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Abstract
Sustainable development (SD) governance for a better society has received consider-
able attention. The development of a robust benchmarking and performance evaluation 
approach is a matter of growing concern to accelerate the progress in achieving SD. In 
this study, a minimum distance-based additive data envelopment analysis model with win-
dow analysis is proposed to attain the closest benchmarking target in the presence of unde-
sirable outputs. This novel extension not only focuses on the construction of a composite 
indicator to shed light on the efficiency of each decision-making unit but also provides 
convincing and realizable suggestions for improving efficiency. This study benchmarks the 
SD efficiency across 19 administrative regions of Taiwan covering the period from 2011 
to 2016. The empirical results reveal that the average SD efficiency of Taiwan has expe-
rienced a gradual deterioration over the last 3 years, and the primary sources of regional 
SD inefficiency may vary with industrial structure. Potential directions of improvement for 
reinforcing sustainable practices in Taiwan are also discussed. The findings can provide 
local governments with holistic insights into the sources that degrade SD performance and 
further contribute to improving SD solutions by recommending appropriate policies to 
achieve a more sustainable society.

Keywords  Performance evaluation · Data envelopment analysis (DEA) · Closest 
benchmarking target · Undesirable outputs · Sustainable development · Sustainable society

1  Introduction

With the continuing threats of global climate change, resource exhaustion and ecologi-
cal disruption, sustainable development (SD) has received unprecedented attention from 
the international community. The concept of SD emerged in 1987 with the publication of 
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the World Commission on Environment and Development (WCED), Our Common Future 
(commonly referred to as the Brundtland Report) (WCED 1987), which became a primary 
driver for the United Nations Conference on Environment and Development (UNCED) 
(also known as the Rio Earth Summit) in 1992 and the United Nations Conference on Sus-
tainable Development (UNCSD) (commonly called Rio + 20 Earth Summit) in 2012. To 
date, SD has been recognized as an overarching principle for long-term global develop-
ment, and many countries have also placed their focuses on planning concrete policies to 
embody the core of SD and thereby create a better society (Rondinelli and Berry 2000).

SD consists of three essential dimensions, namely, economic, environmental and social, 
which are the so-called “three pillars of sustainability” or the “triple bottom line” (Elking-
ton 1998; Holling 2001). As an instrument that harmonises economic and environmental 
dimensions, eco-efficiency has been launched with the aim of creating more value with less 
environmental (ecological) impact via the implementation of SD (WBCSD 2005). Spe-
cifically, eco-efficiency can be formulised as a ratio of economic output to environmental 
impact in which the indicators gross domestic product (GDP), value of products/services, 
sales and value added are general proxies for economic output while the indicators energy, 
material and water consumption; greenhouse gas (GHG) emissions; and waste pollution 
are general proxies for environmental impact (Schaltegger and Sturm 1990; Michelsen 
et al. 2006; Wursthorn et al. 2011; Wang et al. 2015). Although eco-efficiency might guide 
a practical solution for SD, eco-efficiency analyses do not guarantee sustainability because 
they cover only economic and environmental dimensions (Bruni et al. 2011; Charmondusit 
et  al. 2014). A broadened eco-efficiency analysis that incorporates the social dimension 
was recently recommended to thoroughly achieve SD core concepts via benchmarking 
(Tatari et al. 2016; Caiado et al. 2017; Nissi and Sarra 2018).

Developing a robust SD measure composed of multiple indicators related to all three 
dimensions is of vital importance for achieving improvements towards sustainability (Jol-
lands et  al. 2004; Strezov et  al. 2017). In order to address this issue, data envelopment 
analysis (DEA), introduced by Charnes et al. (1978) based on the earlier work of Farrell 
(1957), has received wide recognition. DEA is a widely used non-parametric approach to 
assessing the relative efficiencies of a set of homogenous decision-making units (DMUs) 
that consume multiple inputs to produce multiple outputs. The important feature of DEA 
is that it not only objectively provides a composite indicator to ascertain the efficiency of 
each DMU but also offers benchmarking information to elucidate strategies for improving 
the efficiency of inefficient DMUs. Research in the SD fields has witnessed a great accept-
ance of the DEA (Zhou et al. 2018). For example, Bruni et al. (2011) employed DEA to 
benchmark the SD performance of 20 Italian regions in which several indicators involv-
ing energy consumption, GDP, carbon dioxide (CO2) emissions and the poverty rate were 
considered. Lee and Farzipoor Saen (2012) advanced the measurement of corporate sus-
tainability management performance in the Korean electronics industry using DEA. Yin 
et al. (2014) focused on the topic of urban sustainability and applied DEA to investigate 
the SD performance of 30 provincial capital cities in China. As for the electricity industry, 
Tajbakhsh and Hassini (2018) developed a comprehensive measure for sustainability per-
formance of fossil-fuel power plants in the U.S.

Generally, DEA has two fundamental types of models, namely, radial and non-radial. 
Classic DEA models, such as CCR (Charnes–Cooper–Rhodes) (Charnes et  al. 1978) and 
BCC (Barker–Charnes–Cooper) (Banker et al. 1984), are referred to as radial models and 
mainly deal with changes in either inputs or outputs in a proportional way, whereas the addi-
tive DEA (Charnes et al. 1985), the enhanced Russell measure (Pastor et al. 1999) and the 
slacks-based measure (Tone 2001) are well-known non-radial models that allow changes in 
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both inputs and outputs in different proportions. Moreover, some extensions of DEA, which 
allow for both input contraction and output expansion in the direction of a given input–out-
put vector, have been developed in accordance with the directional distance function (DDF) 
presented by Chambers et al. (1996). From this perspective, existing DEA variants can be 
clearly partitioned in the direct approach (using DDF) and the indirect approach (not using 
DDF) (Zanella et  al. 2015). Here, I build on the additive DEA which is considered an 
indirect approach, and devote into its possible reinforcement to regional SD applications. 
The additive DEA model has a greater discriminatory power and excels in identifying the 
sources of inefficiency and yielding efficiency scores that are coherent with the Pareto–Koo-
pmans optimality notion, which may be appropriate for the current study (Zhou et al. 2007; 
Du et al. 2010). However, the additive DEA model may generate an unconvincing projection 
(or benchmarking target) that is far away from the DMU under evaluation. This imperfection 
stems from the fact that the model attempts to maximize the potential contraction of inputs 
and expansion of outputs. Additionally, the other notable defect of the additive DEA model 
lies in the fact that it does not consider undesirable outputs.

To address the aforementioned gap of additive DEA and focus on the holistic assess-
ment of regional SD, this study has two main objectives. First, this study proposes a mini-
mum distance-based additive DEA model with window analysis that accommodates the 
undesirable outputs and provides the closest benchmarking target for each considered 
DMU. The second objective is to evaluate the longitudinal SD efficiency across 19 admin-
istrative regions of Taiwan over a period from 2011 to 2016, aiming to provide local gov-
ernments with directions of improvement towards a more sustainable society. Taiwan is 
a mountainous island in East Asia and holds a population of approximately 23 million 
spread across a total land area of nearly 36,000 km2; it is one of the most densely popu-
lated places in the world and has very limited natural resources. Since the 1960s, Taiwan 
has experienced rapid economic growth along with substantial progress in industrialisa-
tion. This trend has consequently resulted in high energy consumption and impacts to the 
diversified ecology, natural environment and quality of human life. The Executive Yuan, 
which is the executive branch of the central government of Taiwan, organised the National 
Council for Sustainable Development (NCSD) in 1997 to combat these obstacles to SD 
and spearhead national SD by formulating regulations for the Sustainable Development 
Action Plan (NCSD 2009). Currently, a primary task of the NCSD in Taiwan is to achieve 
international SD standards, especially the 17 Sustainable Development Goals (SDGs) 
of the 2030 Agenda announced by the United Nations (UN 2015). However, the success 
of SD promotion is highly dependent on the conjunction of SD implementation in cities 
and counties since these subnational scales act as key pioneers in localizing sustainability 
(Gibbs 1998; Herrera-Ulloa et al. 2003; Lebel et al. 2006). Thus, developing a method of 
properly assessing regional SD performance to promote sustainability among cities and 
counties has become one of the most crucial topics in Taiwan. The benchmarking results 
obtained in the present research framework not only enable local governments in cities 
and counties to clearly understand the current state of SD promotion from an efficiency 
perspective but also offer potential directions to guide the development of appropriate pol-
icies for improvements that contribute to localize and realize the goal of SD.

