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Abstract
The consequences that educational underperformance has on both individuals and society 
as a whole lead policy makers and planners to focus on how to measure it properly. The 
aim of this paper is to propose an index to measure educational poverty which, taking as a 
starting point the economic literature on multidimensional poverty measurement, turns out 
to be appropriate in the educational context. With this purpose, the following two features 
are demanded: (1) an individual should be identified as poor whenever they do not reach 
the basic level of knowledge in at least one of the relevant subjects; (2) the degree of pov‑
erty of individuals who present the same level of insufficiency in some subjects but have 
different scores in others should be different. Based on these premises, we introduce a mul‑
tidimensional adjusted poverty index, called BCa index, which is an extension of Bourguig‑
non and Chakravarty index, and we apply it to measure educational poverty in the OECD 
countries by using data from PISA 2012 and 2015 reports.

Keywords  Multidimensional adjusted poverty measurement · Educational poverty · PISA 
2012 and 2015

JEL Classification  I24 · I32 · D31 · D63

1  Introduction

The consequences that educational underperformance has on both individuals and soci‑
ety as a whole lead policy makers and planners to design politics geared towards reducing 
it and to focus on how to measure properly the extent of educational underperforming. 
Research literature related to poor educational performance interprets it as educational pov‑
erty and it argues that the indices commonly used in the analysis of inequality and poverty 
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provide useful information (Thomas et al. 2000; Denny 2002; Lohmann and Ferger 2014; 
Villar 2016; Minzyuk and Russo 2016).

Many studies have considered the poverty as a multidimensional phenomenon in 
order to define it from monetary and non-monetary deprivations following the axiomatic 
approach. Alkire et  al. (2015) presented an excellent and comprehensive analysis of the 
research in this field. The contributions introduced by Bourguignon and Chakravarty 
(2003) and Permanyer (2014) are closely related to our proposal.

Bourguignon and Chakravarty (2003) proposed a multidimensional poverty index fam‑
ily specifying a poverty line for each dimension of poverty and using the union criterion to 
identify the poor, that is, an individual is poor if they are deprived of any attribute. Lasso 
de la Vega et  al. (2009) characterized this poverty index family. Until Bourguignon and 
Chakravarty (2003) the way of dealing with the multidimensionality of poverty was to 
assume that the different attributes of an individual might be added in a single cardinal 
index of well-being and that poverty might be defined in terms of that index. This approach 
may be regarded as a single dimensional poverty index, with some generalizations of the 
definition of income.

Permanyer (2014) introduced a general and novel formulation to measure poverty, since 
it extends many of the indices existing in the literature but, at the same time, allows to 
cushion the poverty of the individuals with the values reached in the dimensions in which 
they do not show insufficiencies.

Based on the multidimensional framework proposed by Bourguignon and Chakravarty 
(2003), the main purpose of this paper is to extend the class of sub-group consistent pov‑
erty indices proposed by Foster et al. (1984) to the multidimensional context adding some 
kind of adjustment in the line of Permanyer (2014). In particular, we introduce a new mul‑
tidimensional poverty index called Adjusted Bourguignon Chakravarty Index, BCa index 
hereinafter, which extends Bourguignon and Chakravarty index and considers, at the same 
time: (1) deprivation in any attribute means educational poverty and (2) the degree of edu‑
cational poverty can be cushioned by the achievements in the poor’s non-deprived attrib‑
utes. We also analyse a set of standard properties fulfilled by our proposal which have a 
natural interpretation in the educational context. Moreover, we apply the BCa index to 
measure educational poverty by using data from PISA 2012 and 2015 reports, which pro‑
vide the richest database for the analysis of the academic achievements of 15 year-old stu‑
dents in mathematics, reading and science.

The work is organised as follows. Section 2 provides the notation and basic defini‑
tions to introduce the new educational poverty index. Section 3 presents the BCa index 
and describes the main properties it satisfies. Section 4 applies the BCa index to meas‑
ure educational poverty of the OECD countries by using data from PISA 2012 and 
2015. Section 5 summarises the main conclusions. All the proofs are relegated to the 
“Appendices”.

2 � Notation and Definitions

We consider a population of n ≥ 2 individuals, N = {1, 2,… , n} and a set of k attributes, 
J = {1, 2,… , k}, where k is given and fixed, which are relevant to assess poverty. We 
assume that each attribute is representable by a continuous variable. For all i ∈ N, j ∈ J, let 
xij ∈ ℝ+ denote the individual i’s achievement of attribute j ∈ J . Let  denote the set of 
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real n × k matrices. So, a multidimensional distribution among the population is repre‑
sented by an n × k real matrix � ∈  where � =

(
xij
)
1≦i≦n
1≦j≦k

, xij≧0 ∀i, j . The i-th row of � , 

denoted by xi =
(
xij
)
1≦j≦k

 , represents the individual i’s achievement vector.
To identify the poor, we compare the individual i’s achievement with a specific poverty 

line. For any j ∈ J , let zj > 0 the threshold level of attribute j, that is, zj is the minimal level 
considered acceptable for attribute j, the subsistence level. So, we denote by 
z =

(
zj
)
1≦j≦k

∈ ℝ
k
+
 the vector of threshold for all the attributes, the poverty line. Whenever 

an individual i’s achievement xij for an attribute j is below the corresponding threshold 
level, we say that this individual i is deprived in that attribute.

Although there are different ways to identify the poor, we follow Bourguignon and 
Chakravarty (2003) and consider that a person is poor if they are deprived in any attribute. 
Let ρ ∶ ℝ

k
+
×ℝ

k
+
→ {0, 1} be the poverty indicator variable function (Chakravarty 2009) 

which is defined by setting

Therefore, an individual i ∈ N is poor if and only if �
(
xi, z

)
= 1 ; the number of poor is 

given by q =
∑n

i
�
�
xi, z

�
 and the incidence of the educational poverty by H = q∕n , that is, 

the proportion of the poor in the population, named the Headcount ratio.
Once the poor have been identified, a multidimensional poverty index P has to be 

defined to aggregate the attributes into an overall indicator and measure the poverty of the 
society. A multidimensional poverty index P (Chakravarty 2009) is a non-constant real val‑
ued function P ∶  ×ℝ

k
+
→ℝ where P(�, z) determines the poverty level associated with 

the achievement matrix � and the threshold vector z.
In the next section, we propose a new multidimensional poverty index based on the idea 

that the achievements in the non-deprived attributes of the poor can affect the degree of 
their poverty.

3 � The Multidimensional Adjusted Poverty Index

Next, we introduce a new multidimensional poverty index, called Adjusted Bourguignon 
Chakravarty index, BCa , which allows for adjustments by the attributes of the poor which 
do not fall below the corresponding threshold level, without changing the identification of 
an individual as poor.

