assume that our fields are spatially invariant in one direction.
Since we expect the particle acceleration time scale to be much shorter than the
MHD time scale, we will also assume that the electromagnetic fields do not change
over the time scales we consider. This is not the same as suggesting that the fields
are static. Therefore, any electric field in this paper should be considered as an
inductive field and not as a potential field.

Following Litvinenko (1996), we assume the presence of a strong magnetic
field component in the invariant direction. This allows us to use the guiding centre
approximation for the particle orbits. Under the assumption of collisionless trans-
port, we investigate in detail how a Maxwellian distribution in the reconnection
inflow region is modified by the electromagnetic fields, in particular the depen-
dence of the energy distribution function on position in the reconnection outflow
region.

We would like to emphasize that we have not attempted to carry out a self-
consistent investigation. The electromagnetic fields used in the present paper have
been chosen in such a way that they on the one hand give a reasonable representation
of fields in and around regions undergoing magnetic reconnection, but on the other
hand are still simple enough to allow for a largely analytical treatment. The parti-
cles are treated in the sense of non-relativistic test particles and no back reaction
of the particles onto the fields has been taken into account. A fully self-consistent
treatment would require Vlasov or particle-in-cell simulations. Although consider-
able progress has been made over the past few years (e.g., Hesse, Kuznetsova, and
Hoshino, 2002; Drake et al., 2003; Ricci, Lapenta, and Brackbill, 2003; Pritchett
and Coroniti, 2004), a fully self-consistent treatment of a comparable problem still
seems to be too ambitious.

The paper is organized as follows. In Section 2 we describe in detail how we
determine the electromagnetic fields we use. In Section 3 we give the equations of
motion we solve and describe how we calculate the particle distribution functions
in the outflow region. Section 4 gives the results of our calculations and discusses
the dependence of those results on model parameters like maximum electric field
strength or the dimensions of the dissipative region. Finally, Section 5 gives a
detailed discussion of the results and conclusions.
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2. The Electromagnetic Fields

Our aim is to study the acceleration of charged particles in electromagnetic fields
which mimic the fields occurring during the reconnection phase of a solar flare.
Previous work has concentrated on either current sheet or X -point configurations.
In the present contribution, we will aim to combine these two configurations by
assuming an overall current sheet configuration with an embedded X -point. The X -
point marks the centre of the non-ideal region which allows magnetic reconnection
to occur. The magnetic field is completed by a strong field component perpen-
dicular to the current sheet/X -point configuration. This guide field has the effect
of increasing the period of time for which particles stay inside the reconnection
region in which they feel strong accelerating electric field (e.g. Litvinenko, 1996).
We will assume that for electrons the guide field is strong enough to guarantee that
the guiding centre approximation can be used to calculate the particle orbits. As in
previous papers on this subject (Bruhwiler and Zweibel, 1992; Litvinenko, 1996;
Browning and Vekstein, 2001), the field configuration used in the present paper is
invariant in one direction (the z-direction).

2.1. THE MAGNETIC FIELD

To ensure ∇ · B = 0 we write the magnetic field in the form

B = ∇ A × ẑ + Bz ẑ. (1)

Here A(x, y) is the magnetic flux function and we assume that Bz = B0 is the
constant magnitude of the guide field.

Normalizing the magnetic field with respect to the guide field B0, we assume
that the flux function is given by

A(x, y) = λ ln[cosh(y) + e(−x2/L2)]. (2)

The corresponding magnetic field has the structure of a Harris sheet (Harris, 1962)
for large |x | or |y|, but contains an X -point at x = y = 0 (see Figure 1).

As already stated, we have assumed that the magnetic field in the x–y plane
has been normalised to the value of the z-component of the field, so λ = Bx∞/B0,
where Bx∞ is the value of Bx in the limit |y| → ∞ and B0 is the value of the guide
field. In normalised units, the amplitude of the guide field is therefore equal to one.
In our standard case, the value of B0 will be assumed to be 50 G and λ = 1, but the
results can of course be scaled by an appropriate factor since we use dimensionless
equations. The components of the dimensionless magnetic field are given by

Bx = λ
sinh y

cosh y + e(−x2/L2)
, (3)
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Figure 1. An example of the field configuration used in this paper (using L = 10). Note that for
graphical reasons the configuration is not shown with the correct aspect ratio, so that it is actually a
lot more elongated in the x-direction than shown here. The solid lines are projections of magnetic
field lines onto the x–y plane (contours of the flux function A). The non-ideal region in which a
field-aligned component of the electric field exists is outlined by the dashed contours.