The rest of this paper is arranged as follows. The next section reviews the radial and 
additive DEA models. Section 3 introduces the proposed additive model and explains how 
it can be adopted herein to carry out longitudinal SD evaluation for the subsequent study. 
The research sample and data collection are presented in Sect. 4. Section 5 elaborates the 
empirical results and discussions with respect to regional SD efficiency in Taiwan. Finally, 
concluding remarks are drawn in the last section.
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2 � Data Envelopment Analysis

The primary feature of DEA is the proverbial capability to compose an objective indica-
tor for each DMU having multiple inputs and multiple outputs. This indicator, termed as 
efficiency, represents the DMU’s distance to an efficient frontier and can be assessed 
at industrial (Belu 2009; Sun and Stuebs 2013; Mahdiloo et al. 2015; Wang et al. 2016), 
regional (Liu et al. 2010; González et al. 2011; Yin et al. 2014; Carboni and Russu 2015), 
and national levels (Zhou et al. 2010; Wu et al. 2014a, b; Rashidi and Farzipoor Saen 2015; 
Gómez-Calvet et al. 2016). The efficient frontier acts as the boundary of the Production Pos-
sibility Set (PPS) spanned by all observed DMUs. This section briefly reviews radial and 
additive DEA models and explains how they perform the task of performance evaluation.

2.1 � Radial DEA Model

Suppose that there are n homogenous DMUs, each of which consumes m inputs to produce 
s outputs. For the jth DMU, j = 1,…,n, let xij and yrj denote the ith input, i = 1,…,m, and rth 
output, r = 1,…,s, respectively. The radial CCR model, which was originally proposed by 
Charnes et al. (1978), for evaluating the input-oriented efficiency of DMUo under constant 
returns to scale (CRS) is given as follows.

where λj is a non-negative variable representing the intensity of the jth DMU in forming 
the efficient frontier and θo represents a proportional scale for the inputs contraction of a 
DMUo. Denote the optimality of model (1) by superscript “*”, and the efficiency of DMUo 
can be defined as �∗

o
 which ranges from 0 to 1. Obviously, if �∗

o
 = 1, then DMUo is efficient 

and lies on the efficient frontier; otherwise, it is inefficient and is at a distance from the effi-
cient frontier. Model (1) can be extended to meet with variable returns to scale (VRS) 
assumption (known as the BCC model) by imposing the constraint 

n∑
j=1

�j = 1(Banker et al. 

1984).
One should note that a DMUo(xio, yro) with �∗

o
= 1 may be weakly efficient, i.e., there exists 

(−x�
i
, y�

r
) ∈ PPS ≥ (−xio, yro) and (x

�
i
, y�

r
) ≠ (xio, yro) . Moreover, for inefficient DMUs, the sug-

gested improvements to reach the efficient frontier, i.e., contraction on all inputs, rely on a uni-
fied scale 1 − �∗

o
 . In addition to input-oriented model (1), there is also output-oriented model 

that mainly deals with the expansion of outputs [for more details please refer to Charnes et al. 
(1978)]. The efficiency with such radial measures, however, can be assessed only from either 
input-oriented or output-oriented sides.

(1)

min �o

s.t.

n∑

j=1

�jxij ≤ xio�o i = 1,… ,m

n∑

j=1

�jyrj ≥ yro r = 1,… , s

�j ≥ 0 j = 1,… , n



1327Benchmarking and Performance Evaluation Towards the Sustainable…

1 3

2.2 � Additive DEA model

These problems can be solved by taking non-radial slacks into account. Charnes et al. (1985) 
developed the following additive DEA model to simultaneously tackle both input and output 
slacks, such that the inputs and outputs of a DMUo can be contracted and expanded in differ-
ent proportions.

where s−
io

 and s+
ro

 are the non-radial slacks for DMUo’s ith input and rth output, which repre-
sent the excess amounts of the ith input and the shortage amounts of the rth output com-
pared with the efficient frontier, respectively. If in optimal solution of model (2) for DMUo 
one has that s−∗

io
= 0 and s+∗

ro
= 0 for all i and r, then DMUo is efficient; otherwise, it is inef-

ficient and has the room on s−∗

io
≠ 0 and/or s−∗

ro
≠ 0 should be adjusted. The benchmarking 

target ( ̄xio, ȳro ) of DMUo on the efficient frontier can be determined by ( xio + s−∗
io
, yro + s+∗

ro
 ) 

or 
�∑n

j=1
�∗
j
xij,

∑n

j=1
�∗
j
yrj

�
. The reference set is given as 

Bo =
{
DMUj|𝜆∗j > 0, j = 1, 2,… , n

}
 , indicating which DMUj serves as a benchmark 

for inefficient DMUs.
The optimal objective value of model (2) is a sum of input and output slacks rather than an explicit 

efficiency measure. For DMUo, the additive efficiency �∗
o
 can be defined as follows (Tone 2001).

Notably, the �∗
o
 ranges between 0 and 1 and is unit-invariant. Moreover, �∗

o
 is monotonically 

decreasing with respect to s−∗

io
= 0 and s−∗

ro
= 0 ; that is, a larger value of �∗

o
 indicates a better 

performance. An efficient DMUo with �∗
o
= 1 is strongly Pareto-efficient, which is achieved if 

and only if s−∗

io
= 0 and s−∗

ro
= 0.

(2)

max

m∑

i=1

s−
io
+

s∑

r=1

s+
ro

s.t.

n∑

j=1

�jxij = xio − s−
io

i = 1,… ,m

n∑

j=1

�jyrj = yro + s+
ro

r = 1,… , s

�j ≥ 0, s−
io
≥ 0, s+

ro
≥ 0 j = 1,… , n

(3)�∗
o
=

1 −
1

m

∑m

i=1
s−∗
io
∕xio

1 +
1

r

∑s

r=1
s+∗
ro
∕yro



1328	 S.-H. Yu 

1 3

3 � A minimum distance‑based additive model with undesirable 
outputs

The general efficiency criterion of production processes associated with the aforementioned mod-
els is a matter of how DMUs consume as less amounts of each input as possible to produce as more 
amounts of each output as possible. However, in many real-world situations, undesirable outputs 
would inescapably appear as by-products accompanied with desirable outputs (Scheel 2001; Sei-
ford and Zhu 2002; Zhou et al. 2007). Therefore, measuring efficiency in the presence of undesir-
able outputs has attracted considerable attention in the literature, especially in the fields of energy, 
ecology and environment (Tyteca 1996; Chung et al. 1997; Lozano and Gutierrez 2008). In this 
section, the additive model (2) was first extended to incorporate undesirable outputs, and then a 
novel minimum distance-based additive model under the window analysis procedure was proposed 
to find the closest benchmarking targets and perform a longitudinal efficiency assessment.