Our proposal is to define an index in terms of deprivations as well as of non-depriva‑
tions of the poor. For any (𝕏, z) ∈  ×ℝ

k
+
 we define the deprivation matrix1 by setting,

(1)𝜌
(
xi, z

)
=

{
1 if ∃j ∈ {1, 2,… , k} ∶ xij < zj
0 otherwise

G ∶  ×ℝ
k
+
→

(2)G(�, z) =
(
gij(�, z)

)
1≦i≦n
1≦j≦k

1  Once we have constructed the deprivation matrix, G(�, z) , the proportion of people who are poor and 
deprived in any set of attributes can be easily obtained (see “Appendix 1”).
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and the non-deprivation matrix by considering,

where mj is the maximum level that an individual could achieve in the j-th attribute and we 
denote by m =

(
mj

)
1≦j≦k

∈ ℝ
k
+
 the vector of maximum level for all the attributes, the top 

line.
Note that gij(�, z) are the usual normalized poverty gaps considered in the literature 

(Chakravarty 2009) for the individual’s deprived attributes. Symmetrically, we introduce 
rij(�, z,m) as the surplus gaps for the individual’s non-deprived attributes.

To present our index, we need to extend the definition of multidimensional poverty 
index by considering it as a non-constant real valued function P ∶  ×ℝ

k
+
×ℝ

k
+
→ℝ 

where P(�, z,m) determines the poverty level associated with the achievement matrix � , 
the threshold vector z and the top line m.

Next, we define an individual poverty index (adjusted individual poverty index) by mak‑
ing use of the p-norm (p > 0). Formally, let � ∶ ℝ

n×k
→ℝ

n be a non-constant real function 
defined as follows,

where, for each 1≦i≦n,

Then, given (𝕏, z,m) ∈  ×ℝ
k
+
×ℝ

k
+
 , for each 1≦i≦n and for each 𝜃 > 0 , we will con‑

sider the deprivation level, �i(G(�, z)) , and the non-deprivation level, �i(R(�, z,m)) , as 
follows,

Let us note that when individual i is deprived in no attribute �i(G(�, z)) = 0, whereas 
when individual i is totally deprived in all attributes �i(G(�, z)) = 1 . Analogously, when 

(3)gij(�, z) = max

{
0,

zj − xij

zj

}

R ∶  ×ℝ
k
+
×ℝ

k
+
→

(4)R(�, z,m) =
(
rij(�, z,m)

)
1≦i≦n
1≦j≦k

(5)rij(�, z,m) = max

{
0,

xij − zj

mj − zj

}

�(�) = (�1(�), �2(�),… ,�n(�))

(6)�i(�) =

[
1

k

( ∑
1≤j≤k

x
p

ij

)]1∕p

(7)�i(G(�, z)) =

[
1

k

( ∑
1≤j≤k

g�
ij
(�, z)

)]1∕�

(8)�i(R(�, z,m)) =

[
1

k

( ∑
1≤j≤k

r�
ij
(�, z,m)

)]1∕�
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individual i is deprived in all attributes �i(R(�, z,m)) = 0, whereas when individual i 
gets the maximum achievement in all attributes �i(R(�, z,m)) = 1.

The expression �i(G(�, z)) is, in fact, the family of individual multidimensional indi‑
ces proposed by Bourguignon and Chakravarty (2003) (by considering equal weights for 
all attributes). In order to define our index, we follow Dutta et al.’s approach (2003), and 
define the adjusted individual poverty index by aggregating information from depriva‑
tion and non-deprivation matrices in the line proposed by Permanyer (2014).

Definition 1  The Adjusted Individual Poverty index, BCa
i
 , is a function,

where Ai(�, z,m) , called Adjustment Factor, is defined by

Next proposition presents the main features of the Adjustment Factor. On the one 
hand, it has been constructed to satisfy the basic properties to be considered as such. 
That is, reduce the deprivation level of an individual whenever they are non-deprived in 
some attributes. On the other hand, it has some properties that we find to be appropriate 
in the educational context. First, Ai(�, z,m) depends on both the individual deprivation 
and non-deprivation levels which are defined in a symmetric way (applying the same 
function to surplus and poverty gaps) looking for consistency. Second, Ai(�, z,m) is sen‑
sitive to the deprivation levels of the individuals since its value depends increasingly on 
it as a whole. Third, when an individual has a greater deprivation level, an increase in 
the same is compensated by a greater increase in the non-deprivation level to maintain 
constant their poverty level.

Proposition 1  Given (𝕏, z,m) ∈  ×ℝ
k
+
×ℝ

k
+
 the Adjustment Factor, Ai(�, z,m), 

satisfies:

	 i.	 It is non-negative; if for any i ∈ N  and j, t ∈ {1,… , k} , j ≠ t, rij(�, z,m) > 0 and 
git(�, z) > 0 , then Ai(�, z,m) > 0; and Ai(�, z,m) = 1 when the individual is deprived 
in all the attributes.

	 ii.	 It is increasing with respect to �i(G(�, z)) and decreasing with respect to 
�i(R(�, z,m));

	 iii.	 Deprivation and non-deprivation levels considered to construct it are defined in a 
parallel way;

	 iv.	 For each i ∈ N, the curves defined by the sets of pairs 
{
(�i(G(�, z)),�i(R(�, z,m))

∈ [0, 1]x[0, 1] / BCa

i
(�, z,m) = C

}
 , called BCa

i
-isopoverty curves, are increasing and 

convex.

BCa
i
∶  ×ℝ

k
+
×ℝ

k
+
→ [0, 1]

(9)BCa
i
(�, z,m) = �i(G(�, z)) × Ai(�, z,m)

(10)Ai(�, z,m) =

(
�i(G(�, z))

�i(G(�, z)) + �i(R(�, z,m))

)
.
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Proof  (See “Appendix 2”).

Remark 1  Although the main idea of our extension is pretty close to Permanyer’s approach, 
it has some characteristics that clearly differentiate it from the Permanyer’s index. Next, we 
list them.

	 i.	 The Permanyer’s index is not consistent in the sense that it measures the deprivation 
and non-deprivation levels by applying different functions to surplus and poverty gaps.

	 ii.	 The construction of Permanyer’s index requires estimating [k(k − 1) + 1] parameters 
more than our index (where k is the number of attributes).

	 iii.	 Permanyer’s index is not sensitive to the deprivation levels of the individuals because 
it is not a function of �i(G(�, z)).

	 iv.	 In general, the isopoverty curves defined from Permanyer’s index are not convex.

The previous statements are proved in “Appendix 3”.
Note that it is straightforward to prove that an individual i ∈ N is poor ( �

(
xi, z

)
= 1) if 

and only if BCa
i
(�, z,m) > 0.

Moreover, it is important to highlight that if an individual is poor, a high achievement 
in a non-deprived attribute cannot change their identification as poor but simply adjusts 
(decreases) their poverty degree. Therefore, two individuals with the same level in all 
deprived attributes could have different poverty degrees, depending on their achievements 
in non-deprived attributes, but both will be either poor or non-poor. That is, the identifica‑
tion of poor is independent of the non-deprived attribute achievements they possess. We 
call this property Strong Focus Identification.