By = 2λ

L2

xe(−x2/L2)

cosh y + e(−x2/L2)
, (4)

Bz = 1.0. (5)

Length scales have been normalized in such a way that the current sheet half-
width Lcs is one, and L represents the extension of the X -type region of magnetic
field in the y-direction measured in units of Lcs. The actual value of Lcs for current
sheets in the solar corona is unknown observationally, but for example in MHD
reconnection simulations (e.g. Zeiler et al., 2002; Shay et al., 2003) studying the
formation of current sheets a typical sheet thickness is found to be about 10 ion
inertial lengths (10c/ωpi , where ωpi is the proton plasma frequency). For typi-
cal coronal conditions (particle density n = 1015 m−3) this is ≈ 70 m. However,
Litvinenko (1996) uses a sheet half-width of 1 m, and later quotes a typical width of
10 m. For comparison, a typical electron Larmor radius using the thermal velocity
for a temperature of T = 2 × 106 K is ≈ 6.3 × 10−3 m in a 50 G magnetic field.
As it is still completely unclear what range of widths a reconnecting current sheet
might have, we usually take 10 m as a reference width in our configuration. As we
will operate with suitable non-dimensionalised equations, an increase or decrease
of the reference width would increase or decrease the other length scales by the
same factor.

A basic assumption of our model is that the time scale on which particles are
accelerated is much shorter than the time scale on which the electric and magnetic
field changes. We will therefore neglect any time dependence of the magnetic and
electric fields and consider the fields as a snapshot being taken during their slow
time evolution.
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2.2. THE CURRENT DENSITY

We will need the current density j when we determine the electric field used in our
model. In our normalization, the current density is given by

j = ∇ × B = −
(

∂2 A

∂x2
+ ∂2 A

∂y2

)
ẑ = jz ẑ, (6)

with

jz = λ
2e−x2/L2

/L2
[
(1 − 2x2/L2) cosh y + e−x2/L2] − 1 − e−x2/L2

(cosh y + e−x2/L2 )2
. (7)

For large |x |, this current density tends to the Harris sheet current density j =
−(λ/cosh2 y) ẑ but for x � 0 it behaves differently, due to the X -point structure.

2.3. THE ELECTRIC FIELD

The electric field used for our particle orbit calculations should resemble the electric
fields known to be associated with magnetic reconnection. We emphasize, however,
that we regard this purely as a motivation for our choice of electric field and that in
the present paper we do not aim to find an electric field which satisfies all equations
of kinematic or full MHD. We rather aim to find an electric field which captures
the essential features of the electric field, in and around a reconnection region. In
particular, we want the field-aligned component of the electric field to be localised,
i.e., to go to zero quickly away from the reconnection region. This allows a clear
distinction between the parallel (field aligned) electric field usually thought to be
responsible for particle acceleration and the perpendicular electric field associated
with the bulk inflow and outflow of the reconnection region.

As a proxy for finding such an electric field, we use Ohm’s law in the usual
non-ideal MHD version,

E = ηj − v × B, (8)

to determine an appropriate electric field (a similar approach has been taken by
Zharkova and Gordovskyy, 2004). Here v represents the bulk flow velocity of
plasma in and out of the reconnection region, and η the resistivity of the plasma.

The resistive ηj term is responsible for the parallel (field-aligned) electric field
component, whereas the v × B term represents the perpendicular electric field
component due to plasma convection.

The localization of the current density in the y-direction automatically causes a
localization of the parallel electric field in y, but there is no corresponding localiza-
tion of E‖ in the x-direction. We achieve this localization by making the resistivity
space dependent, similar to resistive MHD simulations (e.g., Schopper, Birk, and
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Lesch, 1999; Nodes et al., 2003):

η(x, y) = η0

cosh2(x/Lηx ) cosh2(y/Lηy)
, (9)

where the length scales Lηx and Lηy allow for the possibility of choosing the
variation of η in x and y separately from each other, and also to change these
length scales with respect to the length scale of the magnetic field. We will use this
possibility to restrict the spatial extent of the parallel electric field. The constant η0

influences the magnitude of the parallel electric field directly, and the value of η0

is chosen to fix the maximum value of the parallel electric field at x = y = 0 given
by

E0 = Ez(0, 0) = η0 jz(0, 0) = η0 λ

(
1

L2
− 1

2

)
. (10)

We will usually choose this value of E0 to be comparable to previous work (e.g.,
Litvinenko, 1996 uses a value of 10 V cm−1), but we will also carry out calculations
with a lower maximum value of the electric field. We would like to emphasise again
that we are considering Ohm’s law only as a proxy for determining a reasonable
electric field configuration. An example of the resulting localised parallel electric
field is shown in Figure 1 using dashed contours.