3.1 � Incorporating undesirable outputs into additive DEA

Different models have been proposed to handle the undesirable outputs under the strongly dis-
posable assumption. One method applies a non-linear monotonic decreasing transformation 
that takes the multiplicative inverse of the undesirable outputs, i.e., f(U) = 1/U (Golany and 
Roll 1989; Lovell et al. 1995). Another is built on linear monotonic decreasing transformation, 
which adds absolute constants to the opposite of undesirable outputs, i.e., f(U) = − U + B (Ali 
and Seiford 1990; Scheel 2001; Seiford and Zhu 2002). The other one, suggested by Reinhard 
et al. (1999), is to treat undesirable outputs as inputs, and it has received considerable accept-
ance in recent studies (e.g., Hailu and Veeman 2001; Yang and Pollitt 2009; Mahlberg and 
Sahoo 2011; Sahoo et al. 2011; Wu et al. 2014a, b). It should be noted that these methods 
are regarded as indirect approaches (Zanella et  al. 2015). As for direct approaches, Chung 
et al. (1997) employed DDF to simultaneously deal with the joint production of desirable and 
undesirable outputs. Despite the increased popularity for the adoption of Chung et al.’s (1997) 
method, it remains difficult to explicitly assign the justified direction vector (Wang et al. 2017).

This study adopts the method of considering undesirable output as inputs since it is readily 
understood and does not require actual data transformation. Assume that each DMUj, 
j = 1,2,…,n, consumes m inputs xij, i = 1,…,m, to produce q1 desirable outputs yg

r1j
 , r1 = 1,…,q1, 

along with q2 undesirable outputs yb
r2j

 , r2 = 1,…,q2. The additive model that can deal with 
undesirable outputs is given as follows.

(4)

max

m∑

i=1

s−
io
+

q1∑

r1=1

s+g
r1o

+

q2∑

r2=1

s+b
r2o

s.t.

n∑

j=1

�jxij = xio − s−
io

i = 1,… ,m

n∑

j=1

�jy
g

r1j
= yg

r1o
+ s+g

r1o
r1 = 1,… , q1

n∑

j=1

�jy
b
r2j

= yb
r2o

− s+b
r2o

r2 = 1,… , q2

�j ≥ 0, s−
io
≥ 0, s+g

r1o
≥ 0, s+b

r2o
≥ 0 j = 1,… , n
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where s−
io

 s+gr1o and s+b
r2o

 represent the excess for ith input, shortage for r1th desirable output 
and overproduction for r2th undesirable output of the DMUo, respectively. By adding the 
convexity constraint ∑ nj=1λj = 1, the additive model under the VRS assumption is achieved. 
As in model (4), the undesirable outputs hold the same property as the inputs, i.e., the less 
the better, and both sio

− and s+b
r2o

 represent how much of the adjusted amount should be 
decreased to improve DMUo’s performance status. Thus, for DMUo, the benchmarking tar-
get 

(
x̄io, ȳ

g
r1o
, ȳb

r2o

)
 can be defined as ( xio − s−∗

io
, y

g
r1o

+ s
+g∗
r1o

, yb
r2o

− s+b∗
r2o

).

3.2 � Closest benchmarking target and minimum distance‑based measure

As model (4) maximizes the sum of sio
− , s+gr1o and s+b

r2o
 , the obtained benchmarking target (

x̄io, ȳ
g
r1o
, ȳb

r2o

)
 is the farthest one and may not be sufficiently convincing to serve as a refer-

ence for inefficient DMUs. To process a more practical assessment by finding the closest 
benchmarking target, the maximization may be replaced by a minimization for the objective 
function; however, the resultant model is unbounded if one does so.

Previous work conducted by Aparicio et al. (2007) found that the closest benchmarking 
target on the efficient frontier for DMUo can be sought by embedding the linear combination 
of extremely efficient DMUs from the envelopment form and the weights regarding inputs and 
outputs from the multiplier form into constraints. Geometrically, extremely efficient DMUs 
are vertices of the facets of the efficient frontier, and each is not a linear combination of the 
other DMUs (Sueyoshi and Sekitani 2007). As reported in Aparicio et al. (2007), the idea of 
similarity between evaluated DMUo and benchmarking target can be achieved by different cri-
teria, including distance and efficiency measure, thereby conceiving several possible variants. 
For example, to generate closest targets, the L1-distance, L2-distance and L∞-distance can be 
adopted. Otherwise, if the efficiency measure criterion is used, models with the maximization 
of efficiency measure at the objective function such as the range adjusted measure (Cooper 
et al. 1999), the enhanced Russell measure (Pastor et al. 1999), and the slacks-based measure 
(Tone 2001) can be also formulated.

Let E =
{
DMUk ∈ J|s−∗

io
, s

+g∗
r1o

, s+b∗
r2o

= 0, �∗
k
= 1, �∗

j
= 0,∀j ≠ k

}
 denote the set of 

extremely efficient DMUs as a subset of a whole DMU set J ∊ {1, …, n} using the optimal 
solution for the model (4) (Charnes et al. 1986, 1991). Based on the mDD model of Aparicio 
et al. (2007), this study proposes the minimum distance-based additive DEA model as a form 
of 0–1 mixed integer linear programming (MILP) to find the closest benchmarking targets in 
the presence of undesirable outputs, expressed as follows:
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where sio
−, s+gr1o and s+b

r2o
 are the non-radial slacks; vi, ur1 and zr2 are the multipliers, corre-

sponding to the ith input, the r1th desirable output and the r2th undesirable output, respec-
tively; M is a large enough positive number; and bj is the binary integer variable. As shown 
in model (5), the objective function inherits the concept of model (4) but attempts to mini-
mize rather than maximize the sum of non-radial slacks with the L1 norm. To ensure unit 
invariance, one possibility is to assign 1/xio, 1∕y

g
r1o
, 1∕yb

r2o
 as the weights for the corre-

sponding slacks in the objective function, i.e., 
∑m

i=1
s−
io
∕xio +

∑q2
r1=1

s
+g
r1o
∕y

g
r1o

+
∑q2

r2=1
s+b
r2o
∕yb

r2o
 

(Lovell and Pastor 1995; Pastor et al. 1999; Tone 2001). On the constraint side, b∗
j
= 0 is 

embedded as a switch to determine whether DMUj acts as a benchmark for DMUo. If 
b∗
j
= 0 , then d∗

j
= 0 and lambda∗

j
> 0 , which implies that DMUj belongs to hyperplane 

−
∑m

i=1
vixij +

∑q1
r1=1

ur1y
g

r1j
−
∑q2

r2=1
zr2y

b
r2o

= 0 and is the benchmark for DMUo; conversely, 
if b∗

j
= 1 , then �∗

j
= 0 and d∗

j
≥ 0 , which implies that DMUj does not act as a benchmark 

for DMUo. Moreover, by adding the constraint 
∑n

j=1
�j = 1 and converting the fourth con-

straint into −
∑m

i=1
vixij +

∑q1
r1=1

ur1y
g

r1j
−
∑q2

r2=1
zr2y

b
r2o

− � + dj = 0 , model (5) can be 
adapted to the case of VRS.

According to the optimal solution 
(
s−∗
io
, s

+g∗
r1o

, s+b∗
r2o

)
 to model (5), the minimum distance-

based efficiency �∗
o
 for DMUo can be formulated as follows (Cooper et al. 2007):

Here �∗
o
 is considered as a composite measure ranging from 0 to 1 that indicates how each 

administrative region of the sampled data performs in terms of SD efficiency. An adminis-
trative region is SD efficient if and only if it holds �∗

o
= 1 , equivalently 

(
s−∗
io
, s

+g∗
r1o

, s+b∗
r2o

)
= 0. 