Strong Focus Identification (SFI) For any (𝕏, z,m), (𝕐 , z,m) ∈  ×ℝ
k

+
×ℝ

k

+
 , 

j ∈ {1,… , k} , i ∈ {1,… , n} , if xij ≥ zj , yij = xij + δ, where δ > 0, ytj = xtj for all t ≠ i

and j ∈ {1,… , k}, then P(�, z,m) > 0↔P(� , z,m) > 0.
Finally, we apply the well-known Foster–Greer–Thorbecke’s approach (1984) to define 

the Adjusted Bourguignon Chakravarty index, BCa , from the Adjusted Individual Poverty 
indices, BCa

i
.

Definition 2  The Adjusted Bourguignon Chakravarty index, BCa , is the real valued 
function,

where 𝛼 > 0 . For � = 0,
(
BCa

i
(�, z,m)

)0 denotes the poverty indicator variable function.

Remark 2  The BCa index provides different poverty measures depending on the value of 
the parameter α. In this regard, if α = 0 the index indicates the incidence of the poverty 
since it coincides with the proportion of poor people, H = q∕n . If α = 1 the index stands for 
poverty per capita in the total population and can be expressed by H × I , where 
I =

1

q

∑n

i=1
BCa

i
(�, z,m) represents the poverty intensity among the poor. When α > 1, a 

larger value of α involves giving more weight to the poorest of the poor, therefore 

BCa ∶  ×ℝ
k
+
×ℝ

k
+
→ [0, 1]

(11)BCa(�, z,m) =
1

n

n∑
i=1

(
BCa

i
(�, z,m)

)�
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inequality among the poor is taken into account when measuring the poverty of the popula‑
tion. The most common value of the parameter α in the literature about poverty is α = 2. In 
this case, the index combines the three aspects that, according to Sen (1976), a poverty 
index should consider: incidence, intensity and inequality of poverty.

Next, a list of properties that the BCa index satisfies is introduced. They are either 
standard in the literature or extensions we have defined in our context, which considers 
the possibility of some kind of adjustment among different attributes.

Weak Focus requires that the index is independent of the attribute levels of the non-
poor people.

Weak Focus (WF) For any n ∈ N , �,� ∈  , z,m ∈ ℝ
k
+
 , if for some i, xik≧zk∀k 

and (1) for any j ∈ {1, 2,… , k} , yij = xij + � , where 𝛿 > 0 , (2) yit = xit∀t ≠ j and (3) 
yrs = xrs∀r ≠ i and all s, then P(� , z,m) = P(�, z,m).

Symmetry and Normalization are standard assumptions. In particular Symmetry 
demands anonymity. That is, it requires the index to be independent of characteristics of 
individuals other than the quantities of individual achievements.

Symmetry (SYM) For any (𝕏, z,m) ∈  ×ℝ
k
+
×ℝ

k
+
 , P(�, z,m) = P(��, z,m) where 

Π is any permutation matrix of appropriate order.
Normalization is the cardinalization of the index. It states that if all the individuals in 

society are non-poor, then the index value is 0.
Normalization (NOM) For all z,m ∈ ℝ

k
+
,𝕏 ∈ , if xij≧zj ∀i ∈ {1, 2,… , n}, and 

∀j ∈ {1, 2,… , k}, then P(�, z,m) = 0.

With respect to monotonicity we consider two different types (Monotonicity and ND-
Monotonicity), depending either if the position of a poor person improves with respect 
to an attribute in which they are deprived or not. Monotonicity is the usual one in the 
literature and demands that if the position of person i who is poor and deprived with 
respect to attribute j improves in this attribute, then overall poverty should not increase. 
In the same line but from the point of view of non-deprived attributes, ND-Monotonicity 
demands that if the position of a person who is poor but not deprived with respect to 
attribute j improves in this attribute, then overall poverty should not increase.

Monotonicity (MON) For any n ∈ N , � ∈  , z,m ∈ ℝ
k
+
 , j ∈ {1, 2,… , k} , if (1) for 

any i, yij = xij + � , where xij < zj , 𝛿 > 0 , (2) ytj = xtj∀t ≠ i , and (3) yis = xis for all i and 
for all s ≠ j , then P(� , z,m) ≤ P(�, z,m).

ND-Monotonicity (NDMON) For any n ∈ N , � ∈  , z,m ∈ ℝ
k
+
 , j ∈ {1, 2,… , k} , if 

(1) for any i, yij = xij + � , where xij > zj , 𝛿 > 0 , (2) ytj = xtj∀t ≠ i , and (3) yis = xis for all 
i and for all s ≠ j , then P(� , z,m) ≤ P(�, z,m).

Continuity establishes that the poverty index varies continuously with the individual 
achievements. That is, small changes in the attributes, the threshold and the top line 
imply small changes in the value of the poverty index.

Continuity (CONT) For any z,m ∈ ℝ
k
+
,𝕏 ∈ , P(�, z,m) is continuous on .

Scale Invariance requires the poverty index to be invariant under scale transforma‑
tions of the attributes, the threshold and the top line.

Scale Invariance (SI) For any (𝕏, z,m) ∈  ×ℝ
k
+
×ℝ

k
+
 , P(�, z,m) = P

(
�

�, z�, m’
)
 

where �
� = ��, z

�

= zΛ,m
�

= mΛ,Λ being the diagonal matrix 
diag

(
𝜆1, 𝜆2,… , 𝜆k

)
, 𝜆j > 0 for all j.

Principle of Population allows us to compare poverty levels of societies with differ‑
ent population sizes. It requires that if an attribute matrix is replicated several times, 
then poverty remains unchanged. This property is particularly relevant to analyse inter‑
temporal and inter-regional poverty comparisons.
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Principle of Population (PP) For any (𝕏, z,m) ∈  ×ℝ
k
+
×ℝ

k
+
, r ∈ ℕ , finite, 

P(�r, z,m) = P(�, z,m) where �r is the r-fold replication of �.
Subgroup Decomposability establishes that if the population is split into subgroups, 

according to homogeneous characteristics, say age, gender, region, and so on, then the 
overall poverty is the population weighted average of the subgroup poverty levels. There‑
fore, this requirement allows us to calculate percentage contributions of different subgroups 
to total poverty and to identify the subgroups that are more afflicted by poverty.

Subgroup Decomposability (SUD) For any (𝕏, z,m) ∈  ×ℝ
k
+
×ℝ

k
+
 and any parti‑

tion of the population into s subgroups, s ≥ 2, P(�, z,m) =
∑s

l=1

nl

n
P
�
�l, z,m

�
 , where �l, nl 

denote the achievement data and the population size of subgroup l, respectively, for all 
l = 1, 2, …, s and 

∑s

l=1
nl = n.