The components of the electric field perpendicular to the magnetic field are
determined by the flow field v. Consistent with the two-dimensional nature of
the magnetic field, we choose the flow field to have only x- and y-components.
In agreement with the usual reconnection theory for two-dimensional fields plus
guide field component, we assume that the flow is incompressible, i.e.,

v = ∇ψ × ẑ. (11)

We choose the stream function ψ to have the form

ψ = vy∞Lvx tanh(x/Lvx ) tanh(y/Lvy). (12)

The corresponding velocity field vflow has components

vflow,x = vy∞
Lvx

Lvy

tanh(x/Lvx )

cosh2(y/Lvy)
, (13)

vflow,y = −vy∞
tanh(y/Lvy)

cosh2(x/Lvx )
. (14)

The velocity field has a stagnation point at the magnetic X -point, with inflow
localised around the y-axis and outflow localised around the x-axis. The flow speed
in both directions has a finite asymptotic value. The asymptotic value of the flow
speed in the y-direction is given by vy∞. The corresponding value in the x-direction
differs by the ratio of the length scales Lvx/Lvy . In the present paper, we assume
that Lvx = L and Lvy = 1, i.e. that the flow field varies on the same length scales
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as the magnetic field. Since L is larger than 1 in the current sheet configurations
used by us, we automatically get a slow inflow and fast outflow, with the asymptotic
outflow velocity being a factor L faster than the inflow velocity. This is consistent
with the usual view that magnetic reconnection causes an accelerated outflow from
the reconnection region.

The magnitude of the flow velocity is a free parameter of our model. We fix
this parameter by assuming that the asymptotic outflow speed is a few tenths of
the coronal Alfvén velocity, consistent with many reconnection models. The inflow
speed then follows according to the ratio of the length scales of the flow. We regard
an outflow speed of 300 km s−1 as typical, corresponding to a coronal Alfvén
speed of about 1000 km s−1. We emphasize again that we will use dimensionless
quantities throughout so that appropriately scaled speeds are possible. The major
quantity needed for our calculations is the resulting perpendicular component of
the electric field, the flow field is only a proxy for calculating this part of the electric
field and thus only of secondary importance.

2.4. SUMMARY

We briefly summarise here the approach we have taken and how well our assumed
field satisfies the MHD equations. Our B field is a modified Harris sheet with an
X -point in the centre. Our parallel electric field is restricted to the region around
the X -point. This choice of E is the principle difference between our work and
recent studies (e.g., Litvinenko, 1996; Browning and Vekstein, 2001), who take a
constant E = E0 ẑ. This choice implies that ∇ × E is non-zero. This is deliberate
since we view this configuration as a snapshot of an inductive field, but we ignore
the time dependence of B, assuming that the electron acceleration time scale is
much shorter than the MHD time scale.

In our configuration, A satisfies the Grad–Shafranov equation only approxi-
mately, since it is close to the A of a Harris sheet. The velocity field vflow is a
stagnation flow ensuring ∇ · v = 0, with inflow and outflow velocities not incon-
sistent with the general theoretical picture of reconnecting current sheets (e.g.,
Priest and Forbes, 2000). We emphasise once again that some assumptions have
been made in order to create a reasonably simple model that captures the essential
features of an X -type current sheet.

3. The Particle Equations of Motion

The electromagnetic fields of the previous section are used to calculate the orbits of
electrons within these fields, in particular to study the acceleration of electrons in
these fields. In the present paper, we find that some particles reach mildly relativistic
energies (up to 500 keV) but very few reach such values so we have chosen to use
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the nonrelativistic equations of motion, given by

me
d2r
dt2

= −e

[
E + dr

dt
× B

]
, (15)

where r(t) is the position of the particle at time t , me the electron mass, and e the
elementary charge.

Due to the guide field component included in our model magnetic field, the
electron motion can always be regarded as a combination of a guiding centre drift
and a gyrational motion. Because the gyrational motion happens on much smaller
spatial and time scales than the drift motion, it will limit the size of the time step
in any numerical method used to solve Equation (15) and increase the amount of
computing time needed dramatically.

It is therefore much more convenient to use the guiding centre or drift approxi-
mation to calculate the electron trajectories. With the electromagnetic fields given
in Section 2, the guiding centre theory provides us with an excellent approximation
to the true electron orbits, but avoids the limitations on the time steps of full orbit
methods.

In the guiding centre approximation, the true position of the particle r(t) is
approximated by the guiding centre position R(t), which is the centre of the instan-
taneous gyrational motion. The particle velocity is split into a gyrational component
and drift component. The drift component is given by the time derivative of the
guiding centre position R(t), whereas the gyrational component only appears in the
magnetic moment µ = mev

2
⊥/2B, which is an adiabatic invariant. To calculate the

electron trajectories within the guiding centre approximation, we use the equations
as given by Northrop (1963). We use the same normalisation as given earlier (length
scales normalised to the current sheet half-width Lcs, magnetic fields to the value
of the constant guide field B0, electric fields to the value of Ez at x = y = 0, E0),
but in addition we normalise velocities by E0/B0 and time by Lcs B0/E0. With this
normalisation, the guiding centre equations take the form

dv‖
dt

= −1

ε
E‖ − µ

∂ B

∂s
+ uE ·

[
∂b
∂t

+ v‖
∂b
∂s

+ (uE · ∇) b
]

, (16)

dR
dt

= uE + v‖b − ε

{
µ

B × ∇ B

B2
− B

B2
×

[
v‖

∂b
∂t

+ v2
‖
∂b
∂s

+ v‖(uE · ∇)b +

+∂uE

∂t
+ v‖

∂uE

∂s
+ (uE · ∇)uE

]}
, (17)

where

b = B
|B| , (18)
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∂ B

∂s
= (b · ∇)B, (19)

uE = E × B
B2

. (20)

According to our approximation of the evolution of the electromagnetic fields, we
neglect the terms containing time derivatives.

