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Abstract. As solar observational techniques improve, fine small-scale structures observed on the
solar surface become more pronounced. Complex filigree structures of solar granulation, sunspots,
photospheric magnetic and velocity fields cannot be described adequately by a single parameter (e.g.,
filling factor, fractal dimension, or power-law index). Methods which incorporate parameters that are
a function of scale (multiscale methods) to describe the complexity of a field under study, should be
involved. The multifractal approach offers such a possibility. In this paper the scaling of structure
functions is proposed in order to analyze multifractality. Application of the approach to SOHO/ MDI
high-resolution magnetograms of active regions show that the structure functions differ for all active
regions studied. For a given active region, the functions may maintain their shape during several
hours; however, they can significantly change during a day. Flare-quiet active regions tend to possess
a lower degree of multifractality than flaring active regions do. The increase in multifractality is a
signal that a magnetic structure is driven to a critical state, thus gaining tangential discontinuities of
various length scales.

1. Introduction

Luxuriant and filigree character of structures observed on the Sun impels us to
apply fractal methods (Mandelbrot, 1977; Feder, 1988; Takayasu, 1989) in order
to learn more about these structures, in particular, about magnetic fields (Balke
et al., 1993; Meunier, 1999; Lawrence, Ruzmaikin, and Cadavid, 1993; McAteer,
Gallagher, and Ireland, in press).

A fractal is an object whose parts somehow resemble the whole, or, to put it in
more rigorous way, a self-similar, scale-invariant structure without any character-
istic length (Feder, 1988; Takayasu, 1989).

In this paper I concentrate on two-dimensional fractals. Several approaches were
elaborated to explore the fractal nature of 2D geometrical objects. The approaches
differ by mathematical measures introduced on the geometrical object (Takayasu,
1989; Lawrence, Ruzmaikin, and Cadavid, 1993). The method proposed in the
present paper (Section 2) is based on a measure defined by structure functions.
However, in order to illustrate the idea of multifractality in the Introduction, I will
use the most popular approach based on a probability measure, which leads to a
notion of a fractal dimension. Let us consider the fractal to be covered by a 2D mesh
of square cells of side r, which is varied. The number of boxes, N, occupied by the
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Figure 1. A slope of log(N) versus log(1/r) defines the fractal dimension, Ds. For natural fractals
(i.e., for multifractals), the slope can change for different scale ranges.

fractal is proportional to the scale length, r, in a fractional power, Ds: N(r) ~ r?,
which is called a fractal dimension. The fractal dimension can be approximated as a
slope of N(r) versus the inverse scale, 1/r, in a double-logarithmic plot (Figure 1).
Linearity of log(N (r)) versus log(1/r) is called self-similarity. Computer-generated
fractals are self-similar over an infinite range of scales. Such structures can be
represented by one scalar parameter, Dy, and they are usually called monofractals.
However, in the case of natural fractals, self-similarity does not hold in the strict
sense but does hold statistically over a finite range of scales. As soon as we deal
with natural fractals, we immediately find that the slope of log(N) versus log(1/r)
can change for different scale ranges (Figure 1). The cause of this may be just the
nature of fractals and unavoidable influence of the process of data acquisition and
processing. However, the latter is out of the scope of this paper (see, e.g., Lawrence,
Cadavid, and Ruzmaikin, 1996; for more details on the estimation of the fractal
dimension from digitized images of solar magnetic fields). Now, the entire range
of scales can be divided into an infinite number of subsets, and for each subset
its own self-similarity law holds with its own fractal dimension. Thus, a natural
fractal may be treated as a multifractal, i.e. a superposition of an infinite number of
monofractals. Local (in the sense of scale) character of self-similarity for natural
fractals is one of the reasons to make a step from monofractals to multifractals.
Another reason is our intention to take into account the distribution of density
in a fractal. In the case of solar magnetic fields, when we define a magnetic area
as a binary mask (Figure 2) equal to unity on the set of all pixels where the ab-
solute value of the magnetic field exceeds a given threshold (for example, 50 G,
Figure 2, upper left frame), and to zero elsewhere, we obtain a fractal. By using,
for example, the box-counting method, or some other methods (Takayasu, 1989),
we can calculate the fractal dimension of the binary mask, which characterizes
the complexity of its boundary. However, the fractal dimension can tell us nothing
about the distribution of the magnetic field density inside the mask. It is well known
that the density distribution may not be homogeneous. Moreover, the distribution
of density determines the complexity of the magnetic structure and, therefore, the
underlying physics. Thus, we have to incorporate the information on density. This
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Figure 2. An hierarchy of binary masks of a solar magnetic structure (lower right frame). Each
binary mask (left frames and upper right frame) is equal to unity on the set of all pixels where
the absolute value of the magnetic field exceeds a given threshold (noted above the frames) and
zero elsewhere. Superposition of infinite number of such masks/monofractals results in the observed
magnetic structure, which is a multifractal (see the text).

