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Abstract. To illustrate his theory of coronal heating, Parker initially considers the problem of dis-
turbing a homogeneous vertical magnetic field that is line-tied across two infinite horizontal surfaces.
It is argued that, in the absence of resistive effects, any perturbed equilibrium must be independent
of z. As a result random footpoint perturbations give rise to magnetic singularities, which generate
strong Ohmic heating in the case of resistive plasmas. More recently these ideas have been formal-
ized in terms of a magneto-static theorem but no formal proof has been provided. In this paper we
investigate the Parker hypothesis by formulating the problem in terms of the fluid displacement. We
find that, contrary to Parker’s assertion, well-defined solutions for arbitrary compressibility can be
constructed which possess non-trivial z-dependence. In particular, an analytic treatment shows that
small-amplitude Fourier disturbances violate the symmetry ∂z = 0 for both compact and non-compact
regions of the (x, y) plane. Magnetic relaxation experiments at various levels of gas pressure confirm
the existence and stability of the Fourier mode solutions. More general footpoint displacements that
include appreciable shear and twist are also shown to relax to well-defined non-singular equilibria.
The implications for Parker’s theory of coronal heating are discussed.

1. Introduction

One of the most stimulating ideas in solar physics is Parker’s theory of coronal
heating (Parker, 1972). Parker begins by considering a uniform magnetic field B0ẑ
line-tied to rigid plates z = ±a which approximate “frozen in” conditions at the
photosphere. Motions in the photosphere displace the field-line footpoints, and
Parker argues that the perturbed field cannot relax to a smooth equilibrium unless
the perturbations have some kind of symmetry or involve an ignorable co-ordinate.
In almost all cases singularities in the form of current sheets must appear. This
result is precisely stated as a “Magnetostatic Theorem” in Parker (1994), but no
rigorous proof is given.

The Parker hypothesis has several important consequences. For example, in the
solar corona, the field of a weakly resistive solar plasma might be expected to
collapse to small length scales in response to small-scale migrations of the foot-
points. It follows that motions due to say, turbulent buffeting, could lead to very
strong current densities and significant resistive energy dissipation, possibly suffi-
cient to heat the corona. This theory has generated an extensive literature over the
years, but it remains controversial (Rosner and Knobloch, 1982; van Ballegooijen,
1985; Antiochos, 1990). A number of closely related ideas seem promising – for
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example, that nano-flares may be responsible for heating coronal active regions
– but unequivocal observational support for a specific magnetic heating model is
noticeably lacking (Fisher et al., 1998).

Since the publication of Parker’s original formulation, several authors have
demonstrated general classes of footpoint displacements from which a smooth
equilibrium will ensue, for example van Ballegooijen (1985) and Zweibel and Li
(1987). More recent work by Bogoyavelenskij (2000a) has shown that there exist
families of exact global solutions of the equilibrium equations, but the significance
of these has been questioned by Parker (2000) and re-argued by Bogoyavelenskij
(2000b).

The above results appear to contradict the magnetostatic theorem, but Parker
(1994) argues that “the known continuous equilibria involve either only weak de-
formation of the field from a uniform state or a symmetry degeneracy”. Parker’s
present position seems to be that the hypothesis holds good provided that footpoint
displacements are of sufficient amplitude and complexity. This caveat means that
the magnetostatic theorem no longer admits a precise mathematical statement.

A weakness of all the counter-examples to Parker’s theory cited above is that the
stability of the equilibria has not been established. Since an unstable equilibrium is
physically inaccessible, it is not sufficient to establish the existence of a solution that
contradicts the Parker assertion. A true counter-example should demonstrate stabil-
ity, for example, by showing that the system can relax dynamically to the proposed
equilibrium. One aim of this paper is address this flaw in previous arguments.

It is interesting that Parker’s mechanism contrasts with other rigorously-
established mechanisms of current-sheet formation, in particular, those involving
energy release at a magnetic neutral point (Syrovatskii, 1971). In the case of a
magnetic X -point, any field perturbation which changes the magnetic topology, no
matter how small, gives rise to a current sheet: the size of the perturbation simply
determines the length of the sheet, at least to within limits set by the global ge-
ometry. In the X -point collapse there is a privileged point – the center of the X –
which focuses weak global perturbations into highly localized, large current density
disturbances close to the origin (Syrovatskii, 1981; Craig and McClymont, 1993).
There are no privileged points, however, in Parker’s “non-equilibrium” theory (van
Ballegooijen, 1985). Nor does his mechanism require the large scale, orchestrated,
twisting motions associated with say a kink instability. If Parker’s arguments are
correct then any non-trivial, random walk of the footpoints can be expected to pro-
vide strong current densities and significant Ohmic heating (Ruzmaikin and Berger,
1998).