Equations (16) and (17) contain one dimensionless parameter ε, defined by

ε = me E0

eB2
0 Lcs

= 1

ωe,gT
. (21)

Here ωe,g is the electron gyrofrequency in the guide field B0 and T is time scale
defined by Lcs B0/E0, which can be interpreted as an E × B-drift time across one
current sheet half-width Lcs (note, however, that E0 is the value of the parallel
electric field at the X -point and that B0 is the value of the guide field). Since we
assume the drift approximation to be valid we expect that the time scale defined
by the gyrofrequency is much smaller than the drift time scale, and thus ε should
be small. Indeed, if we rewrite ε using typical values for the various quantities it is
defined by, we get

ε = 5.686 × 10−2

[
Lcs

m

]−1 [
B0

G

]−2 [
E0

V cm−1

]
. (22)

For our standard values Lcs = 10 m, B0 = 50 G and E0 = 10 V cm−1 one obtains
ε ≈ 2.275×10−5. Therefore, in Equation (16) the first term will be dominant where
E‖ is of any noticeable strength (i.e., inside the reconnection region). In Equation
(17), the first two terms (E×B-drift and guiding centre motion along the field) will
be the most important terms, but we include all terms in our calculations.

The guiding centre approximation remains valid as long as changes in the mag-
netic field are on time and length scales much bigger than the gyroradius and
period. Without Bz , particles have meander orbits near the magnetic null point, but
the addition of a strong guide field ensures it remains valid in the whole domain of
study.

3.1. PARTICLE DISTRIBUTION FUNCTIONS

To simulate a population of particles with different initial conditions, we start our
guiding centre calculations at a fixed position y = yin outside the current sheet.
The configuration is invariant in z so we need only vary x to simulate different
initial positions. Since we are using the guiding centre approximation, we have less
freedom than in a full particle orbit calculation regarding the initial (guiding centre)
velocity (note that Equations (16) and (17) are only four first-order differential
equations corresponding to four independent initial conditions, whereas the full
equations of motion require six initial conditions). Thus, we can only prescribe v‖
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in addition to the initial position. However, the value of the magnetic moment µ can
also be varied for different orbits, but as µ is a constant of motion, strictly speaking
it is not to be regarded as an initial condition.

To model a coronal particle population, we assume that at each initial position
the particles have a Maxwellian energy distribution and that the particle density is
the same for each initial position. The initial particle distribution function is then
given by

f (x, v‖, µ) = f0 exp

(
−mev

2
‖ + 2µB

2kB T

)
. (23)

Assuming a coronal temperature of 2×106 K the electron thermal speed (
√

kB T/me)
is ≈ 5.5×103 km s−1 (measured in units of our velocity normalisation, the thermal
speed is ≈ 5.5[E0/(V cm−1)]−1[B0/G]).

Over the time and length scales considered here the corona is largely colli-
sionless, and so the value of the particle distribution function stays constant along
particle orbits. We therefore transport the value of the distribution function along
calculated particle orbits and construct a final distribution function in the reconnec-
tion outflow region (at constant x = xout).

The initial conditions for the particle orbits are determined as follows. In x we
take 200 initial values spread uniformly across the length of the current sheet. In
velocity space, we sample the parallel velocity up to about four times the thermal
velocity in both positive and negative directions with a total 340 different values
for the initial v‖. For each x and each v‖ value, we calculate particle orbits for 170
different values of µ between 0 and ≈ 5000.1 In total, each simulation involves
about 107 particle orbits.

The orbits are classified according to the field lines on which they cross x = xout

and by their energy at that position. The position ‘bins’ are created by separating
particles according to final y position. It is then possible to create energy spectra
for different positions in relation to the projected separatrix field lines. For better
comparison with the observations, the energy spectra for the different cases are
usually created with 1 keV resolution, although some plots are created with a
coarser resolution for smoothness. We remark that these energy values can be re-
scaled for different values of E0 and B0 (E ′

0 and B ′
0, say) by multiplying the energy

values by the factor (B0/B ′
0)2(E0/E ′

0)−2, provided the value of the parameter ε

is kept constant at the same time (if ε changes the particle orbits and thus the
distribution function will change).