can be done by introducing an hierarchy of masks defined by increasing threshold.
The idea is illustrated in Figure 2: by specifying progressively higher thresholds,
say, 500 G (lower left frame), 1000 G (upper right frame), we obtain new fractals
and their parameters may vary. By incorporating these new monofractals, we can
obtain addition information on the distribution of more and more dense patterns of
the magnetic structure. The superposition of the infinite number of the monofractals
results in a multifractal: a real distribution of the solar magnetic field (see lower
right frame in Figure 2. Please, note that for simplicity sake, the sign of B on
the masks was disregarded.) For a multifractal, a continuous spectrum of fractal
parameters — a multifractal spectrum — is needed to characterize the structure. The
broader the multifractal spectrum, the more complex the structure with a higher
degree of multifractality it represents.

One more reason to incorporate multifractality is the existence of a highly in-
termittent character of structures arising in the evolution of the dynamic systems,
where dissipative processes may not be neglected (such processes produce a ma-
jority of natural fractals). Intermittency implies a tendency of a certain quantity to
concentrate into small-scale features of high intensity surrounded by extended ar-
eas of much lower fluctuations (Monin and Yaglom, 1975). Intermittency manifests
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Figure 3. Illustration of phenomenological difference between a Gaussian process (upper frame),
which is a non-intermittent and monofractal process of extremely rare large fluctuations, and an
intermittent process (lower frame), which is a multifractal due to the contribution of large fluctuations
(which are not so rare now) into the statistical moments. The horizontal axis may represent a time or
a spatial coordinate.

itself via the burst-like behavior in temporal and spatial domains. Figure 3 demon-
strates the phenomenological difference between a Gaussian process (which is
non-intermittent) and an intermittent process. Large fluctuations in the intermittent
process are not so rare as in the Gaussian process, and they contribute significantly
into the statistical moments which leads to multifractality (see Frisch, 1995, for more
details). Thus, by analyzing multifractality of a structure, we will also explore its
intermittency. Generally, intermittency and multifractality are two different terms
for the same phenomenon. Historically, the former term is usually applied to time
series analysis, whereas the later one is used for spatial objects (Takayasu, 1989;
Frisch, 1995). It is worthwhile to note that when a field is intermittent, the structure
of its energy dissipation can not be homogeneous, but is intermittent, too (Monin
and Yaglom, 1975; Frisch, 1995). Thus, by exploring intermittency of the magnetic
field, one may also obtain valuable information on the behavior of the magnetic
energy dissipation (Lawrence, Cadavid, and Ruzmaikin, 1995; Abramenko, 2003;
Vlahos and Georgoulis, 2004).

There are several techniques to evaluate the degree of multifractality. In par-
ticular, for solar line-of-sight magnetograms, the box-counting method based on
changing of the coarse-graining level was used by Lawrence, Ruzmaikin, and
Cadavid (1993) and by Cadavid et al. (1994) to calculate the spectrum of fractal
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dimensions. Other methods are based on the fractal measure relations, calculations
of correlation and distribution functions (Takayasu, 1989), or structure functions
(Frisch, 1995). Here 1 will show how structure functions can be used to evaluate
the degree of multifractality in order to obtain benefits in solar image processing
and learn more about solar magnetic fields.