(5)

min

m∑

i=1

s−
io
+

q1∑

r1=1

s+g
r1o

+

q2∑

r2=1

s+b
r2o

s.t.
∑

j∈E

�jxij = xio − s−
io

i = 1,… ,m

∑

j∈E

�jy
g

r1j
= yg

r1o
+ s+g

r1o
r1 = 1,… , q1

∑

j∈E

�jy
b
r2j

= yb
r2o

− s+b
r2o

r2 = 1,… , q2

−

m∑

i=1

vixij +

q1∑

r1=1

ur1y
g

r1j
−

q2∑

r2=1

zr2y
b
r2o

+ dj = 0

vi ≥ 1, ur1 ≥ 1, zr2 ≥ 1 j ∈ E

dj ≤ Mbj

�j ≤ M
(
1 − bj

)

bj ∈ {0, 1}

�j ≥ 0, dj ≥ 0, s−
io
≥ 0, s+g

r1o
≥ 0, s+b

r2o
≥ 0

(6)�∗
o
=

1 −
1

m

∑m

i=1
s−∗
io
∕xio

1 +
1

q1+q2

�∑q1
r1=1

s
+g∗
r1o

∕y
g
r1o

+
∑q2

r2=1
s+b∗
r2o

∕yb
r2o

�
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By contrast, an administrative region performs inefficiently when δo
* < 1 and (

s−∗
io
, s

+g∗
r1o

, s+b∗
r2o

)
≠ 0.

In what follows, a simple example covering five DMUs, i.e., A, B, C, D and E, is applied 
to visualize the favorable specialty of the model (5). Each DMU uses one input x to produce 
two outputs, desirable yg and undesirable yb, where the amount of input x is unitized to 1 for 
simplicity. Figure 1 depicts the PPS spanned by these DMUs and shows the relevant results 
of models (4) and (5). It can be seen that DMUs A, B, C lie on the frontier; thus, they are 
efficient with optimal slacks s+g∗r1o

, s+b∗
r2o

= 0 , whereas the remaining two DMUs D and E are 
enveloped by the frontier, indicating that they are inefficient and have non-zero optimal 
slacks on s+b∗

r2o
 or s+g∗r1o

 and should be further improved. If model (4) is used, for DMU D, the 
optimal slacks are s+b∗

r2o
= 4 and s+g∗r1o

= 2 ; for DMU E, the optimal slacks are s+b∗
r2o

= 0 and 
s
+g∗
r1o

= 5 ; DMU B (4,7) is determined as the benchmarking target. However, DMU B (4,7) is 
actually placed far from where the inefficient DMUs lie. Moreover, the proposed model (5) 
is competent to provide inefficient DMUs with more realistic benchmarking targets that are 
closer than those yielded by model (4). By using model (5), DMU D obtains optimal slacks 
s+b∗
r2o

= 0 and s+g∗r1o
= 3.6 , and DMU E obtains optimal slacks s+b∗

r2o
= 3 and s+g∗r1o

= 1 . The 
identified benchmarking targets of DMUs D and E are (8, 8.6) and (1, 3), respectively.

It should be noted that, in a similar fashion as explained above, incorporating undesira-
ble outputs into other variants with different criteria is also feasible for generating the clos-
est benchmarking targets. Based on the slacks-based measure, Wang et al. (2013a, b) put 
forward a linear bilevel programming problem (called mSBM) that takes the undesirable 
outputs into account. Moreover, An et al. (2015) incorporated the undesirable outputs into 
the conventional enhanced Russell measure, and then proposed its extension to obtain the 
minimum distance of a DMUo to the efficient frontier. A similar study built on the additive 
measure has been made by Xiong et al. (2017), who determined the closest benchmarking 
targets in the presence of undesirable outputs by developing a closest target model that uses 
the weighted operator 1/(m + q2) for input and undesirable output slacks and the weighted 
operator 1/q1 for desirable output slacks in the objective function. This model can be 
regarded as an extension under the framework of the additive measure, but its initial form 

Fig. 1   The differences on benchmarking targets between models (4) and (5)
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is not consistent with the standard additive model of Charnes et al. (1985) and it would not 
inherit the optimality of the mDD model of Aparicio et al. (2007) if only inputs and desir-
able outputs are considered. Regarding computation, such a way of embedding weighted 
operators in the objective function may also affect the optimality of slack variables.

Although the above models provide slightly different results, they are all conducive to 
globally lessening the differences between the values of the input, the desirable output and 
the undesirable output of the DMUo and those of the benchmarking target. Despite the 
merit in generating the closest benchmarking targets, it should be noted that the aforemen-
tioned models perform the efficiency analysis in static situations only and can be further 
extended to accommodate time-varying data.

3.3 � Window analysis for time‑varying data

As efficiency varies with time, a general static analysis may be insufficient for time-depend-
ent situations. The window analysis put forward by Charnes et al. (1984) is one of the most 
prevalent approaches for addressing cross sectional and longitudinal data (Wang et al. 2013a, 
b). It is not only useful for exploring the changes in efficiency of each DMU over time, but 
also helpful in enhancing the discriminatory power when cases with small sample sizes and 
a large number of variables occur (Ross and Droge 2002; Asmild et al. 2004; Sueyoshi et al. 
2013).

This study combines the proposed model (5) with the window analysis procedure. Built 
on the notion of the moving average, window analysis treats each DMU in different periods 
as an independent unit, and divides time periods into a sequence of overlapping windows. 
Let us consider n DMUs over T periods, t = 1,…,T, with widow width w (1 ≤ w ≤ T). A 
total of T − w + 1 windows exist, and each window has n × w DMUs under evaluation of the 
model (5). The first window covers DMUs from periods 1,…,w, the second window covers 
DMUs from periods 2,…,w + 1, and so on. In this manner, each DMU in a period of a win-
dow can compare its own performance in other periods as well as the performance of other 
DMUs in the same and other periods.

4 � Research sample and data collection

A total of 19 administrative regions in Taiwan, including 9 cities and 10 counties, over the 
period from 2011 to 2016 were sampled in this study. According to the Comprehensive 
Development Planning reported by the Council for Economic Planning and Development 
(CEPD), Executive Yuan, Taiwan, these cities and counties can be classified into four areas, 
namely, the northern, central, southern, and eastern areas. Figure 2 illustrates detailed infor-
mation on the spatial distribution of these areas. The northern area consists of five cities, 
i.e., New Taipei, Taipei, Taoyuan, Hsinchu, and Keelung, and two counties, i.e., Yilan and 
Hsinchu. Taichung City and four counties, including Miaoli, Changhua, Yunlin, and Nantou, 
constitute the central area. The southern area is composed of Chiayi, Tainan and Kaohsiung 
cities as well as Chiayi and Pingtung counties. Hualien and Taitung counties group the east-
ern area.

The economic development and rapid industrialization of Taiwan heavily depends on 
the consumption of natural resources. However, Taiwan contains scarce indigenous natural 
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resources. More than 98% of its energy resources, which are mostly in the form of fossil 
fuels including petroleum, coal, and natural gas, have long relied on foreign imports to sup-
ply the vast majority of energy needs. In addition, the shortage of water resources is another 
problem. Although Taiwan receives an average of approximately 2500 mm in annual rain-
fall, which is 2.5 times more than the world average, the average disposable water resource 
per capita from rainfall is approximately 4000 m3, which is less than one-fifth the world 
average. This scenario occurs because of the uneven spatiotemporal rainfall distribution and 
the dearth of storage capacity in short and steep river terrains. Therefore, in pursuit of eco-
nomic development, Taiwan must effectively mitigate resource consumption and emphasise 
environmental protection and social welfare (CEPD 2004; NCSD 2009).