1In our normalisation, the electron Larmor radius for a given magnetic moment µ can be written as
rL ≈ 8.04 × 10−2[E0/V cm−1][B0/G]−2√µ/B(x, y) m. For our standard values E0 = 10 V cm−1

and B0 = 50 G, we obtain for µ = 5000 and B(x, y) = 1 a Larmor radius of ≈ 2.3 × 10−2 m, still a
lot smaller than Lcs. This value is about twice the Larmor radius of an electron with v⊥ = vthermal in
a plasma of temperature 2 × 106 K.
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Figure 2. Two example particle trajectories (dashed and dash-dotted lines) superimposed onto pro-
jected magnetic field line contours.

4. Results

4.1. TYPICAL TRAJECTORIES

Due to the relatively strong guide field in our configuration the particles are strongly
magnetized. As already briefly discussed in Section 3, the guiding centre motion
consists of a perpendicular component mainly given by the dominant E × B-drift
and the field-aligned component. The E×B-drift velocity is basically identical with
the bulk flow field (Equations (13) and (14)) we have used as a proxy to determine a
reasonable electric field in the ideal region. Without an area of enhanced resistivity
all electron guiding centres would carry out this type of motion.

However, particles that pass close to the origin feel the effects of the parallel
electric field and are strongly accelerated. Figure 2 shows examples of projections
of two typical orbits onto the x–y plane. One orbit passes above the resistive
region (dashed line), whereas the other one passes through it (dash-dotted line). The
particular examples are chosen to represent the two basic, distinct types of motion.
The parameter values of the electric and magnetic field used in this example are
given in Table I.

TABLE I

Parameter values of electromagnetic field for
orbits in Figure 2.

Parameter Value

E0 10 V cm−1

B0 50 G

λ 1

Lcs 10 m

L/Lcs 10

ε 2.275 × 10−5

Lηx/Lcs 1.666

Lηy/Lcs 0.166
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For the first trajectory, the initial conditions used were x = −5.0, y = 2.0,
v‖ = 10.0 and µ = 500.0. For this trajectory the gain in energy is negligible
because it does not pass close enough to the resistive region to feel much of the
parallel electric field.

In the other case, the initial conditions are x = 6.5, y = 2.0, v‖ = −10.0 and
µ = 500.0. The particle seems to feel some trapping effects as it bounces between
the stronger field regions away from the X -point and is given a chance to drift right
in towards the origin, receiving a much greater amount of energy. The example
shown represents a gain in energy of around 50 keV. The particle leaves the sheet
following field lines close to the separatrix (the field line coming directly from the
X -point).

The highly restricted resistive region implies that the exact particle orbits are
extremely sensitive to the initial parallel and perpendicular velocity. Energy gain is
entirely dependent on how close the particle drifts to the X -point. Thus, the shape
of the energy spectra can be expected to depend on the geometry of the current
sheet.

In our orbit calculations the code stops when the trajectory reaches 30 Lcs in
the x-direction (corresponding to 300 m if we use Lcs = 10 m). Almost all the
acceleration occurs in the first 10 Lcs in the x-direction. We run the code to x =
30 Lcs to ensure that a particle has had the chance to gain maximum energy. The
initial and final kinetic energies are calculated from the equation

Ekin = 1

2
mv2

‖ + µB (24)

in our usual normalisation.
In the present paper, we only treat electrons since the values for the proton/ion

Larmor radii would generally not allow for the guiding centre approximation to be
used. Since the question of separation of accelerated protons and electrons has re-
cently attracted some attention (e.g. Hurford et al., 2003; Zharkova and Gordovskyy,
2004) we nevertheless want to briefly discuss this issue here. In the ideal case, with
no resistive region, there is hardly any separation of accelerated electrons and ions
whatsoever, whereas in the presence of a large and spatially constant parallel elec-
tric field the separation of accelerated electrons and ions is total. However, Figure 2
highlights the more complicated motion in a hybrid model like ours. It is possible
for particles to exit the sheet in all four corners but the effect of the E‖ in the
non-ideal region will be to separate the accelerated electrons and ions. Since there
is a gradual boundary between the ideal and resistive regions this separation will
be extremely complex but confined to only the accelerated particles.

We also remark that in a self-consistent treatment of the acceleration process any
tendency for charge separation would be accompanied by a strong modification of
the electric field the consequences of which are difficult to assess. We would there-
fore like to re-emphasise that any results purely based on test particle calculations
like ours are useful but should not be over interpreted.
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4.2. EVOLUTION OF PARTICLE DISTRIBUTIONS

To construct a full sample of initial conditions for a current sheet with the parameters
listed in Table I, we took a range of values for the initial position along the length of
the sheet (x0). The invariance in z of our model allowed us to set z0 = 0 throughout,
and we used y0 = 2 Lcs, corresponding to particles drifting in from the top of the
sheet as it is shown in Figure 1. We need only consider the positive value of y0

since the symmetry of the model implies that the energy spectra will be the same
above and below the X -point.