2. Scaling of Structure Functions

Structure functions, defined as statistical moments of the increment of a field,
are very useful non-traditional tools to study multifractality and intermit-
tency (Stolovitzky and Sreenivasan, 1993; Frisch, 1995; Consolini et al., 1999;
Abramenko et al., 2002).

In our case, the analyzed field is the line-of-sight component of the photospheric
magnetic field, By, so a structure function can be defined as follows:

Sq(r) = (IBj(x + 1) — B (x)|7), (D

where X is each point on a magnetogram, r the separation vector, and g the order of
a statistical moment, which takes on real values. Angular brackets denote averaging
over the magnetogram. Within some range of scales, when plotted in a double loga-
rithmic plot, structure functions are linear. The slope, ¢ (g), is then a function of the
statistical moment, ¢. Figure 4 shows an example of the structure functions (upper
left frame) and the corresponding ¢ (¢) function (upper right frame) calculated from
one line-of-sight magnetogram of an active region.

When the field under study is a monofractal, then ¢(g) is a straight line. How-
ever, for multifractals, ¢ (¢) appears to be a concave function and then its derivative
h(q) = d¢(g)/dq is not a constant value, so that 4 varies within some range Ah. For
each value of & there is a fractal with an s-dependent dimension, D(#). (According
to Frisch (1995), h and D(h) are related by the Legendre transform, however, calcu-
lation of D(h) is beyond the scope of this paper.) Thus, multifractality of the field is
manifested via concavity of ¢ (¢) function. I will accept the value Ah = hmax — Amin
(Figure 4, lower right frame) as an estimation of the degree of multifractality of
the field. Indeed the larger A#, the broader the set of monofractals which together
form the resulting multifractal.

The weakest point in the above technique is determination of the scale range, Ar,
where the slope ¢ (q) is to be calculated. To visualize the range of multifractality, Ar,
I suggest using the flatness function. Generally, the ratio of the fourth statistical
moment to the square of the second statistical moment determines the flatness
function. However, when analyzing multifractality, Frisch (1995) suggested using
higher statistical moments to calculate the (hyper-)flatness, namely, the ratio of the
sixth moment to the cube of the second:

F(r) = Se(r)/(S2(r))*. 2)
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AR NOAA 0501, Nov 19, 2003, 10:04 UT
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Figure 4. Structure functions Sy (r) (upper left) calculated from a magnetogram of active region
NOAA 0501 by Equation (1). Lower left: flatness function F (r) calculated from the structure functions
by Equation (2). Vertical dotted lines mark the interval of multifractality, Ar, where flatness grows
as power law when r decreases. The interval Ar is also marked in upper left frame. « is the power
index of F(r) determined within Ar. The slope of S, (r), defined for each g within Ar, is the {(g)
function (upper right), a concave for a multifractal and straight line for a monofractal. Lower right:
function i(q) is a derivative of ¢ (q). The interval between the maximum and minimum values of /(g)
is defined as a degree of multifractality, A#.

Equation (2) was used to calculate F(r) and, for simplicity, I will refer to F(r)
as the flatness function. For monofractal structures, the flatness does not depend
on the scale, r. On the contrary, for a multifractal structure, the flatness grows as
a power-law, when the scale r decreases (Frisch, 1995). Usually, when studying
natural fractals, the range Ar of the flatness’s growth is bounded (see lower left
frame in Figure 4). Possible causes of the boundness of the interval of multifractality
were not comprehensively studied yet (Frisch, 1995).

The slope, «, of flatness function, determined within Ar, (Figure 4) seems to
be related to the degree of multifractality: the steeper the function F(r), the higher
the degree of multifractality.

3. Diagnostics of Image Defects

As it was discussed above, a random field with Gaussian distribution of density is
a monofractal. The method was applied first to such a Gaussian field with a zero
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Figure 5. Structure functions S,(r), flatness function F(r) and ¢(g) function calculated from an
artificial Gaussian field (lower right). Other notations are the same as in Figure 4.

mean value and the standard deviation oy = 230 G, that was chosen to be the same
as those obtained from high-resolution magnetograms of active regions. The result
is presented in Figure 5, and it shows that for a monofractal structure, the code
produces the correct result with Ah = 0 and F(r) = const.