In fact various attempts have been made to simulate the Parker mechanism
numerically (see Section 6.9 Parker, 1994). There is some evidence that random
footpoint motions in an initially homogeneous field can lead to appreciable rates
of Ohmic dissipation as found by Mikic, Schnack, and van Hoven (1989). These
authors state however, that “our numerical simulations indicate that the field is able
to settle to a force-free equilibrium after every imposed footpoint displacement,
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without the generation of current sheets”. This work militates against the Parker
mechanism but, in the absence of a well-defined numerical protocol for identi-
fying current sheets, it cannot be regarded as a definitive demonstration. What is
required are numerical procedures that can systematically examine the strength and
morphology of current singularities. This is a crucial point to which we return in
Section 3 when we consider magnetic equilibria constructed using a non-resistive
Lagrangian relaxation scheme.

The present paper aims to examine aspects of Parker’s magnetostatic theorem
in more detail. Two distinct approaches are taken. In Section 2 we use an analytic
Lagrangian approach, in which fluid displacements are the primary variables, to
demonstrate that small footpoint displacements cause smooth perturbations of the
initial field. Our formulation is similar to that of Bobrova and Syrovatskii (1979) and
Zweibel and Li (1987) but we include the effects of arbitrary plasma pressure for
both compact and non-compact regions of magnetic fluid. This analysis, although
contradicting Parker’s claim that smooth disturbances of the field δB should be in-
dependent of z, is not definitive since , as mentioned above, it fails to establish the
stability of the equilibria. In Section 3 however, a complimentary analysis based on
a Lagrangian numerical scheme is used to investigate the finite amplitude stability
of arbitrary initial fields. Specifically, we perform a series of numerical experi-
ments that demonstrate the existence and stability of solutions in the presence of
appreciable footpoint shear and twist. In all cases the computations are systemat-
ically refined in an attempt to ensure full numerical convergence. In the case of
a current singularity, however, convergence cannot occur: the maximum current
density on the mesh will in fact diverge at a rate determined by the strength and
geometrical structure of the singularity. In common with Longbottom et al. (1998),
we find that current sheets can be present in certain solutions – but only for “ille-
gitimate” footpoint displacements not confined to the interior of the computational
domain.

2. Analytic Formulation of the Parker Problem

2.1. INTRODUCTION

In the original Parker problem a uniform, vertical magnetic field, threaded between
two infinite horizontal planes, and line-tied at the footpoints, is subject to arbitrary
small footpoint disturbances. A natural question is whether there exist smooth,
well-behaved solutions in the neighborhood of the original equilibrium. According
to Parker’s original argument, only magnetic fields which satisfy ∂zB = 0 provide
well-behaved solutions. Since the symmetry ∂z = 0 is incompatible with impos-
ing relative footpoint displacements between the two planes, Parker contends that
equilibria deriving from footpoint motions must be non-smooth, involving current
singularities.
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In the present section we formulate the Parker problem in terms of the linearized
force operator F(ξ) which is defined in terms of small displacements ξ of the field
lines (Bernstein et al., 1958). Similar linearized formulations have been given by
other authors (e.g., Zweibel and Li, 1987) and of particular interest is the demon-
stration of Bobrova and Syrovatskii (1979) that singularities can develop for certain
classes of (pressureless) equilibria. At first sight this result seems sufficient to anni-
hilate the Parker opposition (e.g., van Ballegooijen, 1985; Zweibel and Li, 1987).
However, as shown below, the result of Bobrova and Syrovatskii (1979) does not
apply to Parker-type equilibria whether the plasma is pressureless or not.

2.2. FORMULATION IN TERMS OF THE FLUID DISPLACEMENT

We imagine a homogeneous slab of plasma sandwiched between infinite rigid plates
z = −� and z = � permeated by a uniform magnetic field B0 = B0ẑ. Footpoint
displacements are then applied and the perturbed magnetic field is written in the
form,

B = B0 + b(x, y, z), P = P0 + p(x, y, z),

where P is the plasma pressure. Note that Parker considers only an incompressible
plasma and treats the B-field and the plasma pressure as the primary physical
variables. Here we generalize to plasmas of arbitrary compressibility and take fluid
displacements as the basic physical variables.

Suppose that pressure variations are related to the density disturbances according
to

∂ P

∂ρ
= c2,

where c is the sound speed. For a polytropic gas of index γ we have the usual
relation ρc2 = γ P The incompressible limit is approached by letting c → ∞, but
we can also model the opposite limit of an arbitrarily compressible “cold” plasma
by letting c → 0.