The particularisation of this property to the extreme case where each group is a single 
individual is known as Decomposability.

The next result shows that the Adjusted Bourguignon Chakravarty index, BCa satisfies 
all the previous properties.

Proposition 2  The BCa index satisfies SFI, WF, SYM, NOM, MON, NDMON, CONT, SI, 
PP and SUD.

Proof  (See “Appendix 4”).

Finally, we consider the Factor Decomposability property. It demands a poverty index 
to be additive across attribute. Then, if a poverty index satisfies this property, the shares of 
different attributes to total poverty can be determined.

Factor Decomposability (FD) For any (𝕏, z,m) ∈  ×ℝ
k
+
×ℝ

k
+
 , if � = � , then 

P(�, z,m) =
∑k

j=1
bjP

�
�j, zj,mj

�
 , where �j denotes the j-th column of achievement matrix 

� , bj ∈ ℝ
+ such that 

∑k

j=1
bj = 1.

Proposition 3  If α = θ, the BCa index satisfies FD.

Proof  (See “Appendix 5”).

Note that, when this property is exhibited by a poverty index in conjunction with Sub-
group Decomposability, as it is for the BCa index, the contributions of different subgroups 
to aggregate poverty with respect to different attributes can be calculated and the subgroup-
attribute combinations that are more susceptible to poverty can be identified. This is very 
important in designing antipoverty policies when a society has limited resources to elimi‑
nate poverty for an entire subgroup or for a specific attribute.

4 � An Application to Educational Poverty

The OECD Programme for International Student Assessment (PISA) tries to quantify if 
15-year-old students, approaching the end of compulsory studying, are well prepared to 
meet the challenges of the future. PISA surveys take place every 3  years in the OECD 
countries and a group of partner countries, with together make up close to 90% of the 
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world Economy. Through it, three subjects are evaluated: reading comprehension (read‑
ing), mathematics and problem solving (mathematics) and comprehension of scientific 
texts (science), focusing, in each wave, on one of them in a more exhaustive way. Next, 
we analyse the level of educational poverty in the OECD countries from the PISA data for 
2012 (OECD 2014a) and 2015 (OECD 2016a, b).

In PISA 2012 and PISA 2015 around 510,000 and 514,000 students, respectively, com‑
pleted the assessment, representing about 28 million and 29 million 15-year-old students 
in the schools of the participating countries and economies (65 in 2012 and 72 in 2015). 
The PISA 2012 was focused on mathematics, with reading and science as minor areas of 
assessment, whereas PISA 2015 was focused on science.

For each student different variables are stored, including ten plausible values in 2015 
(five in 2012 and previous years), which represent the uncertainty about the right value to 
impute in each dimension (mathematics, reading, science) as long as the weights associ‑
ated to each student (OECD 2014b) which are used to adjust for the probabilities of selec‑
tion for individual schools and students, for school or student nonresponse, and for errors 
in estimating the size of the school or the number of 15-year-olds in the school at the time 
of sampling (Kelly et al. 2013).

Since PISA 2003, student scores are transformed to the PISA scale (0–1000), so that 
the mean is 500 and the standard deviation 100, and six levels of proficiency are defined. 
It is generally accepted that the level 2 is the minimum one to ensure that the student will 
be able to succeed in the labour market in the future. For this reason, we can identify stu‑
dents with scores linked to level 1, and below level 1, in any subject, to be poor in terms of 
education.

For PISA 2012 and 2015, the cut scores for level 2 for mathematics, reading and science 
literacy are 420.07, 407.47 and 409.54, respectively. Any score below these amounts will 
imply that the student is poor in the corresponding competency or dimension. Therefore, 
the poverty line is z = (420.07, 407.47, 409.54) and, according to our definition of “poor 
student”, any individual will be classified as “educationally poor” if they don’t get these 
values in all the subjects.

In order to apply the BCa index to determine the educational poverty level in the OECD 
countries, we present the choice of the parameters α and θ. To set the value of the param‑
eter α, we consider, following Sen (1976), that a poverty index should combine the three 
essential aspects of poverty: incidence, intensity and inequality. Therefore, α should be 
strictly greater than 1. Among all the possibilities, we set the most common value, that is, 
α = 2. So, according to Proposition 3, the value of θ = α ensures that the BCa index satis‑
fies Factor Decomposability, an important property for the design of antipoverty policies, 
therefore θ = 2 . Moreover, this value of θ implies that inequality in scores of the different 
subjects also affects the level of individual poverty, characteristic that seems to be appro‑
priate in the educational context. Finally, when θ = 2 , both the individual deprivation level 
and the individual non-deprivation level have a clear geometric interpretation, the Euclid‑
ean distance. All these reasons have lead us to choose α = θ = 2.

Tables 1 and 2 show the main results of the application of the BCa index to the OECD 
countries with data from PISA 2012 and 2015, respectively. In both tables countries are 
listed in alphabetical order. Each table presents the value of the BCa index together with the 
per capita poverty (intensity of poverty) and the Headcount ratio (proportion of poor peo‑
ple, or incidence of educational poverty), and their corresponding rankings (1st position 
corresponds to the lowest value). Although the per capita poverty and the Headcount ratio 
are the BCa index for α = 1 and α = 0 , respectively, as stated above, we do not think they 
gather global poverty accurately, but we include them because they provide simple and 
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interesting information related to educational poverty. In both tables, the values with the 
shaded background correspond to those which are above the OECD average, for the BCa 
index, the per capita poverty and the proportion of poor, and to those whose positions are 
above the median, for the rankings.

Table 1   BCa index, per capita poverty and proportion of poor. PISA 2012. Source: Own elaboration with 
data from PISA 2012
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Considering the OECD countries as a whole, from 2012 to 2015 not only does the per‑
centage of the poor increase by 9.19% (from 29.43 to 32.13%) but also the per capita and 
global poverty levels. The per capita poverty rises by 16.75% (from 0.0271 to 0.0316) and 

Table 2   BCa index, per capita poverty and proportion of poor. PISA 2015. Source: Own elaboration with 
data from PISA 2015
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the global poverty level by 13.00% (from 0.0051 to 0.0058).2 Therefore, in 2015 there are 
more students that do not reach the basic level of knowledge in at least one subject than 
in 2012. On average, their level of knowledge is lower and the global educational poverty 
increases. The simultaneous increase of these three indicators occurs for 15 of the consid‑
ered countries. Among countries that stand out for their level of educational deterioration 
we find Korea, Switzerland, Poland and Turkey, whose percentage of poor increase, from 
2012 to 2015, by 74.31%, 33.56%, 30.57% and 25.30%, respectively, their per capita pov‑
erty level by 88.69%, 50.10%, 49.98% and 83.72%, respectively, and their global poverty 
level by 77.63%, 51.14%, 63.90% and 122.73%, respectively.