Then the standard deviation was increased three-fold, a 5 x 5 point box-car run-
ning averaging was applied and the calculations were repeated again. In this case, a
constant flatness and vanishing degree of multifractality were also obtained (figures
are not shown). This experiment shows that results of the study of the multifractal-
ity, obtained by the proposed method, seem to be not contaminated by the changes
in the noise level and seeing, which, plausibly, produce Gaussian structures.

However, when an artificial “hot” pixel was added (a pixel with extremely high
artificial density) in the magnetogram, the flatness begins to curve up at small
scales (Figure 6). The reason for that is that the presence of extremely large fluctua-
tions implies intermittency, in other words, multifractal organization of a field (see
Figure 3). This property of flatness was used to automatically select and discard
magnetograms with “hot” pixels present in them.

Next, a large-scale distortion in a magnetogram was modeled in order to mimic
an uncorrected flat field: to the smoothed Gaussian magnetogram a gradual function
A cos(2mrx L) was added. Here x is the horizontal coordinate on the map, L is the
total size in the x direction and A is a free parameter (see Figure 7, lower right
frame). For this “uncorrected” magnetogram, the flatness function, F(r), curves
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Figure 6. Structure functions S, (r), flatness function F(r) and ¢(g) function, calculated from a
smoothed Gaussian field with artificially added extremely high fluctuation in one of pixels (‘“hot”
pixel). Lower right: a scan across the “hot” pixel. Other notations are the same as in Figure 4.

(Gaussian Process, 0=30,) + smoothing 5x5 + A cos(2zx/L)
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Figure 7. Structure functions S, (r), flatness function F(r) and ¢ (¢) function, calculated from an ar-
tificial magnetogram (lower right) which is a smoothed Gaussian field with artificially added function
A cos(2mx/L). Other notations are the same as in Figure 4.
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down at large scales (see Figure 7, lower left frame). Therefore, this property of
flatness may be used for diagnostics of the quality of the flat field correction.

An experiment in analyzing a sequence of magnetograms of high time cadence
(say, 1 min) for a given active region showed that functions S, (r), F(r), {(q) and
h(q) vary very gradually from one magnetogram to another. Any defect in a mag-
netogram caused by the instrument (e.g., “hot” pixels, vignetting, flat field non-
uniformity, etc.) is immediately reflected via sharp changes in the shape of the
flatness function and, to a lesser degree, in the shape of the rest of the functions.
This property of F(r) was used to select and automatically discard bad quality
magnetograms.

4. Multifractality of the Magnetic Field in Active Regions

As for any other multiscale method, data of the highest available resolution and
sensitivity are desirable to use for the proposed code in order to trace the finest
real features. Moreover, different active regions observed with the same instrument
should be analyzed at the first stage of the code testing. Thus, in the present study
the code was applied to magnetograms of different solar active regions obtained
in the high resolution (HR) mode by the Michelson Doppler Imager (MDI) in-
strument (Scherrer et al., 1995) on board the Solar and Heliospheric Observatory
(SOHO). The pixel size of the magnetograms is 0.58 x 0.58 arcsec. The HR mode
of SOHO/MDI can register active regions located only within the central parts of
the solar disk.

The next stage of the code testing will be the comparison of results obtained
with different instruments, which is a subject for further publications. Application
of the first version of our code (without the flatness function) to the ground-based
data can be found in Abramenko et al. (2002, 2003).

The result of the calculations for two active regions, NOAA 9077 and 0061, are
presented in Figures 8 and 9, respectively. One can see that the scaling behavior
of the structure functions is rather different in these active regions. For the first
one, NOAA AR 9077, there exists a well-defined range of scales, Ar = (4-23) Mm
where flatness F(r) grows with the power index k = —1.17 as r decreases. The
function ¢(q) is concave and the corresponding Ah = (0.5. The result implies a
multifractal structure of the magnetic field in this active region.