We now express the pressure and magnetic field disturbances in terms of the
vector ξ(x, y, z), which represents the displacement of fluid particle in the transi-
tion from initial state to final equilibrium. The induction and continuity equations
provide the first-order variations

b = ∇ × (ξ × B0), p = −ρ0c2
0(∇ · ξ),

and so the equation for the perturbed equilibrium, F(ξ) = 0, takes the form

1

µ
(∇ × b) × B0 + ρ0c2

0∇(∇ · ξ) = 0. (1)
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2.3. CARTESIAN EQUATIONS FOR THE DISPLACEMENT

We take the upper and lower fluid boundaries to be

z = ±�,

and express the fluid displacement in terms of Cartesian components,

ξ(x, y, z) = [ f (x, y, z), g(x, y, z), h(x, y, z)]. (2)

Since fluid particles cannot penetrate the footpoints the vertical component of the
displacement must satisfy

h(x, y, −�) = h(x, y, �) = 0. (3)

We non-dimensionalize lengths with respect to �, magnetic fields with respect to
B0, and pressures with respect to the undisturbed pressure P0. Equation (1) then
gives for the (x, y) displacements

fxx + fzz + gxy = βpx (4)

gyy + gzz + fxy = βpy (5)

where fx denotes ∂ f/∂x , etc., and

β = µ0 P0

B2
0

= µ0ρ0c2
0

γ B2
0

defines the ratio of plasma to magnetic pressure. The z-component implies pz = 0
and so the pressure disturbance is independent of z – a result reflecting the fact that
the linearized Lorenz force must be orthogonal to the equilibrium field B0. Since
p = −γ∇ · ξ is the dimensionless pressure perturbation we see that

−γ ( fx + gy + hz) = p(x, y), (6)

must hold for non-vanishing p with h(x, y, −1) = h(x, y, 1) = 0, from condition
(3).

Finally we note that the magnetic field perturbation b involves only the (x, y)-
displacements,

b = ( fz, gz, − fx − gy). (7)

This form, which automatically satisfies ∇ · b = 0, remains well defined even for
plasmas of negligible pressure. Observe that in the pressureless limit, formally ob-
tained by letting βp → 0, Equation (6) cannot be imposed since only disturbances
perpendicular to the equilibrium field lines can be determined. In fact pressureless
modes constructed by Zweibel and Li (1987) contradict Parker’s argument that
only solutions satisfying ∂zb = 0 are permitted (see for example Parker, 1979, p.
373). In the following analysis we give a general treatment valid for arbitrary foot-
point displacements in plasmas of arbitrary compressibility, for both compact and
non-compact regions of the (x, y) plane.
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2.4. FOURIER REPRESENTATION OF THE PROBLEM

To construct general solutions with gas pressure we take a double Fourier transform,
writing

F(z, k) = 1

2π

∫
E2

f (x, y, z) exp(−ik · r) dx dy

where E2 is the entire (x, y)-plane and

r = (x, y, z), and k = (k1, k2, 0),

is a wave-vector in the (x, y)-plane whose amplitude is given by k2 = k2
1 + k2

2.
The Fourier transforms G(z, k) and H (z, k) are defined similarly. Transforms of
functions which are independent of z will be distinguished by using the upper bar
notation. Thus the Fourier transform of the pressure is written,

p̄(k) = 1

2π

∫
E2

p(x, y) exp(−ik · r) dx dy.

With these conventions Equations (4)–(6) reduce to a system of ordinary differential
equations in z, namely

F ′′ − k2
1 F − k1k2G = ik1β p̄, (8)

G ′′ − k2
2G − k1k2 F = ik2β p̄, (9)

H ′ + ik1 F + ik2G = − p̄

γ
, (10)

where the dash indicates differentiation with respect to z.
Let us assume that the footpoint displacements are specified a-priori. Then

F(±1, k) and G(±1, k) are given and what needs to be shown is that well-defined
solutions can be constructed subject to the constraint H (−1, k) = H (1, k) = 0.

2.5. THE GENERAL SOLUTION

The system is simplified by introducing the auxiliary functions

U = k1 F + k2G, V = k2 F − k1G, (11)

which correspond to k2 F = k1U + k2V and k2G = k2U − k1V . We find that U
and V must satisfy,

U ′′ − k2U = ik2β p̄, V ′′ = 0, (12)

and that Equation (10) can now be written in the form,

H ′ = −iU − p̄

γ
. (13)
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The general solutions of Equations (12) are

U = −iβ p̄ + ā cosh(kz) + b̄ sinh(kz), V = c̄z + d̄ (14)

where ā and b̄, c̄ and d̄ are arbitrary functions of (k1, k2).
Using Equation (13), and the first of Equation (14), and remembering that

H (−1) = 0, we find that

H = −θ (z + 1) p̄ − i ā

k
(sinh(kz) + sk) − i b̄

k
(cosh(kz) − ck), (15)

where we have introduced the abbreviations

θ = β + 1

γ
ck = cosh(k), sk = sinh(k).