Each administrative region in Taiwan plays a crucial role in realizing sustainability at 
the regional scale. To explicitly assess SD efficiency across these administrative regions, 
three inputs, two desirable outputs and four undesirable outputs were adequately considered 

Fig. 2   Study area
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in accordance with previous literature on SD issues. Figure  3 provides a clear view of the 
research framework and the input–output data selected in the present analysis. On the side of 
inputs, the annual amount of water consumption x1 in million m3, the power consumption x2 
in Gigawatt hours (GWh) and the gasoline consumption x3 in kiloliters (kL) are considered 
to directly reflect energy resources investment (Bruni et al. 2011; Yin et al. 2014; Yang et al. 
2016). Regarding outputs, desirable outputs include per capita income yg

1 in thousands of NTD 
and the number of employed labor yg

2 per thousand persons, which represent the prosperity of 
regions under the economic dimension (Murias et al. 2006; Yin et al. 2014; Chen et al. 2017), 
whereas undesirable outputs are measured by the number of labor disputes yb

1, the number of 
disabling injuries yb

2, the amount of Municipal Solid Waste (MSW) generation yb
3 in tonnes and 

the amount of sulfur dioxide (SO2) emissions yb
4 in parts per billion (ppb); among which the 

former two, yb
1 and yb

2, reflect the burden on society (Shen et al. 2003; Miles and Munilla 2004; 
Iribarren et al. 2016), and the latter two, yb

3 and yb
4, represent the degrees of environmental pol-

lution in the waste and in the air, respectively (Hu 2006; Yin et al. 2014; Yu et al. 2017). The 
proposed model (5) is conducted with window analysis to perform a longitudinal efficiency 
evaluation for 19 administrative regions, n = 19, with time period of 6 years, T = 6. Given the 
consideration of the best balance of informativeness and stability of the efficiencies, a 3-year 
window width, w = 3, is assumed (Charnes et al. 1994; Wang et al. 2013a, b). Thus, in the 
present analysis, there are four (T − w + 1 = 4) overlapping windows proceeded for each admin-
istrative region, where each window covers a number of 76 (n × w = 76) observations.

The data for water consumption x1, power consumption x2 and gasoline consumption x3 
were gathered from annual statistics documented by the Water Resources Agency, Taip-
ower Company and Bureau of Energy; the per capita income yg

1 was collected from the 
Report on The Survey of Family Income and Expenditure of the Directorate-General of 
Budget, Accounting and Statistics (DGBAS); the employed labor yg

2, labor disputes yb
1 and 

disabling injuries yb
2 were extracted from the Yearly Bulletin of Ministry of Labour; and 

Fig. 3   Input-output data and research framework
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the MSW generation yb
3 and the SO2 emissions yb

4 were compiled from the Environment 
Resource Database of the Environmental Protection Administration. The descriptive statis-
tics of the input–output data over 2011–2016 are summarized in Table 1.

5 � Empirical Results and Discussions for Regional SD in Taiwan

The collected input–output dataset was analysed under the presented research framework, 
and the resulting SD efficiency for 19 administrative regions of Taiwan from 2011 to 2016 
are reported in Table 2, where the annual SD efficiency is the average of the four over-
lapping 3-year windows using the window analysis procedure: 2011–2013, 2012–2014, 
2013–2015, and 2014–2016. The results show that during all time periods, four admin-
istrative regions, New Taipei City, Yunlin County, Taitung County, and Chiayi City, were 
consistently efficient and received a SD efficiency of δo

* = 1. These four regions could serve 
as benchmarks for other regions with an SD efficiency of δo

* < 1 because they perform effi-
ciently in consuming input resources of water x1, power x2, and gasoline x3 to produce eco-
nomical outputs of per capita income yg

1 and employed labor yg
2 while restraining the social 

burden of labor disputes yb
1 and disabling injuries yb

2 as well as the environmental pollution 
of MSW generation yb

3 and SO2 emissions yb
4. For most of the periods, Taipei City, Nantou 

County, Chiayi County, and Keelung City were deemed as SD efficient, and they all gained 
an average SD efficiency over 0.990. It can be also observed that three administrative 
regions, Taoyuan City, Tainan City, and Hualien County, presented significant improve-
ments in SD efficiency from 2011 to 2013, whereas their SD efficiency dropped after 2014. 

Table 2   Annual score of SD efficiency for 19 administrative regions

Administrative region 2011 2012 2013 2014 2015 2016 Average

New Taipei City 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
Taipei City 0.9500 1.0000 1.0000 1.0000 1.0000 1.0000 0.9917
Taoyuan City 0.6379 0.7423 0.7650 0.7847 0.6812 0.7136 0.7208
Taichung City 0.5922 0.4956 0.5692 0.5533 0.4693 0.4380 0.5196
Tainan City 0.7140 0.8332 0.8605 1.0000 0.7757 0.7169 0.8167
Kaohsiung City 0.7085 0.8196 0.7741 0.7914 0.7593 0.6791 0.7553
Yilan County 0.9598 1.0000 0.9515 0.9056 0.9066 0.8550 0.9298
Hsinchu County 1.0000 0.8630 0.8306 0.8096 0.7827 0.6814 0.8279
Miaoli County 1.0000 1.0000 1.0000 0.9331 0.8833 0.9037 0.9533
Changhua County 0.9442 1.0000 0.9844 1.0000 0.9536 0.9552 0.9729
Nantou County 1.0000 1.0000 0.9939 1.0000 1.0000 1.0000 0.9990
Yunlin County 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
Chiayi County 1.0000 1.0000 0.9459 1.0000 1.0000 1.0000 0.9910
Pingtung County 0.9093 0.9564 0.9827 0.9621 1.0000 1.0000 0.9684
Taitung County 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
Hualien County 0.9069 1.0000 1.0000 0.8897 0.7838 0.7898 0.8950
Keelung City 1.0000 1.0000 1.0000 0.9700 1.0000 1.0000 0.9950
Hsinchu City 0.8869 0.9094 1.0000 1.0000 1.0000 1.0000 0.9660
Chiayi City 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
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Kaohsiung City and Changhua County show a fluctuating SD efficiency over the research 
periods.

The average annual SD efficiencies of 19 administrative regions within four areas are 
depicted in Fig.  4 which provides an overview of the spatial distribution of Taiwanese 
SD efficiency. As is shown, among the northern area regions, Taoyuan City and Hsinchu 
County fall in the bottom two places with an average SD efficiency lower than 0.850. In 
the central area, four out of five regions perform efficiently and present average SD effi-
ciencies above 0.950, whereas Taichung City is the least efficient with an average SD effi-
ciency that is far lower than the others. In the southern area, Chiayi City takes first place 
with the top SD efficiency of 1.000, and it is followed by Chiayi County with average SD 
efficiency of 0.991. Kaohsiung City comes last in this area and obtains an average SD effi-
ciency of only 0.755. Moreover, in the eastern area, Hualien County is not efficient enough 
and its average SD efficiency is less than 0.900. Notably, the efficient state for the regions 
implies that the well balanced development among the three pillars of sustainability was 
achieved, while the inefficient state indicates that some improvements must be made by 

Fig. 4   Spatial distribution of the SD efficiency for 19 administrative regions



1339Benchmarking and Performance Evaluation Towards the Sustainable…

1 3

Ta
bl

e 
3  

A
ve

ra
ge

 o
pt

im
al

 sl
ac

ks
 o

f i
np

ut
s a

nd
 o

ut
pu

ts
 fo

r 1
9 

ad
m

in
ist

ra
tiv

e 
re

gi
on

s

A
dm

in
ist

ra
tiv

e 
re

gi
on

In
pu

ts
D

es
ira

bl
e 

ou
tp

ut
s

U
nd

es
ira

bl
e 

ou
tp

ut
s

W
at

er
 c

on
-

su
m

pt
io

n
Po

w
er

 c
on

-
su

m
pt

io
n

G
as

ol
in

e 
co

n-
su

m
pt

io
n

Pe
r c

ap
ita

 
in

co
m

e
Em

pl
oy

ed
 

la
bo

r
La

bo
r d

is
pu

te
s

D
is

ab
lin

g 
in

ju
rie

s
M

SW
 g

en
er

a-
tio

n
SO

2 e
m

is
si

on
s

(s
1−

* )
(s

2−
* )

(s
3−

* )
(s

1+
g*

)
(s

2+
g*

)
(s

1+
b*

)
(s

2+
b*

)
(s

3+
b*

)
(s

4+
b*

)

N
ew

 T
ai

pe
i 

C
ity

0
0

0
0

0
0

0
0

0

Ta
ip

ei
 C

ity
0

10
4.