Obviously, this trend is not general across all OECD member countries, 9 of them 
experience a decrease in all the three mentioned indicators, among which we can distin‑
guish Slovenia, Norway, Sweden and Denmark. The proportion of poor of these countries 
decreases, in the analysed period, by 22.88%, 17.33%, 16.36% and 8.74%, respectively, 
their per capita poverty level by 21.53%, 27.24%, 26.05% and 20.99%, respectively, and 
their global poverty level by 26.62%, 44.92%. 38.56% and 34.29%, respectively.

It is important to note that not in all countries these three indicators vary in the same 
direction. Particularly, in Belgium, Iceland, Israel, Italy and United Kingdom the percent‑
age of the poor increases from 2012 to 2015, by 5.92%, 9.38%, 0.09%, 2.94% and 11.48%, 
respectively, whereas the per capita poverty decreases, specifically by 1.55%, 5.58%, 
2.86%, 1.52% and 5.32%, respectively, and the global poverty level also decreases by 
20.23%, 21.64%, 14.41%, 15.55% and 24.49%. On the contrary, only in Chile there is a 
decrease in the percentage of the poor, by 6.76%, and an increase of both the per capita 
poverty by 1.93% and the global poverty by 12.46%.

For most OECD countries, the variation, from 2012 to 2015, of both the per capita and 
global poverty levels presents the same direction. The exceptions are France, Japan, Lux‑
embourg and Mexico. In all of these countries the per capita poverty goes up by 6.62%, 
0.11%, 5.31% and 1.63%, respectively, whereas the global poverty level goes down by 
6.00%, 18.31%, 6.35% and 1.60% respectively. From this information we can conclude that, 
although the average level of knowledge of individuals increases, the inequality among the 
poor decreases in these countries.

Focusing on the relative position of the different OECD countries with respect to their 
level of educational poverty, the following two facts can be highlighted. Firstly, both the 
group of countries with the six greatest per capita and global educational poverty levels 
and the one with the six lowest ones coincide. In 2012 the first group consists of Mexico, 
Chile, Israel, Slovak Republic, Greece and Sweden, and in the second one Estonia, Korea, 
Poland, Finland, Japan and Canada are found. In 2015, Turkey joins the first group and 
Sweden leaves it while Ireland and Denmark enter the second group and Korea and Poland 
exit. Moreover, Mexico is both in 2012 and 2015 the poorest country globally and with 
the greatest per capita poverty level and Estonia the richest country globally and with the 
least per capita poverty level, even though both indicators increase significantly from 2012 
to 2015 by 28.01% and 28.12%, respectively. Secondly, there are notable differences in 
the ranking of some countries between 2012 and 2015. Particularly, for regarding the per 
capita poverty level, it is worth mentioning the relative improvement of some countries 
in more than 5 positions: Norway (11 positions), Sweden (9 positions), Spain (7 posi‑
tions) and Portugal and Slovenia (6 positions for each). As well as the relative worsening 

2  These percentages and the following ones may differ from the values calculated from Tables 1, 2 and 3 
because, in terms of simplicity, only four decimal digits are presented.
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of countries in more than 5 positions: Austria (9 positions), Czech Republic (8 positions), 
Korea and United States of America (7 positions for each) and Australia and Switzerland 
(6 positions for each). These variations are similar for the global poverty level with small 
changes. Specifically, Denmark joins the first group and Slovenia leaves it while Hungary 
enter the second group and Slovak Republic exits.

In spite of all the variations across OECD countries in the different educational vari‑
ables considered, there are two group of countries that, for both 2012 and 2015, are kept 
either below or above the means of the percentage of poor and the per capita and global 
poverty levels, and the medians of the rankings. The first group (below the means and 
medians) includes 13 countries: Canada, Denmark, Estonia, Finland, Germany, Ireland, 
Japan, Korea, Netherlands, New Zealand, Poland, Slovenia and Switzerland. The follow‑
ing 7 countries belong to the second group (above the means and medians): Chile, Greece, 
Hungary, Israel, Mexico, Slovak Republic and Turkey.

Regarding the inequality between levels of educational poverty across OECD countries, 
measured by the Coefficient of Gini (GC) and the Coefficient of Variation (CV), different 
results are obtained if we consider the BCa index, the per capita poverty or the percentage 
of poor in education. As it is shown in Table 3, the inequality measures show an increase 
in inequality in the OECD countries for both the global and the per capita poverty levels in 
2015 compared to 2012. However, when we focus on the proportion of poor across OECD 
countries, the inequality decreases from 2012 to 2015. Particularly, if the per capita pov‑
erty is considered, the CV increases from 2012 to 2015 by 3.41% and the GC by 1.86%. 
But for the global poverty index, both inequality coefficients grow in a greater proportion 
(by 4.94% and 2.99%, respectively). On the contrary, when the proportion of educational 
poor is considered, the CV decreases in 2015 with respect to 2012 by 4.31% and the GC 
by 5.62%. This shows that, among OECD countries, inequality in the proportion of poor 
decreases from 2012 to 2015, whereas inequality in the per capita and global poverty levels 
increases in the same period.

It is important to point out that the analysis of educational poverty in the OECD coun‑
tries carried out by Villar (2016) according to PISA 2012 data differs considerably from 
ours. On the one hand, the proportion of the poor in the population is much lower (from 6% 
in Estonia to 48% in Mexico, with an average of 18%) than our estimation (from 12.88% 
in Estonia to 62.21% in México, with an average of 29.43%). The reason of this disparity 
comes from the fact that, according to Villar’s analysis, a large part of the students who 
have not reached the basic knowledge in some subject are not identified as poor since he 
bases the identification of the poor on the geometric mean of relative scores in all the sub‑
jects. On the other hand, the ranking of the OECD countries when applying the two meth‑
odologies are different for 13 countries if we consider the per capita poverty level, and for 
24 when paying attention to the global poverty level. These differences do not exceed two 

Table 3   Measures of inequality. Source: Own elaboration with data from PISA 2012 and 2015

2012 2015

Per capita 
poverty

Global 
poverty 
(BCa)

Proportion of 
poor

Per capita 
poverty

Global 
poverty 
(BCa)

Proportion 
of poor

Coefficient of variation 
(CV)

0.5192 0.5911 0.4154 0.5369 0.6203 0.3975

Gini coefficient (GC) 0.2748 0.3143 0.2137 0.2798 0.3237 0.2017
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positions in the first case but they reach up to four positions in the second one, as it is the 
case of Norway and Turkey.

5 � Conclusion

Based on the multidimensional framework proposed by Bourguignon and Chakravarty (2003) 
and Permanyer (2014), we have proposed a new multidimensional adjusted poverty measure 
which extends the Bourguignon and Chakravarty index, called the BCa index. Our proposal 
has some characteristics that are really suitable for its application to education and differenti‑
ate it from Permanyer’s index. The introduction of the Adjustment Factor to define the BCa 
index (see Definition 1), the characteristics that it has over against the Permanyer’s one (see 
Proposition 1 and Remark 1) and the properties that the BCa index satisfies (see Propositions 2 
and 3) constitute our main theoretical contribution.