The condition that H (1) = 0 shows that

p̄ = − i ā sk

θk
, (16)

and substituting Equation (16), into Equations (15) and (14) we find,

U = − ā βsk

θk
+ ā cosh(kz) + b̄ sinh(kz), (17)

H = − i ā

k
(sinh(kz) − zsk) − i b̄

k
(cosh(kz) − ck). (18)

The arbitrary constants ā, b̄, c̄, and d̄ are determined by the prescribed displace-
ment on the boundaries z = ±1. It is simplest to work with the Fourier transforms
of the auxiliary variables – that is U (±1, k) and V (±1, k) – which we write as

U (±1, k) = ū±, V (±1, k) = v̄±.

We find that

ā = ū+ + ū−
2ck + 2skβ/kθ

, b̄ = ū+ + ū−
2sk

. (19)

c̄ = v̄+ − v̄−
2

, d̄ = 1

2
(v̄+ + v̄−). (20)

These relations confirm that arbitrary footpoint displacements lead to a well-defined
Fourier representation of the solution.

It is interesting to note that only by assuming U ≡ 0 can we obtain modes
consistent with Parker’s claim that ∂zb = 0. This point is reinforced below when
we specialize to discrete Fourier modes localized within compact regions of (x, y)
plane.
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2.6. DISCRETE FOURIER MODES

Suppose rigid wall conditions are imposed at the boundaries of the square 0 <

x, y < L . Then disturbances can be constructed using superpositions of the discrete
modes

f = F(z) sin(k1x) cos(k2 y), g = G(z) cos(k1x) sin(k2 y), (21)

where the pressure and vertical displacement take the forms

p = pk cos(k1x) cos(k2 y), h = H (z) cos(k1x) cos(k2 y). (22)

Displacements on the side walls vanish provided that k1L = mπ and k2L = nπ

where m and n are natural numbers. Substituting Equations (21) and (22) into
Equation (4), (5), and (6) we find that f , g, and p satisfy Equations (8), (9), and
(10) with i p replaced by p̄. Repeating the analysis of Section 2.5 we find that f ,
g, and p represent a discrete mode with

pk = −a1sk

θk
, H (z) = a1

k
(skz − sinh(kz)) − a2

k
(cosh(kz) − ck).

where F(z) and G(z) are defined, as previously, by the auxiliary functions

U = βpk + a1 cosh(kz) + a2 sinh(kz), and V = a3 + a4z.

Each mode is thus specified by four numbers a1 to a4, which determine the dis-
placements on the upper and lower plates. This description also holds in the case
of an incompressible plasma (see the Appendix).

As already mentioned, the simplest pressureless modes determine only the x
and y components of the displacement. A typical field line associated with a low
frequency mode k1 = 1, k2 = 2 is shown in Figure 1. Both footpoints of the initial
line x = 1, y = 1 are significantly displaced (a1 = 0, a2 = 0.3, a3 = 0.05, a4 =
2). Figure 2 shows a pressureless two-mode superposition in which a k � 20 mode
is superposed with a k � 2 displacement. We see that a narrow transition layer
develops in the vicinity of the upper plate. This behavior is most simply understood
by considering displacements which vanish on the lower plane z = −1. Setting
V = 0 to eliminate the symmetry ∂zb we find that

U → a1 cosh(kz) + ck

sk
sinh(kz)

which is consistent with an exponential fall-off in distance s from the upper surface
of the form U ∼ e−ks . It follows that finite U contributions on the upper and lower
plates can be expected to penetrate only a skin depth s ∼ k−1 into the interior
−1 < z < 1.
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Figure 1. Distortion of a straight field line due to an individual Fourier mode (k1 = 1, k2 = 2) in a
pressureless plasma. The plot is based on (21), and (22).

Figure 2. Field line plot based on the superposition of a high frequency (k � 20) and a low frequency
(k � 2) Fourier mode. The strong distortion close to the upper plate z = 1 is a manifestation of the
skin depth effect associated with high frequency behavior.
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2.7. DISCUSSION

The previous analysis makes it clear that linearized disturbances can be constructed
to the Parker problem that violate the symmetry ∂z = 0. Although this conclusion
holds good for plasmas of arbitrary compressibility – and reinforces earlier analyses
by van Ballegooijen (1985) and Zweibel and Li (1987) – it fails to deal a fatal blow
to the Parker hypothesis. A complete rejection requires a proof of the existence and
stability of equilibria that derive from arbitrary, finite amplitude displacements of the
footpoints. This problem is explored using a computational Lagrangian approach
in Section 3 below.