54
8

0
0

0
0

8.
00

0
24

,4
55

.7
60

0.
02

6
Ta

oy
ua

n 
C

ity
13

.5
77

81
34

.9
41

25
2,

93
4.

10
6

0
25

3.
48

2
53

9.
98

9
84

3.
03

3
35

,0
14

.5
65

0.
29

2
Ta

ic
hu

ng
 C

ity
11

03
.6

93
10

,1
07

.1
39

63
2,

90
3.

19
7

0
81

.5
57

10
2.

23
7

32
3.

64
4

20
,7

32
.7

31
0.

07
0

Ta
in

an
 C

ity
8.

93
0

77
15

.5
70

15
2,

42
0.

79
0

0
28

.0
04

27
.2

02
13

3.
49

6
32

,4
86

.5
36

0.
17

5
K

ao
hs

iu
ng

 C
ity

59
.0

70
78

94
.5

35
13

5,
41

5.
36

2
5.

88
7

85
.8

79
12

64
.6

57
33

.3
20

12
6,

96
3.

24
8

1.
37

6
Y

ila
n 

C
ou

nt
y

0
14

2.
07

4
26

,9
09

.5
77

0
4.

62
4

29
.1

66
5.

36
8

82
65

.4
38

0.
00

7
H

si
nc

hu
 

C
ou

nt
y

0
64

0.
85

8
13

0,
03

2.
58

8
0

0.
36

1
74

.2
09

70
.1

77
68

6.
12

3
0.

16
1

M
ia

ol
i C

ou
nt

y
0

18
6.

33
4

43
,2

38
.2

91
0

0
3.

25
6

4.
15

3
98

9.
68

8
0.

02
9

C
ha

ng
hu

a 
C

ou
nt

y
2.

81
2

17
8.

43
5

17
,0

46
.7

52
1.

42
5

0.
61

5
0.

44
2

2.
71

8
12

,3
21

.7
58

0.
17

9

N
an

to
u 

C
ou

nt
y

0
0

60
0.

97
2

0.
06

7
0

0
0.

42
7

28
.4

53
0

Y
un

lin
 C

ou
nt

y
0

0
0

0
0

0
0

0
0

C
hi

ay
i C

ou
nt

y
0

0.
37

3
40

22
.4

77
0

0.
09

6
0

0
32

06
.4

79
0.

05
3

Pi
ng

tu
ng

 
C

ou
nt

y
8.

09
4

10
1.

59
2

21
,8

75
.6

98
17

.3
86

0.
65

4
0

0.
32

2
14

64
.5

69
0.

02
9

Ta
itu

ng
 C

ou
nt

y
0

0
0

0
0

0
0

0
0

H
ua

lie
n 

C
ou

nt
y

21
0.

68
9

15
.1

91
21

,9
84

.3
08

0
0.

41
3

19
.6

17
0.

50
6

74
4.

96
7

0.
09

8
K

ee
lu

ng
 C

ity
0

0
28

4.
06

1
0.

19
2

0
0

2.
04

0
11

4.
82

6
0.

02
7

H
si

nc
hu

 C
ity

0
64

3.
13

5
98

9.
24

8
0

0
9.

48
0

2.
72

1
10

71
.6

00
0.

05
9

C
hi

ay
i C

ity
0

0
0

0
0

0
0

0
0



1340	 S.-H. Yu 

1 3

less efficient regions, from the efficiency perspective. Table  3 presents the average opti-
mal slacks for each input and output using the proposed model (5). These non-zero opti-
mal slacks clearly manifest the sources resulting in inefficiency and indicate the proper 
decreases of the corresponding inputs and undesirable outputs as well as the increases of 
the corresponding desirable outputs based on the minimum distance notion. That is to say, 
adjusting these slacks would be conductive to a better SD performance and less efficient 
regions can use this information as a reference to draw up effective policies and strategies 
for SD improvement. Taking Taoyuan City (δo

* = 0.7208) as an example, it has the non-zero 
optimal slacks of s1

−*, s2
−*, s3

−*, s2
+g*, s1

+b*, s2
+b*, s3

+b*, and s4
+b*. This finding indicates that to 

become efficient, Taoyuan City could decrease water, power, and gasoline consumption by 
13.577 million m3, 8134.941 GWh, and 252,934.106 kL, respectively; expand the number 
of employed labor by 253.482 thousand persons; and reduce the number of labor disputes, 
disabling injuries, MSW generation, and SO2 emissions by 540, 843, 35,014.565 tonnes, 
and 0.292  ppb, respectively. Furthermore, regarding Taichung City, which achieves the 
lowest average SD efficiency (δo

* = 0.5196), the optimal slacks information reveals that it 
has resource input excesses for water (s1

−* = 1103.693), power (s2
−* = 10,107.139) and gaso-

line (s3
−* = 632,903.197); output shortages for employed labor (s2

+g* = 81.557); and output 
overproduction for labor disputes (s1

+b* = 102), disabling injuries (s2
+b* = 324), MSW gener-

ation (s3
+b* = 20,732.731) and SO2 emissions (s4

+b* = 0.07). Therefore, more specific policies 
and effective activities should be particularly devised by Taichung government to manage 
those inefficient sources.

Figure 4 also shows that among the four areas, the eastern area is ahead of the others 
in terms of average SD efficiency. In fact, due to the large coverage of mountain terrain, 
this area is less developed and has a very low population density. Although the eastern 
area is not impressive economically, it has cut a figure in resources saving and ecologi-
cal conservation. With regard to areas in the western coastal plain where the majority 

Water consumption

Power consumption

MSW generation

SO2 emissions

Labor disputes

Disabling injuries Per capita income

Employed labor

Gasoline consumption

Northern area Central area Southern area Eastern area

0.01

0.03

0.05

0.09

0.13

0.11

0.07

( )

( )

( )

( )

( )( )

( )

( )

( )

Fig. 5   Average potential improvement for the four areas in Taiwan
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of the population resides, the northern area achieves the highest average SD efficiency 
(δo

* = 0.919), followed by the southern area (δo
* = 0.906) and the central area (δo

* = 0.889). 
Figure 5 illustrates the average potential improvement of each input and output among the 
four areas, which is expressed as the ratio of optimal slack to original value. As shown, for 
the northern area, disabling injuries yb

2
 and gasoline consumption x3 are primary loadings 

affecting SD and must be reduced on average by 10.82% and 7.56%, respectively. For the 
southern area, power consumption x2 (12.09%), labor disputes yb

1 (7.16%) and SO2 emis-
sions yb

4 (6.64%) are the top three priorities for improving SD efficiency. Furthermore, the 
central area has the highest room for improvement in water consumption x1, which should 
be decreased by 12.30% on average. These results may indicate that inefficient sources vary 
from area to area, most likely due to differences in industry structures. The northern area 
has a mature development of business services and is vigorously high-tech concentrated. 
The integrated circuits (IC) industry, computer and peripherals industry, optoelectronics 
industry, biotechnology industry, and telecommunications industry present industrial cen-
tres in this area, and they are mostly incubated at Hsinchu Science Park and Nankang Soft-
ware Park. The labor intensive productions of these industries involve numerous underly-
ing hazards at the workplace that therefore cause occupational injuries and illnesses. Local 
governments in the northern area could pressure the industries to comply with labour safety 
and health standards or guidelines documented in the Electronic Industry Code of Conduct 
(EICC), Occupational Health and Safety Assessment Series 18,001 (OHSAS 18,001), and 
Social Accountability 8000 (SA 8000), thereby lessening the social burden (Lo et al. 2014; 
Santos et  al. 2018; Tuczek et  al. 2018). The central area hosts the precision machinery 
industry and traditional industries of textiles, clothing, footwear and floriculture. With the 
completion of the Taichung Science Park and the rapid growth of required industrial water, 
the problem of water resource scarcity is getting serious in central Taiwan. The Water 
Resources Agency also reports that the central area might have a shortage of water supply 
of approximately 170,000 tonnes per day over the next decade. To eliminate the depend-
ency on water resources, technologies associated with waste water recovery and reuse as 
well as effective water management practices must be incorporated into operational strate-
gies of water-intensive industries (Angelakis et al. 2003; Chu et al. 2004; Vajnhandl and 
Valh 2014). Meanwhile, a series of policies and actions should be continuously promoted 
by local governments to deepen the awareness of water resources conservation. In the 
southern area, there is a great concentration of heavy industries including the petrochemi-
cal industry, steel industry, electric power industry, and naval architecture industry, which 
could explain why the southern area suffers the most pressure from energy consumption 
and air pollution. Therefore, there is a rising need for these power-hungry industries to 
optimize the energy usage of their operations. Appropriate policies, such as electricity 
pricing reform and regulatory requirement on certain share of renewable energy, including 
solar, wind, and hydraulic, could be further implemented to not only force energy-saving 
activities but also accelerate the development of renewable energy (Liming et  al. 2008; 
Kohler 2014; Lin et al. 2017).