The application of the BCa index to the estimation of the educational poverty across OECD 
member countries, using PISA 2012 and 2015 data, leads to set an accurate evaluation of 
school poverty that could be undoubtedly relevant for policy makers and planners. Next, the 
main results are summarised.

From a global perspective of educational poverty, that is, considering OECD member 
countries as a whole, there has been an educational deterioration that can be quantified by 
means of an increase in all the three indicators analysed: the proportion of poor and the per 
capita and global poverty levels. Therefore, not only the proportion of poor in the population 
has increased but also, in average, the per capita and global poverty levels. This simultaneous 
increase of these three indicators occurs for 15 of the OECD countries, being Korea the coun‑
try that presents the greatest worsening in both the percentage of the poor and the per capita 
poverty level, and Turkey the country that reaches the greatest increase in the global poverty.

Across all OECD member countries, only 9 of them experience a simultaneous decrease 
in all the three mentioned indicators, that is, an educational improvement from the different 
perspectives considered. In this group, the greatest variation in the percentage of the poor cor‑
respond to Slovenia, whereas Norway is the country with the greatest improvement of the per 
capita and global poverty levels.

Focusing on the relative position of the OECD countries with respect to their level of edu‑
cational poverty, for both the per capita and global poverty levels, as for the years 2012 and 
2015, Mexico, Chile, Israel, Slovak Republic and Greece belong to the group of countries with 
the six greatest educational poverty levels, and Estonia, Finland, Japan and Canada are part of 
the group of countries with the six lowest educational poverty levels. Moreover, Mexico is 
both in 2012 and 2015 the poorest country by considering the per capita and global poverty 
levels, and Estonia the least poor one. In this regard, it should also be noted the most notable 
changes in the poverty level rankings of the OECD countries from 2012 to 2015. The greatest 
movement forwards corresponds to Norway, for both, the per capita and global poverty levels, 
and the largest one backwards is in Austria, when the per capita poverty is considered, and in 
Turkey, for the global poverty level.

Finally, regarding the inequality of educational poverty across OECD countries, we can 
conclude that the inequality in the proportion of the poor decreases from 2012 to 2015, 
whereas inequality in the per capita and global poverty levels increase in the same period.
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Appendix 1: Calculation of the Proportion of the People Who Are Poor 
and Deprived in Any Set of Attributes

Let k ∈ N, J = {1,… , k} and S ∈ P(J)⧵�, where P(J) denotes the set of all the subsets of 
J. We define the exclusive identification function, IDE ∶ ℝ

k
+
× P(J)⧵� → {0, 1} , such that for 

any x ∈ ℝ
k
+
 and any S ∈ P(J)⧵�,

Therefore, for any (𝕏, z) ∈  ×ℝ
k
+
 , J = {1,… , k} , S ∈ P(J)⧵�, and by denoting the i-

th row of matrix G (�, z) by gi(�, z) , then

provides the number of poor who are exclusively deprived in the set of attributes S.
Therefore, for any (𝕏, z) ∈  ×ℝ

k
+
 , j ∈ J = {1,… , k},

provides the number of poor people who are exclusively deprived in attribute j . Moreover, ∑n

i=1
IDE

�
gi(�, z), J

�
 provides the number of people deprived in all the attributes.

We denote, for all x ∈ ℝ , by

Moreover, for any (𝕏, z) ∈  ×ℝ
k
+
 , j ∈ J = {1,… , k} , 

i ∈ N = {1,… , n} and S ∈ P(J)⧵�,

provides the number of poor in the population;

is the proportion of poor who are exclusively deprived in all the attributes belonging to S;

is the proportion of the population that is exclusively deprived in all the attributes belong‑
ing to S.

IDE(x, S) =

{
1 if xj ≠ 0∀j ∈ S, xt = 0∀t ∈ J⧵S

0 otherwise

n∑
i=1

IDE
(
gi(�, z), S

)

n∑
i=1

IDE
(
gi(�, z), {j}

)

ID(x) =

{
1 if x ≠ 0

0 otherwise

n∑
i=1

ID

( ∑
S∈P(J)⧵�

IDE
(
gi(�, z), S

))

∑n

i=1
IDE

�
gi(�, z), S

�
∑n

i=1
ID

�∑
S∈P(J)⧵� ID

E
�
gi(�, z), S

��

∑n

i=1
IDE

�
gi(�, z), S

�
n



494	 J.-F. Sánchez‑García et al.

1 3

Appendix 2: Proof of Proposition 1

Proposition 1  Given (𝕏, z,m) ∈  ×ℝ
k
+
×ℝ

k
+
 the Adjustment Factor, Ai(�, z,m), 

satisfies:

	 i.	 It is non-negative; if for any i ∈ N and j, t ∈ {1,… , k} , j ≠ t, rij(�, z,m) > 0 and 
git(�, z) > 0 , then Ai(�, z,m) > 0; and Ai(�, z,m) = 1 when the individual is deprived 
in all the attributes.

	 ii.	 It is increasing with respect to �i(G(�, z)) and decreasing with respect to 
�i(R(�, z,m)).

	 iii.	 Deprivation and non-deprivation levels considered to construct it are defined in a 
parallel way.

	 iv.	 For each i ∈ N, the curves defined by the sets of pairs 
{
(�i(G(�, z)),�i(R(�, z,m))

∈ [0, 1]×[0, 1] / BCa

i
(�, z,m) = C

}
 , called BCa

i
-isopoverty curves, are increasing and 

convex.

� □
Proof 

	 i.	 It is obviously satisfied by definition of the Adjustment Factor, Ai(�, z,m).
	 ii.	 Ai(�, z,m) is increasing with respect to �i(G(�, z))

		    since 

		    Ai(�, z,m) is decreasing with respect to �i(R(�, z,m)) ) since

	 iii.	 Deprivation and non-deprivation levels considered to construct the Adjustment Factor 
are defined in a parallel way since Ai(�, z,m) = ζ(f1(G(�, z)) , f2(R(�, z,m)) where 
f1 = f2 = �i.

	 iv.	 For each i ∈ N, consider the BCa
i
-isopoverty curve 

{
(�i(G(�, z)),�i(R(�, z,m))

∈ [0, 1]×[0, 1] / BCa

i
(�, z,m) = C

}
.

		    Since 

then 

𝜕Ai(�, z,m)∕𝜕𝜙i(G(�, z)) =
𝜙i(R(�, z,m))

[
𝜙i(G(�, z)) + 𝜙i(R(�, z,m))

]2 > 0.

𝜕Ai(�, z,m)∕𝜕𝜙i(R(�, z,m)) =
−𝜙i(G(�, z))

[
𝜙i(G(�, z)) + 𝜙i(R(�, z,m))

]2 < 0.