Despite this disclaimer, we know that the linearized approach is capable of
predicting the formation of current singularities. Our formulation is similar to that of
Bobrova and Syrovatskii (1979) who show that small boundary displacements of the
pressureless field B = (cos(αz), sin(αz), 0) lead to singularities on surfaces defined
by k1 cos(αz) + k2 sin(αz) (where k is defined as above). It is clear however, that
this initial field has considerably more structure than the homogeneous Parker field.
The fields considered by Bobrova and Syrovatskii (1979) and Syrovatskii (1971)
confirm that a collapse to singularity can be expected when the the background field
includes distinct topological features such as nulls, separators (null–null lines), or
mode rational surfaces, along which current naturally accumulates. However, since
current sheets can also be formed by large-scale compressive or shearing motions
in fields of little topological complexity (Low, 1987; Aly and Amari, 1989), there
appears no universal criterion for the appearance of current singularities.

3. Magnetic Relaxation Experiments

3.1. INTRODUCTION

The existence and finite amplitude stability of solutions is conveniently explored
using the magneto-frictional relaxation approach. This technique can be used both
theoretically, in terms of thought experiments, and computationally, as a numerical
relaxation scheme which preserves the field topology, to investigate ideal magnetic
equilibria (e.g., Moffatt, 1985). In what follows we employ the Lagrangian code of
Craig and Sneyd (1990) to realize 3D magnetic equilibria by the magneto-frictional
method. This code provides a computational realization of the analytic Cauchy
solution. The code has been well tested in a variety of applications (Longbottom
et al., 1998) and, unlike Eulerian schemes, has the advantage of working directly
with the Lagrangian fluid displacements. The computational scheme is fully implicit
and so time steps can be taken which exceed explicit thresholds by factors of 1000
or more. The code satisfies ∇ · B = 0 and identically conserves flux.

One difficulty with exploring the problem numerically, is that simulations are
usually restricted to compact regions of space. In terms of the Parker problem,
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we have seen in Section 2.6 that linearized Fourier modes can be constructed over
compact regions of the (x, y) plane. It is convenient therefore to exploit these modes
as prototype displacements for the initial magnetic relaxation experiment described
below.

More generally, it should be recognized that finite amplitude displacements on
the upper and lower plates must ultimately derive from footpoint motions involving
a combination of rotation and shear. With this in mind we go on to perform a series
of experiments incorporating successively more elaborate footpoint displacements.

3.2. FINITE AMPLITUDE SIMULATIONS

We determine solutions over the cube −1 ≤ x, y, z ≤ 1. A uniform distribution of
fluid particles, of resolution 
 = 1/N , is associated with the initial equilibrium
B = ẑ. This distribution is distorted by imposing field line displacements on the
boundaries based on Equation (21),


x = a sin(mπx) cos(nπy)z, 
y = a cos(mπx) sin(nπy)z,

where a is an arbitrary amplitude. Fluid particles on the upper and lower plates are
fixed by the initial conditions for all time, but particle slippage is allowed on the
side walls where field lines do not penetrate.

The magnetic and pressure forces induced by the disturbance drive frictional
fluid motions which remove energy from the fluid. In practice, we adopt the fictitious
dimensionless equation

f ≡ ν v = J × B − ∇ P

where ν � 1 is the frictional coefficient and P = βργ . This equation compromises
neither the final equilibrium f = v = 0 nor its stability. Therefore, subject only
to the condition that the numerical resolution is adequate, the magneto-frictional
method guarantees a stable relaxed solution. The present simulations have all been
run to full convergence, a point we emphasize in Section 3.4 below, and tested
for comparison with the analytic treatment of Section 2.6 in the case of weak
displacements a 
 1.