On the contrary, in NOAA AR 0061 (Figure 9) the flatness function oscillates
around a horizontal line, which implies a monofractal character of the magnetic
field. The function ¢ (g) is almost a straight line that produces a vanishing value of
Ah ~ 0.05.

Time profiles of Ak for the two active regions are compared in Figure 10. Two
6-h data sets allowed us to conclude that NOAA AR 0061 persistently displays
a lower degree of multifractality, as well as a lower level of X-ray emission than
NOAA AR 9077 does. Note that NOAA AR 0061 was the only strong feature on the
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AR NOAA 9077, Jul 13, 2000, 17:10 UT
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Figure 8. Structure functions S, (r), flatness function F(r) and ¢ (¢) function from one magnetogram
of active region NOAA 9077 (lower right). k is a power-law index of F(r) calculated inside Ar.
The degree of multifractality for this magnetogram Ak = 0.48. Other notations are the same as in
Figure 4.

solar disk, thus the GOES flux time profile can be associated with the activity in this
region. As to NOAA AR 9077, Big Bear Solar Observatory Call K images show
that the gradual M1.2 flare (marked by an arrow in Figure 10) was launched in a
mature active region 9077, whereas other GOES-flux peaks during the time period
under study seem to be associated with another, rather moderate, active regions on
the periphery of the solar disk.

It is appropriate to mention here that the two active regions displayed very
different flare productivity. Active region 9077 was very flare productive: during
the passage across the solar disk, it launched 37 flares of X-ray class higher than
C3, including 13 M-class flares and 3 X-class flares. One of them was the famous
“Bastille Day” flare of X5.7 class launched on July 14, 2000 at 10:04 UT. Active
region 0061, on the contrary, produced only six flares of X-ray class lower than C3
during its passage across the solar disk.

It also is worthwhile to note here that the third active region analyzed in the
present study, NOAA AR 0501, showed both intermediate (between AR 0061 and
AR 9077) flaring productivity, and intermediate multifractality (compare Figures 4,
8 and 9). Our previous study of multifractality for eight active regions (Abramenko
etal., 2002) showed a similar tendency: active regions of low flaring activity tend to
possess a lower degree of multifractality than active regions of high flaring activity
do (see Figures 4 and 5 in Abramenko et al., 2002). Both results seem to suggest
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AR NOAA 0061, Aug 9, 2002, 12:00 UT
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Figure 9. Structure functions S, (r), flatness function F(r) and ¢ (q) function from one magnetogram
of active region NOAA 0061 (lower right). Other notations are the same as in Figure 4. Note that for
this active region, the function ¢ (¢) is a nearly straight line with the vanishing degree of multifractality

Ah = 0.058.
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Figure 10. Time variations of the measure of multifractality, A& (left axis), and GOES soft X-ray
flux (right axis, dashed lines) plotted for 6-h time intervals for the two active regions. Data for NOAA
AR 9077 (black lines) were obtained between 17:00 and 23:00 UT on July 13, 2000. The arrow marks
the M1.2 flare that occurred in NOAA AR 9077, whereas other peaks of the GOES flux are associated
with other active regions on the solar disk. Data for NOAA AR 0061 (gray lines) refer to an interval
between 11:00 and 17:00 UT on August 9, 2002.
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Figure 11. Two magnetograms of NOAA AR 0501 obtained on November 18, 2003 at 14:21 UT
and on November 19, 2003 at 13:57 UT. An area where the fragmentation of magnetic elements is
the most noticeable, is marked by white boxes. Right: flatness functions F'(r) for two magnetograms.
Gray curve, corresponding to the later magnetogram, is shifted up into a “well-readable” position.
The range of multifractality, Ar, for the earlier magnetogram is indicated by the dotted lines, whereas
the more broad Ar for the later magnetogram is marked by dash-dotted lines. k is the power index of
F(r) calculated as a linear best fit (dashed lines) inside the corresponding intervals Ar.

that the multifractality of the photospheric magnetic field may be related to the flare
productivity of an active region. Of course, a broad statistical study is needed to
verify this suggestion.