BCa
i
(�, z,m) =

(
�i(G(�, z))

)2
�i(G(�, z)) + �i(R(�, z,m))

= C

�i(R(�, z,m)) =

(
�i(G(�, z))

)2
C

− �i(G(�, z)).
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		    Then, 

since
		    C = BCa

i
(�, z,m) = 𝜙i(G(�, z)) × Ai(�, z,m) ≤ 𝜙i(G(�, z)) < 2𝜙i(G(�, z)) , that is, 

the BCa
i
-isopoverty curve is increasing.

		    Moreover, 

so, the BCa
i
-isopoverty curve is convex.

� □

Appendix 3: Proof of Remark 1

	 i.	 The Permanyer’s index is not consistent in the sense that it measures the deprivation 
and non-deprivation levels by applying different functions to surplus and poverty gaps.

	 ii.	 The construction of Permanyer’s index requires estimating [k(k − 1) + 1] parameters 
more than our index (where k is the number of attributes).

	 iii.	 Permanyer’s index is not sensitive to the deprivation levels of the individuals because 
it is not a function of �i(G(�, z)).

	 iv.	 In general, the isopoverty curves defined from Permanyer’s index are not convex.

Proof 

	 i.	 See the definition of excess gaps and poverty gaps.
	 ii.	 By definition, Permanyer’s index (Permanyer 2014) requires estimating � and the 

values of �jl for all j, l ∈ {1,… , k} , such that l ≠ j , that is, [k(k − 1) + 1] parameters 
more than our proposal, where k is the number of attributes. In Permanyer’s words, 
his proposal is over-parametrised.

In order to prove (iii) and (iv), we consider the following specification of the general 
Permanyer’s formulation of a multidimensional poverty index ( PP).

with �jl

(
ril((�, z,m)

)
= 1 +

(
�jl − 1

)
r
�

il
((�, z,m)) , where �(x) =

(
x∕k1∕�

)� , �jl = � for all 
j, l, � ∈ (0, 1] and 𝛾 > 0 . Then,

d𝜙i(R(�, z,m))∕d𝜙i(G(�, z)) =
(
2𝜙i(G(�, z)) − C

)
∕C > 0

d2𝜙i(R(�, z,m))∕d
(
𝜙i(G(�, z))

)2
= 2∕C > 0,

PP(�, z,m) =
1

n

n�
i=1

�

⎛
⎜⎜⎜⎝

⎡⎢⎢⎣

k�
j=1

�
gij(�, z)

k�
l=1

�jl

�
ril(�, z,m)

���⎤⎥⎥⎦

1∕�⎞⎟⎟⎟⎠

PP(�, z,m) =
1

n

n�
i=1

⎡⎢⎢⎣

�
1

k

� �
1≤j≤k

gθ
ij
(�, z)

��1∕�

×
�
AP
i
(�, z,m)

�⎤⎥⎥⎦

�

=
1

n

n�
i=1

�
PP
i
(�, z,m)

��
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If 1 − � = � , � ∈ [0, 1) , the Permanyer’s correction function for any agent i can be written as 

AP
i
=
�
1 − �r

�

i1
(�, z,m)

��
1 − �r

�

i2
(�, z,m)

�
⋯

�
1 − �r

�

ik
(�, z,m)

�
=

k∏
l=1

�
1 − �r

�

il
(�, z,m)

�
. 

Thus, the individual poverty levels of any individual i ∈ {1,… , n} according to this index is:

	 iii.	 The previous expression shows that Permanyer’s correction function, AP
i
(�, z,m) is 

not a function depending on �i(G(�, z)) . That is, it is not sensitive to the level of 
deprivation of the individual since �AP

i
(�, z,m)∕��i(G(�, z)) = 0.

	 iv.	 Next counter example shows that the isopoverty curves defined from Permanyer’s 
index, 

{
(�i(G(�, z)),�i(R(�, z,m)) ∈ [0, 1]×[0, 1] / PP

i
(�, z,m) = C

}
, are not convex.

		    Suppose there are two attributes, j = {1, 2} , � = 2 , � = 1 , � = 1∕2 , gi = (gi1, 0) and 
ri = (0, ri2).

		    Then, �i(G(�, z)) = gi1∕
√
2 , AP

i
= 1 − (ri2∕2) and PP

i
=
�
gi1∕

√
2
��
1 − (ri2∕2)

�
.

		    If gi = (0.5, 0) and ri = (0, 0.71) , we have that

		    Now, we want to know the non-deprivation level, r∗
i2

 , which combined with the 
previous deprivation level increased by 0.05, gi1 + 0.05, provides the same poverty 
level, PP

i
= 0.3225∕

√
2.

		    Then, solving the equation

we obtain r∗
i2
= 0.869830152 , so ΦR

i

[
(ri1, r

∗
i2
)
]
= 0.615062799 . Therefore, the pair ��

0.5∕
√
2
�
+ 0.05, 0.615062799

�
 also belongs to the isopoverty curve of level 

0.3225∕
√
2.

		    Analogously, we want to know the non-deprivation level which combined with 
the initial deprivation level increased by another 0.1, gi1 + 0.1 , provides the same 
isopoverty level, PP

i
= 0.3225∕

√
2.

		    Then, solving the equation

we obtain r∗∗
i2

= 0.994420759 , so ΦR
i

[
(ri1, r

∗
i2
)
]
= 0.703161662 . Therefore, the pair ��

0.5∕
√
2
�
+ 0.1, 0.703161662

�
 also belongs to the isopoverty curve of level 

0.3225∕
√
2.

		    Then, we have that when ΦG
i
= 0.5∕

√
2 and it increases by 0.05, it has to be com‑

pensated by an increase of the non-deprived level that amounts to 
ΦR

i

[
(ri1, r

∗
i2
)
]
− ΦR

i

[
(ri1, ri2)

]
= 0.113016985 to maintain the poverty level at 

PP
i
((�, z,m)) = �i(G(�, z)) × AP

i
(�, z,m) = �i(G(�, z))

k∏
l=1

(
1 − �r

�

il
(�, z,m)

)
.

PP
i
=
�
0.5∕

√
2
��
1 − (0.71∕2)

�
= 0.3225∕

√
2.

0.3225∕
√
2 =

��
0.5∕

√
2
�
+ 0.05

��
1 −

�
r∗
i2
∕2

��

0.3225∕
√
2 =

��
0.5∕

√
2
�
+ 0.1

��
1 −

�
r∗∗
i2
∕2

��
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0.3225∕
√
2. However, when ΦG

i
=
�
0.5∕

√
2
�
+ 0.05 and it increases by 0.05, it has 

to be compensated by a smaller increase of the non-deprived level, which amounts to 
ΦR

i

[
(ri1, r

∗∗
i2
)
]
− ΦR

i

[
(ri1, r

∗
i2
)
]
= 0.088098863 , to maintain the poverty level at 

0.3225∕
√
2 , which is completely unnatural in the educational context.