Figure 3 shows raw data from a typical run at modest resolution (a = 1, m =
1, n = 2, β = 0.05, γ = 1, N = 20). Fluid particles lie at the intersections of the
mesh and these delineate near vertical field lines which thread the lower and upper
plates. In Figure 3a we display an x = 0 mesh slice and it is clear that, consistent
with the linear analysis, the bulk of the mesh distortion occurs in the horizontal
boundary layers close to the upper and lower plates. Field lines are also sheared
across the y = 0 plane as indicated by Figure 3b. The symmetry of the disturbance
ensures that the particles initially in the plane z = 0 move only in the vertical
direction. Figure 3c and d show the fixed meshes associated with the footpoints
displacements on z = ±1.
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Figure 3. Equilibria obtained by imposing finite amplitude footpoint displacements on the initial
Parker field defined over the cube −1 < x, y, z < 1. Figure 3a shows an x = 0 slice of the Lagrangian
mesh for N = 16. Fluid particles are constrained to field lines defined by the initial Parker field.
Traversing the upper and lower plates are near vertical lines that trace magnetic field lines in the
relaxed equilibrium. Figure 3b shows the corresponding y = 0 surface. Upper and lower footpoint
displacements are shown in Figures 3c and d, respectively.

The shearing and compression of the fluid that derives from the initial distur-
bance imparts only a modest degree of twist to the field. This twist represents
magnetic helicity which is identically conserved in the relaxation. The inherent
twist is particularly clear from the isosurface plot of the relaxed current density
in Figure 4. The current surfaces form a periodic array of twisted and elongated
“hourglass” figures. Most of the current is associated with the footpoints, but there
is a central narrow shard that penetrates the central z = 0 surface.

3.3. SOLUTIONS INVOLVING ORCHESTRATED TWIST

The global displacements considered so far have been motivated by the linear
analysis of Section 3. Such low frequency, isolated modes do not impart a large scale
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Figure 4. Current density isosurfaces in the relaxed equilibria of Figure 3. The periodic structure
reflects the symmetry of the initial, finite amplitude, Fourier displacement (k1 = 1, k2 = 2). Note that
to obtain good definition of the isosurfaces a slightly higher resolution than that of Figure 3 was used,
namely N = 28.

rotation to the initial field and only by a complicated superposition of many such
modes can orchestrated twisting motions be modeled. In the relaxation experiment
performed below we apply a rotation directly to the footpoints of the upper the
lower plates.

Figure 5 illustrates the results of a relaxation experiment in which field lines
wind through roughly one turn in traversing the plates z = −1 to z = +1. The initial
condition is based on a uniform planar mesh (x, y) which is twisted according to

x → x cos φ − y sin φ y → x sin φ + y cos φ,

where

φ = φ(x, y, z) = z f (x, y),

and f (x, y) is chosen to fall off smoothly with distance from the rotation axis
x = y = 0. This form of highly non-linear disturbance leads to identical x = 0 and
y = 0 slices (left-hand figure)) and to opposing rotations on the upper and lower
plates (right-hand figure).

Despite the appreciable degree of applied twist the final equilibrium (not
shown) is not especially interesting, the current being concentrated in a sin-
gle vertical column centered at the origin. The important point, as emphasized
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Figure 5. Equilibrium meshes that derive from large amplitude footpoint rotations of the initial field
(N = 28). The figure on the left illustrates the mesh twisting associated with the x = 0 or y = 0 mesh
slices. That on the right shows the footpoint displacements.

below, is that the solution converges convincingly as the numerical resolution is
increased.

3.4. CONVERGENCE OF NUMERICAL SOLUTIONS

In the previous sections we have displayed relaxed equilibria at only modest res-
olution. However, if current singularities were forming – and remember that we
impose footpoint displacements that break the symmetry ∂z = 0 of the initial field
– then we would expect the maximum current density on the mesh to grow system-
atically with increasing resolution. Yet, as the two lower plots of Figure 6 confirm,
the two numerical equilibria represented above are fully converged for N � 30.
Notably the convergence pattern remains identical as the differential rotation of the
footpoints is increased (see upper plots of Figure 6). The implication is that the
well-behaved, smooth equilibria are determined by the relaxation scheme for each
of the non-linear footpoint disturbances.

It is important to emphasize that the ability of the present Lagrangian scheme to
model current singularities has been tested repeatedly in a variety of applications
(see Craig and Sneyd, 1990; Longbottom et al., 1998). For example, it is easy to
show using flux conservation arguments (see the Appendix of Ali and Sneyd, 2002),
that the current density associated with an idealized singularity should increase
as

Jmax = ANα (23)

where α is typically a positive number of order unity and A a constant. The exact
speed of the blow-up depends in fact on the nature of the magnetic collapse, for
instance, whether the singularity is compressional or rotational. If compressional,
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Figure 6. Convergence of the current density J with number of grid points N for each of the magnetic
relaxation experiments. The upper curves plot the maximum current density over the mesh for the
footpoint rotation experiment of the figure. The angle θ represents the differential rotation between
the upper and lower plates in radians. The lower curve gives the maximum current density for the
finite-amplitude Fourier mode disturbance of Figure 3.

the blow-up will depend on the amplitude of the gas pressure, that is α = α(β)
(Craig and Litvinenenco, 2005). But in all cases, and in marked contrast to the
results of Figure 6, the ideal singularity is manifested by the systematic increase in
current density with resolution.