Day-to-day changes in the flatness function for active region 0501 are presented
in Figure 11. During the 24-h time interval between magnetograms the flatness func-
tion became steeper (k = —0.53 for the earlier data and —0.73 for the later data) and
the range of multifractality, Ar, extended considerably, from Ar = (5.5-19) Mm
to Ar = (2.5-22) Mm. The degree of multifractality also increased from 0.18 to
0.29. Comparison of the magnetograms, presented in the left part of Figure 11, sug-
gests a reinforcement of a fragmentation of magnetic elements during the discussed
time period. Indeed, the magnetic field in the November 19, 2003 magnetogram be-
came more fragmented, especially inside the white box, where some large magnetic
structures disappeared while many small-scale features appeared in their places.
Reinforcement of fragmentation seems to be the cause of the extension of the range
of multifractality. In this case the increase of multifractality seems to be plausible,
because the intensification of the fragmentation process may lead to a highly inter-
mittent, multifractal structure of solar magnetic field (Abramenko and Longcope,
2005).

5. Summary and Discussion

This paper presents further elaboration of the approach proposed by Abramenko
et al. (2002) to analyze properties of multifractality of solar magnetograms. The
approach is based on calculations of the structure functions S, (r) that are defined as
the statistical moments of the increment of a field under study. Scaling characteris-
tics of the structure functions allow to estimate the degree of multifractality, Ak, of
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the field. In the present study a new scaling characteristic of the structure functions,
namely, the flatness function F(r), is proposed for the analysis of multifractality.
It is shown that the scale interval of multifractality, Ar, can be visualized from the
flatness function. Correct determination of Ar is important for estimation of the
degree of multifractality and may also have independent physical applications in
future. Determination of multifractality with the code proposed seems not to be
dependent on parameters of the Gaussian background of the digitized image of the
magnetic field.

Application of the code to magnetograms of solar active regions showed that
the structure functions and their scaling characteristics differ for the active regions
studied. For a given active region, the shape of the functions may remain unchanged
during several hours. However, the structure functions can noticeably change during
a day. Thus, in NOAA AR 0501, the extension of the range of multifractality from
Ar = (5.5-19) Mm to Ar = (2.5-22) Mm and the increase of the degree of mul-
tifractality from Ah = 0.18 to Ah = 0.29 was accompanied by a noticeable frag-
mentation of magnetic flux concentrations during a 24-h period. This seems to be
in a good agreement with the result reported by Abramenko and Longcope (2005),
which suggests that one possible cause of the increase of multifractality in the
photospheric magnetic field is the process of fragmentation of magnetic elements.

There are reasons to assume that multifractality has different character in flaring
and flare-quiet active regions. Namely, flare-quiet active regions tend to display a
lower degree of multifractality than flaring active regions do. Thus, in the present
study, flare-quiet active region NOAA AR 0061 during 6-h period of observations
showed a very low level of multifractality Asz = 0.060 & 0.007, while in the flaring
active region 9077 the degree of multifractality, determined during a 6-h interval,
was almost 10 times stronger, Ak = 0.50 £ 0.01.

The amplification of multifractality means, on one hand, appearance of large
fluctuations and, on the other hand, extension of areas of low fluctuations (see
Figure 3). For the magnetic field, it is equivalent to emergence (or intensification) of
small-scale flux tubes carrying very strong flux. However, emergence of large-scale
(nearly homogeneous) magnetic structures may also contribute into the increase of
multifractality. This increase may be an indication that a magnetic structure is
driven to a critical state (Charbonneau et al., 2001; Vlahos and Georgoulis, 2004)
by gaining tangential discontinuities (Parker, 1987, 1996) of various length scales.
In this case, the above suggestion about the possible relation between the character
of multifractality and level of flare productivity seems to be reasonable and deserves
further investigation.

The concept of multifractality of solar structures and, especially, solar magnetic
fields can be used to gain deeper insight into the processes occurring in non-linear
dissipative dynamical systems such as magnetized plasma in the solar atmosphere.

A byproduct of the proposed method is the possibility to automatically control
images quality: the flatness function varies very gradually with time, so that any
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abrupt changes in the shape of flatness function are a signal of a possible degradation
of the image.
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