� □

Appendix 4: Proof of Proposition 2

Proposition 2  The BCa index, BCa ∶  ×ℝ
k
+
×ℝ

k
+
→ [0, 1], satisfies SFI, WF, SYM, 

NOM, MON, NDMON, CONT, SI, PP and SUD.

Proof 

•	 (SFI) Let us consider (𝕏, z,m) and (𝕐 , z,m) ∈  ×ℝ
k
+
×ℝ

k
+
 , j ∈ {1,… , k}, 

i ∈ {1,… , n} if xij ≥ zj , yij = xij + δ, where δ > 0, ytj = xtj for all t ≠ i and j ∈ {1,… , k}, 
then

•	 (WF) If for some i, xik≧zk∀k, then gik = 0 ∀k, which implies �i(G(�, z)) = 0, so

BCa

i
(�, z,m) = BCa

i
(� , z,m) = 0. Moreover, since ∀r ≠ i BCa

r
(�, z,m) = BCa

r
(� , z,m),

then BCa(� , z,m) = BCa(�, z,m).

•	 (SYM) For any (𝕏, z,m) ∈  ×ℝ
k
+
×ℝ

k
+
 , if Π is any permutation of the rows, then

Since gij(�, z) = max
{
0,

zj−xij

zj

}
= max

{
0,

zj−x�(i)j

zj

}
= g�(i)j(��, z),

it follows that

 and

then,

BC
a

i
(�, z,m) > 0↔𝜙i(G(�, z)) > 0↔𝜙i(G(� , z)) > 0↔BC

a

i
(� , z,m) > 0.

Π� = (x�(i)j)i=1,2,..,n
j=1,2,…,k

.

�i(G(�, z)) =

[
1

k

( ∑
1≤j≤k

gθ
ij
(�, z)

)] 1

�

=

[
1

k

( ∑
1≤j≤k

gθ
�(i)j

(��, z)

)] 1

�

= ��(i)(G(��, z))

�i(R(�, z,m)) =

[
1

k

( ∑
1≤j≤k

rθ
ij
(�, z,m)

)] 1

�

= ��(i)(R(��, z,m))

BCa
i
(�, z,m) = �i(G(�, z))Ai(�, z,m) = ��(i)(G(��, z))A�(i)(��, z,m) = BCa

�(i)
(��, z,m)

and BCa(�, z,m) =
1

n

n∑
i=1

(
BCa

i
(�, z,m)

)�
=

1

n

n∑
i=1

(
BCa

�(i)
(��, z)

)�

= BCa(��, z)
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•	 (NOM) For all z ∈ ℝ
k
+
,𝕏 ∈ , if xij≧zj∀i ∈ {1, 2,… , n}, and ∀j ∈ {1, 2,… , k}, then 

�i(G(�, z)) = 0, so BCa
i
(�, z,m) = 0 , therefore BCa(�, z,m) = 0.

•	 (MON) Since yij = xij + �,
	   (a) if yij < zj, then gij(� , z) = gij(�, z) −

�

zj
 and rij(� , z, m) = 0, therefore gij(� , z) <

gij(�, z) and 𝜙i(G(� , z)) < 𝜙i(G(�, z)) . Moreover �i(R(� , z,m)) = �i(R(�, z,m)) . By 
applying (ii) of Proposition 1, Ai(� , z,m) < Ai(�, z,m) , so BCa

i
(� , z,m) < BCa

i
(�, z,m), 

then BCa(� , z,m) < BCa(�, z,m).

	   (b) If yij > zj, gij(� , z) = 0, gij(�, z) > 0 and rij(� , z, m) > 0 , then 𝜙i(G(� , z)) <

�i(G(�, z)) and 𝜙i(R(� , z,m)) > 𝜙i(R(�, z,m)) . Analogously by applying (ii) in 
Proposition 1, Ai(� , z,m) < Ai(�, z,m) , so BCa

i
(� , z, m) < BCa

i
(�, z, m), then 

BCa(� , z,m) < BCa(�, z,m).
•	 (NDMON) Since xij > zj , then yij = xij + 𝛿 > xij > zj implies that gij(� , z) = gij(�, z) = 0 ,  

therefore �i(G(� , z)) = �i(G(�, z)) . Moreover,

  then

	   So, by applying Proposition 1, Ai(� , z,m) < Ai(�, z,m) , and

•	 (CONT)BCa(�, z,m) is a composition of continuous functions.
•	 (SI) Since x�

ij
= �jxij, z

�

j
= �jzj,m

�

j
= �jmj , it is obtained that

and

	   Then,
	   �i

(
G
(
�

�, z�
))

= �i(G(�, z)) and�i

(
R
(
�

�, z�,m�
))

= �i(R(�, z,m)), therefore

•	 (PP) For any (𝕏, z,m) ∈  ×ℝ
k
+
×ℝ

k
+
, r ∈ ℕ , finite, if �r is the r-fold of �,

•	 (SUD) For any (𝕏, z,m) ∈  ×ℝ
k
+
×ℝ

k
+
 and any partition of the population into s sub‑

groups, s≥ 2:

rij(� , z,m) =
xij + 𝛿 − zj

mj − zj
>

xij − zj

mj − zj
= rij(�, z,m),

𝜙i(R(� , z,m)) > 𝜙i(R(�, z,m)).

BCa
i
(� , z,m) ≤ BCa

i
(�, z,m) = �i(G(�, z)) × Ai(�, z,m). Therefore BCa(� , z,m) ≤ BCa(�, z,m).

gij
(
�

�, z�
)
= max

{
0,

z
�

j
− x

�

ij

z
�

j

}
= max

{
0,

�jzj − �jxij

�jzj

}
= gij(�, z)

rij
(
�

�, z�,m�
)
= max

{
0,

x
�

ij
− z

�

j

m
�

j
− z

�

j

}
= rij(�, z,m)

BCa(�, z,m) = BCa
(
�

�, z�,m�
)
.

BCa(�r, z,m) =
1

nr

nr∑
i=1

(
BCa

i
(�r, z,m)

)�
=

1

nr

n∑
i=1

r∑
h=1

(
BCa

ih
(�r, z,m)

)�

=
1

nr

n∑
i=1

r
(
BCa

i
(�r, z,m)

)�
= BCa(�, z,m)



499A New Extension of Bourguignon and Chakravarty Index to Measure…

1 3

� □

Appendix 5: Proof of Proposition 3

Proposition 3  The BCa index, BCa ∶  ×ℝ
k
+
×ℝ

k
+
→ [0, 1] , satisfies FD if � = �.

Proof  For any (𝕏, z,m) ∈  ×ℝ
k
+
×ℝ

k
+
 , let xj =

(
xij
)
1≦i≦n

 denote the j-th column of � , 
which represents the achievement vector in attribute j of all the individuals i = 1, .., n . 
Then, the poverty level due to attribute or dimension j, according to our poverty index BCa , 
denoted by BCa

dj
 , is defined for � = � , as:

Then,

� □
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