3.5. SOLUTIONS INVOLVING ROTATION AND SHEAR

By applying a succession of rotation and shearing motions very complicated foot-
point displacements can be constructed. The price paid for this extra complexity is
the increased time for numerical convergence. In the examples considered below
(the convergence pattern of Figure 6), the convergence does not set in until typically
N � 40.

Our first example is that of two flux tubes twisted around each other. To con-
struct such a field two localized twists of opposite sense were applied to produce
two twisted flux tubes. Then a global twist was applied to wrap the tubes around
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Figure 7. Current isosurfaces: upper figure, the initial state, and lower, the final relaxed state.

each other, as illustrated in Figure 7. Although this configuration is very similar
to that suggested by Parker (1994) we detected no tendency for intense current
growth during relaxation to equilibrium. The relaxed current iso-surface shows
that the initial twisted tubes of current eventually degenerate into vestigial strands
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Figure 8. Initial footpoint displacement for twist and shear combination.

encircling the strong central column formed by the overall large-scale rotation.
In our second example we apply a combination of both shear and twist, giving
the footpoint displacement shown in Figure 8. Again, despite experiments with
varying combinations of shear and rotation, we found no evidence of current-sheet
formation.

3.6. ROTATIONAL BOUNDARY DISPLACEMENTS

So far we have considered footpoint displacements which are irrotational or vanish
on the lateral boundaries x = ±1, y = ±1 – i.e., which result in a zero component of
∇×B perpendicular to the boundary. Allowing displacements with a non-zero com-
ponent of ∇ ×B effectively drives an electric current across the boundary, changing
the results significantly. For example, Longbottom et al. (1998) performed relax-
ation experiments in which the boundary points were sheared in both directions,
resulting in a normal component of ∇ ×B, and evidence of current-sheet formation
was found.

Motivated by Longbottom et al. (1998), we now perform an experiment using
initial boundary displacements of the form,

x = x + sx xz(1 − x2)2, y = y + sy xz(1 − y2)2,

where sx and sy represent the magnitudes of the shears in the x and y-directions
respectively. Graphs illustrating the convergence or divergence of the current den-
sity with zero gas pressure are shown in Figure 9. For relatively small shears there
is no evidence of a current sheet, the maximum current settling down to a con-
stant value. However for shears greater than about s = 0.2 we find evidence of
current-sheet formation, the maximum current growing with increasing resolution.
For a shear of magnitude s = 0.6 the asymptotic growth rate with resolution of Jmax
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Figure 9. Graphs of maximum current Jmax versus number of grid points N for a variety of shear
strengths. Plasma pressure is neglected. The dashed line represents asymptotic current growth in the
case s = 0.6 of power-law slope 1.263.

approximates a power law (23), of amplitude A = 5.812 and exponent α = 1.263.
As already mentioned, such power-law growth is expected in the presence of a
current sheet (Ali and Sneyd, 2001). These results show that the current singulari-
ties found by Longbottom et al. (1998) are a nonlinear phenomenon in which the
results depend crucially on the amplitude of the initial perturbation. Such results
cannot of course be revealed by linear analysis. Figure 10 shows results of a similar
experiment with gas pressure β = 0.1. Again, there is evidence of current-sheet
formation, but the asymptotic growth rate is slowed somewhat to α = 0.851. In-
dependent calculations (Craig and Litvinenenco, 2005) indeed confirm that gas
pressure can be expected to weaken the current singularity, but cannot suppress it
entirely.

But to what extent can disturbances extending to the lateral boundaries of the
model be regarded relevant to the validity of the Parker hypothesis? It seems to
us that the injection of electric current normal to the direction of initial field is an
additional effect, not part of the original Parker scenario. If we assume that we are
searching for an effect that is robust to the prescription of the lateral boundaries,
then such boundaries should be placed well away from the regions of appreciable
footpoint motion. With this interpretation, the singular equilibria presented here,
along with those of Longbottom et al. (1998), should not be taken as evidence in
support of the Parker hypothesis.
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Figure 10. Graphs of maximum current 0.1. Jmax versus number of grid points N for a variety of
shear strengths s. The plasma pressure β = 0.1. The dashed line represents asymptotic current growth
in the case s = 0.6 of power-law slope 0.851.