Figure 6 illustrates the annual SD efficiencies for the four areas individually and for 
Taiwan as a whole from 2011 to 2016 to demonstrate the changes in efficiency during 
the research periods from a dynamic perspective. As shown, the SD efficiency of the 
southern area rose dramatically from 2011 to 2014 and it even surpasses than that of 
the eastern area in 2014. This uptrend is contributed by the progress on SD efficiency in 
Tainan City, Kaohsiung City, and Pingtung County. A similar but slight change appears 
in the efficiency of the northern area from 2011–2013. Three out of seven administra-
tive regions, i.e., Taipei City, Hsinchu City, and Taoyuan City, achieved improvement in 
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their SD efficiencies over the first 3 years, which resulted in the slow upward efficiency 
trend for the northern area. However, all the areas show had an evident downswing in 
efficiency over the last 3  years. The SD efficiency of Taiwan (grey bar in Fig.  6) has 
declined since 2014 and even dropped to a performance level worse than in 2011 for the 
2015–2016 period. This finding implies that although Taiwan has been attempting to 
meet SD goals, it still has a long way to go before it can realize ideal sustainability. To 
remedy the worsening trend of SD efficiency, Taiwan must accelerate SD improvement 

Fig. 6   Average SD efficiency trend for four areas and whole Taiwan
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and intensify the balance of resource consumption, economic prosperity, environmental 
protection, and social welfare by dispelling the sources that deteriorate SD efficiency. 
The annual potential improvement of inputs and outputs of Taiwan is shown in Fig. 7. 
This figure provides policymakers with holistic insights on changes in the magnitudes 
of inputs and outputs, which could be adjusted during varying periods to enable them to 
draw up precisely relevant policies for SD improvement. The required improvement of 
per capita income yg

1 has gradually decreased and its magnitude is much less than that 
of others, indicating that pressure to enrich inhabitants has become weaker in general. 
Furthermore, there appears to be an evident magnitude of potential improvements for 
power consumption x2, disabling injuries yb

2, and SO2 emissions yb
4, and a rising trend in 

required improvements is observed for water consumption x1, gasoline consumption x3 
and the labor disputes yb

1. These findings imply that these variables serve critical roles in 
promoting SD, and striving to eliminate the inefficiencies of which would be more con-
ducive for improving Taiwanese SD performance. Therefore, Taiwan must place greater 
emphasis on resource conservation, environment protection and social welfare instead 
of merely pursuing economic prosperity.

6 � Concluding Remarks

Along with the wave of sustainability sweeping the world in the past few decades, pro-
gressing towards regional SD has become a matter of concern for improving societal well-
being and quality of life. Benchmarking and performance evaluation has gained widespread 
acceptance as a scientific process to follow up and accelerate regional SD. In this study, a 
novel additive DEA model with the consideration of undesirable outputs is proposed based 
on the minimum distance measure, which can not only construct a composite efficiency 
indicator but also provide holistic insights into improved strategies according to closest 
benchmarking target notion. The window analysis was then employed to successfully per-
form the work of cross-sectional and longitudinal efficiency evaluations.

Using an empirical dataset encompassing three inputs, two desirable outputs, and four 
undesirable outputs, such an assessment framework is applied to benchmark SD efficiency 
across 19 administrative regions of Taiwan for the period from 2011 to 2016. The study 
also elaborates how each administrative region performs in SD, explores which major 
sources lead to inefficiency and discusses some potential policies that contribute towards 
sustainability. The empirical results reveal that the sources of inefficiency may vary with 
industrial structure. In general, the administrative regions in the northern, central and 
southern areas faced relatively higher room for improvement to disabling injuries, water 
consumption and power consumption, respectively. The study also found that for the recent 
3 years, Taiwan as a whole experienced deterioration in terms of average SD efficiency, 
implying that the pressure for SD improvement has become more intense. These findings 
provide local governments with valuable information for devising corresponding policies 
and regulations that facilitate a more sustainable society.

This study brings a two-fold contribution, both methodological and empirical, to the 
existing literature. First, this study presents a novel extension in non-radial DEA in which 
the minimum distance-based additive model is extended to accommodate undesirable 
outputs and conjoined with window analysis. The newly developed model preserves the 
desirable feature of standard additive model in meeting Pareto–Koopmans optimality for 
efficient DMUs but owns the merit of determining convincing benchmarking targets and a 
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more feasible direction for improving inefficient DMUs. Remarkably, the proposed model 
is promising for a wide range of practical applications, especially to those with undesirable 
outputs. In order to accelerate progress in achieving SD, other regions or countries can 
implement this model to examine their SD performance with a dynamic view and thereby 
draft effective policies for SD improvement. Furthermore, this study conducts a holistic 
investigation into sustainability and responds to the need for compositing a reliable indi-
cator of SD efficiency at the regional level, whereas previous studies mainly dealt with 
economic and environmental problems and rarely focused on social impacts. This topic 
conforms to the contemporary trend of sustainability, and the findings of this study could 
contribute to the literature on regional SD promotion.

There remain a few limitations that should be clarified. Regarding time-dependent 
benchmarking, the use of window analysis fails to offer precise benchmarking information 
that indicates the change in efficiency of an evaluated region between two adjacent periods 
of time by examining the pre- and post-values of input, desirable and undesirable outputs. 
The Malmquist index analysis presented by Malmquist (1953) is an effective approach for 
addressing this limitation. Future researches could attempt to extend the proposed model 
to include the Malmquist index to take a closer look at the pairwise changes in SD perfor-
mance. Moreover, in the empirical application to Taiwan SD, only one desirable output 
of the observed variables is expressed in per capita term, implying that conceptual asym-
metry might appear in the input–output data set. Using GDP in place of per capita income 
would be desirable but difficult due to data availability issue in Taiwan (DGBAS 2012). 
The other alternative could be using the product of the per capita income and the number 
of inhabitants of a region. Additionally, this study does not allow for the environmental 
variables (also called non-controllable variables), such as population and land area, which 
are exogenously fixed but can affect the benchmarking results to a certain extent (Banker 
and Morey 1986; Zhu 1996). A noteworthy topic for future research would be to extend 
the proposed model by considering this kind of variable so as to bring more insights into 
SD improvements. Finally, one should note that the Benefit of Doubt model, presented by 
Melyn and Moesen (1991) and introduced at length by Cherchye et al. (2007), is also a use-
ful and credible DEA-based approach for creating composite indicators. However, it mainly 
deals with the flexibility issue of weighting sub-indicators and does not consider the input 
and output slacks. Thus, the proposed model still remains advantageous and applicable to 
benchmarking issues due to its capacity to provide insights into the sources of inefficiency 
and the strategies of performance improvement.