Combining these initial conditions with the distribution function in velocity
space discussed earlier, we calculated the orbits of around 107 particles. The total
final energy spectrum is shown as a double logarithmic plot in Figure 3. From the
plot we see that obviously a vast majority of particles receive little or no acceleration.
These are the particles that do not pass near the X -point region (corresponding to
particles with trajectories similar to the dashed line orbit in Figure 2). For energies
above a couple of keV, the spectrum has a power-law shape (E−γ ) with an index
of γ ≈ 1.5. This value is certainly a little harder than most observations of flares
(e.g., Holman et al., 2003 finds values of 2.5 < γ < 3.5). However, Lin, Mewaldt,
and Hollebeke (1982) find values of γ ≈ 1.5 for the part of the spectrum between
10 and 100 keV in many flares. Our γ is comparable to the value predicted by
Heerikhuisen, Litvinenko, and Craig, 2002. The spectrum could be softened by the
inclusion of energy loss mechanisms or by a different choice of parameters.

The power law extends all the way up to around 500 keV, where the non-
relativistic approximation is certainly no longer accurate. However, only such a

Figure 3. Double logarithmic plot of final energy spectrum using an initially Maxwellian particle
distribution function. The initial position in x ranges from −5 Lcs to 5 Lcs. For the parameters given
in Table I the bin width is 1 keV.
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small number of electrons reaches these energies that this is not of too great concern.
The plot highlights the following facts:

1. Energy gains of the right order of magnitude for flares are possible in our
current sheet configuration.

2. The total final energy distribution is of a power-law shape for energies above
≈ 2 keV with a power-law index which is not a huge amount harder than
observations.

Figure 4 shows two examples of electron spectra, grouped according to the value
of y as they reach the sampling position x = 30 Lcs. This means that particles are
collected into groups according to the field lines along which they are moving away
from the X -point region. The two examples shown are from around the separatrix
field line above and below the X -point. It is clear that a smaller number of particles
passes below the X -point from above, and also that these two groups of field lines
account for all of the accelerated particles. The huge bulk of thermal particles does
not appear in these plots – they are spread across the whole range of field lines.
Again, the energy distributions roughly follow power laws, with the lower separatrix
distribution being slightly more ragged and showing a depletion of particles at low
energies. The distribution is also flatter for the lower separatrix position.

Figure 5 shows an example where we use a finer resolution for the y ‘bins’. The
four examples shown are from just above the separatrix field line above the X -point.
The most accelerated particles are found next to the separatrix field line with less
energetic particles found in consecutive particle bins further above the separatrix.
A calculation with a lower maximum electric field (and therefore lower maximum
energy gain) was used to create Figure 5 because it shows the effect most clearly.
It is obvious that a clearly defined bi-directional beam of energetic electrons has
been created.

If we would use even finer resolution (i.e., smaller bin size), the particles can
be sorted extremely accurately into energy bands by tracking which field lines they
leave the box along. The most energetic particles are always found very close to

Figure 4. Left: Energy spectrum of particles collected next to the separatrix field line above the
X -point. Right: Energy spectrum from next to the separatrix below the X -point.
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Figure 5. Each graph shows a double logarithmic plot of the energy spectrum for a particular yfinal
‘bin’. The bottom-right graph is the spectrum from field lines next to the separatrix above the X -point,
while bottom-left, top-right and top-left are consecutive bins progressively further from the separatrix.
The energy gains are smaller than in Figure 3 because we use a smaller maximum electric field to show
the effect as clearly as possible. It is obvious that particular bands of energy have been partitioned
according to the field lines along which they leave the current sheet. The bottom-right bin contains all
of the particles that reach such high energies in the entire simulation (in addition to the corresponding
bin below the X -point).

the separatrices, with lower energies always found successively further from these
field lines.

4.3. VARIATION OF THE BASIC PARAMETERS

We look now at the sensitivity of these results with respect to changes of the current
sheet parameters and/or initial conditions.

We therefore calculated energy spectra for a variety of initial spatial conditions.
As the model has z-invariance, the z0 value makes no difference and a change of
y0 to values larger than 2 will not change the results as particles will just drift into
the current sheet from greater distance without gain in energy. Therefore, we vary
only x0. Taking a range from −10 Lcs to 0 instead of −5 Lcs to 5 Lcs in the principal
run, we obtain an almost identical spectrum, with the exception of a few extra
particles that reach energies higher than 500 keV. This corresponds to a few initial
conditions that let the particle drift gradually towards the separatrix field line and
follow it in towards the X -point. As stated earlier, altering the value of y0 also has
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little effect. When y0 is closer to the non-ideal region, we see a slight enhancement
of accelerated particles, which is a natural consequence of making it easier for
particles to reach the dissipative region. We conclude that not unexpectedly the
variation in initial position does not significantly change the previous results.