4. Discussion and Conclusions

We have considered the Parker problem for the case of arbitrary footpoint displace-
ments in an ideal, compressible plasma. An analytic treatment of the linearized
problem, based on the Lagrangian formulation of Bernstein et al. (1958) shows
that equilibrium solutions can be constructed for all footpoint disturbances. These
solutions violate the symmetry ∂zB = 0 (in agreement with van Ballegooijen, 1985;
Zweibel and Li, 1987) which is an essential feature of Parker’s argument, yet leads
to smooth, well-behaved equilibria. In particular, if those modes which lead to
z-independent field perturbations are eliminated, then boundary disturbances pene-
trate only weakly into the interior volume. For a planar wavenumber k we find that
perturbations die away according to the skin depth formula exp(−ks) where s is
the distance from the boundary. The penetration of a general disturbance is there-
fore controlled mainly by the fundamental modes of the problem and, in practice,
these will be determined by the radial and vertical length scales of the equilibrium
field. These findings are robust to the plasma compressibility (see the Appendix)
and hold good, no matter whether a compact or unbounded planar region is
considered.
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Of course, as we have emphasized, the linear analysis by itself is not sufficient
to negate Parker’s coronal heating hypothesis. The problem of stability needs to
be addressed and, in particular, the impact of finite-amplitude disturbances. In
view of the nonlinear, three-dimensional nature of the general stability problem
we have used the non-resistive Lagrangian code of Craig and Sneyd (1990) (see
also Longbottom et al., 1998) to explore computationally the properties of line-tied
B = ẑ equilibria. For appreciable footpoint displacements, even those involving
significant orchestrated twist, it is possible to obtain fully converged numerical
results. Such smooth behavior, while extending and reinforcing the linear analysis,
directly contradicts Parker’s assertion of generic singular behavior in ideal MHD
equilibria. In Section 3.6 we did manage, however, to obtain numerical behavior
consistent with the emergence of current singularities. But this was achieved, in
common with Longbottom et al. (1998), by manipulating the lateral boundaries of
the computational domain, an exercise which does not seem legitimate in terms of
the Parker hypothesis.

To what extent have we disproved Parker’s argument? The linearized analy-
sis shows that a collapse to singularity requires nonlinear footpoint disturbances,
but it could be argued that the finite-amplitude displacements we have tested
lack “sufficient amplitude and complexity”. The disturbances we construct, based
on finite amplitude rotation and shear are arbitrary but of course their ampli-
tude and complexity must always be limited by the computing power avail-
able. Figure 6 does, however, provide some evidence that increasing the am-
plitude of the field-line rotations has little effect on the convergence of J to
a finite value. The three results at increasing amplitude converge in a similar
manner.

Yet by changing the “rules of the game” and allowing large-scale footpoint
displacements that extend to the lateral boundaries of the model, we have been able
to trigger a collapse to singularity using quite simple non-linear disturbances. This
result, which agrees with Longbottom et al. (1998), suggests that the original Parker
geometry may be less susceptible to small-scale “internal” footpoint migrations
than to global, orchestrated disturbances. That is, only by a non-trivial change in
the Parker formulation have we been able to witness evidence for current-sheet
formation.

While the present arguments lend no support to Parker’s magnetostatic theorem,
they should not be taken to imply that random footpoint motions are incapable of
heating the corona. What they do suggest is that, in the absence of topological
features in the background field such as magnetic nulls or separators, appreciable
footpoint migrations cannot generally be expected to induce a collapse to small
length scales leading to current-sheet formation. Significant current densities may
emerge, but unless large amplitude orchestrated motions are present, these will
simply reflect the length scales associated with a random accumulation of footpoint
displacements.
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Appendix: Incompressible Solutions

In Parker’s original formulation only an incompressible plasma is considered. Here
we point out that incompressible solutions can be easily deduced from the com-
pressible Lagrangian formulation presented here.

First note that an incompressible plasma requires that ∇·u = ∇·ξ = 0. Suppose
pi is the (incompressible) pressure amplitude that achieves this requirement. From
Equation (10) we see that for γ fixed we must let p̄ → 0 to obtain ∇·ξ → 0. A finite
pressure amplitude then requires the identification pi = β p̄ in the limit β → ∞.
It follows that incompressibility is achieved by the replacements θ ≡ β + 1/γ →
β, pi → β p̄.

As a simple example consider the incompressible β → ∞ limit for the discrete
Fourier modes of Section 2.6. We write p = pi cos(k1x) cos(k2 y), set U = pi +
a1 cosh(kz) + a2 sinh(kz), θ = β, and take pi = −a1sk/k. All other expressions
are unchanged. Similar replacements go through for the Fourier integral solutions
of Section 2.5.
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