The parameter about which observations tell us the least is the parallel electric
field E0. Foukal and Behr (1995) calculate an estimate of an upper limit on the
electric field in a particular flare to be ≈35 V cm−1 using the Stark effect, while
Martens (1988) argued that the effective resistivity in a reconnection region can be
up to 5 orders of magnitude higher than the classical Spitzer value, giving rise to a
parallel field strength similar to the 10 V cm−1 we use. The maximum size of the
parallel electric field has a direct influence on the energy gain. Figure 6 shows the
effect of varying E0 by 2 orders of magnitude. Since varying E0 alters the parameter
ε (see Equation (21)) the whole motion of the particle is changed. Not only is the
possible energy gain reduced, but the spectrum is steepened. The value of γ is ≈2.6
for E0 = 1.0 V cm−1 and ≈4 for E0 = 0.1 V cm−1.

The spatial restriction of the resistive term can also be altered and Figure 7
shows an example of a less restricted parallel field with a maximum value of
0.05 V cm−1. The parameter values are contained in Table II. The graph shows
that maximum energy gains are increased by the less-restricted field (compared to
the lower graph in Figure 6) but the energies are weaker than in Figure 3 due to
the lower E0. However, a much greater proportion of particles gain energy. The
spectrum is much flatter and the huge bulk of particles in the lowest energy bin are
not present. The clear bump in the spectrum just over 10 keV is a geometrical effect

Figure 6. Energy spectra for a range of values of the maximum electric field, E0. The solid line is the
original spectrum (E0 = 10 V cm−1), the dashed line represents E0 = 1 V cm−1 and the dot-dashed
line E0 = 0.1 V cm−1. Apart from a clearly different maximum energy gain, the spectral index is
steeper for lower E0 values.
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Figure 7. The energy spectrum obtained from a weaker, but more diffuse resistive region. The max-
imum value of E0 is 0.05 V cm−1 but the area where resistivity is important is much larger than in
the previous case.

TABLE II

Parameter values for a current sheet model
with a weaker, but more extended E0.

Parameter Value

E0 0.05 V cm−1

B0 50 G

λ 1

Lcs 10 m

L/Lcs 10

ε 1.138 × 10−7

Lηx/Lcs 10

Lηy/Lcs 1

caused by the large number of electrons that pass below the X -point and receive
acceleration on the way past.

4.4. COMPARISON WITH CONSTANT ELECTRIC FIELD MODEL OF LITVINENKO

For comparison with our current sheet model, we have also carried out similar
calculations for the fields used by Litvinenko (1996). Figure 8 shows the configu-
ration (projected on the x–y plane) of the analytical reconnecting current sheet in
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Figure 8. Magnetic field lines in the analytical reconnecting current sheet model of Litvinenko (1996).

Litvinenko (1996). Bz and Ez come out of the page. The electric field E and the
magnetic field B are given by

B = B0(−y/a, ξ⊥, ξ‖), (25)

E = (0, 0, E0). (26)

The field is intended to model the inner part of a current sheet, given by the first
terms of a Taylor expansion. The invariance in x means that it is sufficient in this
configuration to study a single initial x-position. Figure 9 shows the energy spectrum
created by a similar numerical method as given in the previous section, using the
same distribution function in v‖ and µ. The uniform energy gain in the sheet so
far outweighs the initial variation in kinetic energy that the distribution function is
almost mono-energetic. The energy gain agrees very well with the energy gain for
particles that pass near to the origin in our model.

It is possible to obtain a broader energy distribution by considering particles
with different initial values of y. This does not produce a power law though. In the
paper, Litvinenko estimates a spectrum with γ = 2 if B⊥(x) ≈ x . Heerikhuisen,
Litvinenko, and Craig (2002) use similar arguments to predict a power law with

Figure 9. Energy spectrum produced by particles in the Litvinenko RCS.
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γ = 1.5. Our numerical results agree well with both these estimates and Litvinenko’s
predicted energy gains of a few hundred keV.

The intention of the present paper is to combine a current sheet configuration à
la Litvinenko (1996) with a spatially limited region of parallel electric field and to
include a wider area outside the centre of the reconnection region. The comparison
of the results highlights the gains to be made from this approach: more realistic
energy spectra and bi-directional electron beams.

5. Discussion and Conclusions

Using the non-relativistic guiding centre equations of motion we have tracked the
change in energy of Maxwellian distributions of electrons. This work can be thought
of as a natural extension to previous work (e.g. Litvinenko, 1996; Browning and
Vekstein, 2001). We have used a more “realistic” electromagnetic field configuration
with a similar maximum of the electric field (10 V cm−1) to find a power-law
distribution of energy (with index ≈1.5) in the reconnection outflow region. The
high-energy particles are concentrated around the separatrix field lines so that we
get a beam-like spatial structure of the distribution function. In the case of a weaker
maximum electric field we find both a reduction in the possible energy gains and a
steepening of the spectrum while a less restricted resistive region has the effect of
flattening the spectrum and particularly accelerating a great number of particles by
a small (<20 keV) amount. In all these cases, the acceleration is entirely dependent
on the geometry of the model. The closer a particle gets to the X -point, the more
energy it receives.

We believe that there are a number of significant advantages to this type of
model:

1. We have shown that it is possible to create power-law spectra which, while
not quite consistent with observations, are encouragingly close to the harder
part of broken power-law observations (e.g., Lin, Mewaldt, and Hollebeke,
1982 find γ = 1.5 for electrons up to ≈100 keV).

2. Bi-directional electron beams. The geometry of the model gives rise to equal
numbers of accelerated electrons moving upwards and downwards (or left
and right as our model is drawn).

3. Charge separation. The resistive region creates a partial separation of ac-
celerated electrons and ions. The strength of the separation is dependent
on the restriction of the parallel electric field. The field lines diverge on
leaving the reconnection region, so even a small separation would be vastly
amplified over the distance to the chromospheric footpoints. However, any
conclusions about charge separation based on results which do not take
the back reaction of the electric field into account should be regarded with
caution.
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4. The most energetic electrons collect along the separatrices. There is ob-
servational evidence (e.g. Metcalf et al., 2003) that the locations of flare-
associated chromospheric hard X-ray radiation are preferably aligned with
the intersection of magnetic separatrix (or quasi-separatrix) surfaces with
the chromosphere. This would be consistent with the fact that particle
beams in our model leave the reconnection region along the separatrix field
lines.

On the other hand, the major shortcoming of any reconnection dc field model
is that the total number of accelerated particles is too small to solve the number
problem (e.g., Miller et al., 1997; Aschwanden, 2002). Assuming a typical active
region coronal density of 1010 cm−3 and using the inflow rate of 30 km s−1 from
our model we can work out the number of particles coming into the acceleration
region around the X -point from both sides. Even if we assume limits of 107 m in
the x- and z-direction the particle flux into the sheet would only be ≈ 6 × 1034 s−1

(This would imply that we assume a continuous string of X -points over a range
of 10 Mm. This sort of filamentary reconnection scenario has been suggested e.g.
by Kliem (1994)). Furthermore, looking at the energy spectra only around 0.1% of
the particles reach energies of 10 keV or above. In conclusion, the flux of electrons
reaching energies over 10 keV is about 6×1031 s−1 for the optimistic assumption of
length scales in x and z, a lot lower than the values required for a big flare which are
of the order of at least 1035 s−1 (Miller et al., 1997). We also mention that our model
is of a two-dimensional nature and that we have not yet properly included the third
dimension. Even though it is not entirely obvious how e.g. the distribution functions
would change, it is intuitively clear that a restriction of the acceleration region (i.e.
the region of parallel electric field) in the third direction limits the distance in z
that the particles could be accelerated over and thus the possible energy gain. It
will probably make the particle number problem worse, not better. The details will
of course depend on the properties of a prospective three-dimensional model. We
plan to investigate this question in the future.

There are various possibilities by which this shortfall in particle flux could be
overcome, but all of these are outside the scope of this paper and are thus at the
present time of a purely speculative nature. A number of numerical investigations
using both MHD and kinetic theory show the tendency of the reconnection process
to break up into several reconnection sites (e.g., Kliem, 1994; Kliem, Karlický, and
Benz, 2000; Shay et al., 2003) or to lead to secondary instabilities (e.g., Rogers,
Drake, and Shay, 2000). In this limit the reconnection process would acquire a
stochastic nature on large spatial and time scales, with an individual reconnection
event probably looking similar to the process described in the present paper. Recent
investigations of particle acceleration in reconnecting electromagnetic fields of
stochastic type have been carried out by Vlahos, Isliker, and Lepreti (2004) and
Turkmani et al. (2005) and show promising results, but in our opinion the direct
connection to solar flares is not yet entirely obvious.
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Further possibilities are that the reconnection generated beams and/or the bulk
outflow acts as a trigger for another acceleration mechanism like a fast mode
termination shock (e.g., Somov and Kosugi, 1997; Tsuneta and Naito, 1998) or
a collapsing magnetic trap (with or without a fast mode shock; e.g., Somov and
Kosugi, 1997; Karlický and Kosugi, 2004). Last but not least, the reconnection
outflow and/or the beams could generate favourable conditions for a turbulent
cascade which leads to further stochastic acceleration in the way discussed by e.g.
by Miller and co-workers (Miller and Roberts, 1995; Miller, LaRosa, and Moore,
1996; Lenters and Miller, 1998).
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