References

Ali, A. I., & Seiford, L. M. (1990). Translation invariance in data envelopment analysis. Operations 
Research Letters, 9(6), 403–405.

An, Q., Pang, Z., Chen, H., & Liang, L. (2015). Closest targets in environmental efficiency evaluation based 
on enhanced Russell measure. Ecological Indicators, 51, 59–66.

Angelakis, A. N., Bontoux, L., & Lazarova, V. (2003). Challenges and prospectives for water recycling and 
reuse in EU countries. Water Science and Technology: Water Supply, 3(4), 59–68.

Aparicio, J., Ruiz, J. L., & Sirvent, I. (2007). Closest targets and minimum distance to the Pareto-efficient 
frontier in DEA. Journal of Productivity Analysis, 28(3), 209–218.

Asmild, M., Paradi, J. C., Aggarwall, V., & Schaffnit, C. (2004). Combining DEA window analysis with 
the Malmquist index approach in a study of the Canadian banking industry. Journal of Productivity 
Analysis, 21(1), 67–89.



1345Benchmarking and Performance Evaluation Towards the Sustainable…

1 3

Banker, R. D., Charnes, A., & Cooper, W. W. (1984). Some models for estimating technical and scale inef-
ficiencies in data envelopment analysis. Management Science, 30(9), 1078–1092.

Banker, R. D., & Morey, R. C. (1986). Efficiency analysis for exogenously fixed inputs and outputs. Opera-
tions Research, 34(4), 513–521.

Belu, C. (2009). Ranking corporations based on sustainable and socially responsible practices. A data envel-
opment analysis (DEA) approach. Sustainable Development, 17(4), 257-268.

Bruni, M. E., Guerriero, F., & Patitucci, V. (2011). Benchmarking sustainable development via data envel-
opment analysis: An Italian case study. International Journal of Environmental Research, 5(1), 
47–56.

Caiado, R. G. G., de Freitas Dias, R., Mattos, L. V., Quelhas, O. L. G., & Leal Filho, W. (2017). Towards 
sustainable development through the perspective of eco-efficiency: A systematic literature review. 
Journal of Cleaner Production, 165(1), 890–904.

Carboni, O. A., & Russu, P. (2015). Assessing regional wellbeing in Italy: An application of Malmquist–
DEA and self-organizing map neural clustering. Social Indicators Research, 122(3), 677–700.

CEPD (The Council for Economic Planning and Development). (2004). Taiwan agenda 21: Vision and 
strategies for national sustainable development. Taiwan: CEPD.

Chambers, R. G., Chung, Y., & Färe, R. (1996). Benefit and distance functions. Journal of Economic The-
ory, 70(2), 407–419.

Charmondusit, K., Phatarachaisakul, S., & Prasertpong, P. (2014). The quantitative eco-efficiency measure-
ment for small and medium enterprise: A case study of wooden toy industry. Clean Technologies and 
Environmental Policy, 16(5), 935–945.

Charnes, A., Clark, C. T., Cooper, W. W., & Golany, B. (1984). A developmental study of data envelopment 
analysis in measuring the efficiency of maintenance units in the US air forces. Annals of Operations 
Research, 2(1), 95–112.

Charnes, A., Cooper, W. W., Golany, B., Seiford, L., & Stutz, J. (1985). Foundations of data envelopment 
analysis for Pareto-Koopmans efficient empirical production functions. Journal of Econometrics, 
30(1), 91–107.

Charnes, A., Cooper, W. W., Lewin, A. Y., & Seiford, L. M. (1994). Data envelopment analysis: Theory, 
methodology, and application. Norwell: Kluwer Academic Publishers.

Charnes, A., Cooper, W. W., & Rhodes, E. (1978). Measuring the efficiency of decision making units. Euro-
pean Journal of Operational Research, 2(6), 429–444.

Charnes, A., Cooper, W. W., & Thrall, R. M. (1986). Classifying and characterizing efficiencies and inef-
ficiencies in data development analysis. Operations Research Letters, 5(3), 105–110.

Charnes, A., Cooper, W. W., & Thrall, R. M. (1991). A structure for classifying and characterizing effi-
ciency and inefficiency in data envelopment analysis. Journal of Productivity Analysis, 2(3), 197–237.

Chen, L., Wang, Y., Lai, F., & Feng, F. (2017). An investment analysis for China’s sustainable development 
based on inverse data envelopment analysis. Journal of Cleaner Production, 142(4), 1638–1649.

Cherchye, L., Moesen, W., Rogge, N., & Van Puyenbroeck, T. (2007). An introduction to ‘benefit of the 
doubt’composite indicators. Social Indicators Research, 82(1), 111–145.

Chu, J., Chen, J., Wang, C., & Fu, P. (2004). Wastewater reuse potential analysis: Implications for China’s 
water resources management. Water Research, 38(11), 2746–2756.

Chung, Y. H., Färe, R., & Grosskopf, S. (1997). Productivity and undesirable outputs: A directional distance 
function approach. Journal of Environmental Management, 51(3), 229–240.

Cooper, W. W., Park, K. S., & Pastor, J. T. (1999). RAM: A range adjusted measure of inefficiency for use 
with additive models, and relations to other models and measures in DEA. Journal of Productivity 
Analysis, 11(1), 5–42.

Cooper, W. W., Seiford, L. M., & Tone, K. (2007). Data envelopment analysis: A comprehensive text with 
models, applications, references and DEA-solver software (2nd ed.). New York: Springer.

DGBAS (Directorate-General of Budget, Accounting and Statistics) (2012). https​://www.dgbas​.gov.tw/
ct.asp?xItem​=31080​&ctNod​e=5686&mp=1. Released 1 May 2012.

Du, J., Liang, L., & Zhu, J. (2010). A slacks-based measure of super-efficiency in data envelopment analy-
sis: A comment. European Journal of Operational Research, 204(3), 694–697.

Elkington, J. (1998). Partnerships from cannibals with forks: The triple bottom line of 21st-century busi-
ness. Environmental Quality Management, 8(1), 37–51.

Farrell, M. J. (1957). The measurement of productive efficiency. Journal of the Royal Statistical Society. 
Series A (General), 120(3), 253-290.

Gibbs, D. (1998). Regional development agencies and sustainable development. Regional Studies, 32(4), 
365–368.

Golany, B., & Roll, Y. (1989). An application procedure for DEA. Omega, 17(3), 237–250.

https://www.dgbas.gov.tw/ct.asp?xItem=31080&ctNode=5686&mp=1
https://www.dgbas.gov.tw/ct.asp?xItem=31080&ctNode=5686&mp=1


1346	 S.-H. Yu 

1 3

Gómez-Calvet, R., Gómez-Calvet, A. R., Conesa, D., & Tortosa-Ausina, E. (2016). On the dynamics of 
eco-efficiency performance in the European Union. Computers & Operations Research, 66, 336–350.

González, E., Cárcaba, A., & Ventura, J. (2011). The importance of the geographic level of analysis in the 
assessment of the quality of life: The case of Spain. Social Indicators Research, 102(2), 209–228.

Hailu, A., & Veeman, T. S. (2001). Non-parametric productivity analysis with undesirable outputs: An 
application to the Canadian pulp and paper industry. American Journal of Agricultural Economics, 
83(3), 605–616.

Herrera-Ulloa, Á. F., Charles, A. T., Lluch-Cota, S. E., Ramirez-Aguirre, H., Hernández-Váquez, S., & 
Ortega-Rubio, A. (2003). A regional-scale sustainable development index: The case of baja california 
sur, mexico. International Journal of Sustainable Development and World Ecology, 10(4), 353–360.

Holling, C. S. (2001). Understanding the complexity of economic, ecological, and social systems. Ecosys-
tems, 4(5), 390–405.

Hu, J. L. (2006). Efficient air pollution abatement for regions in China. International Journal of Sustainable 
Development and World Ecology, 13(4), 327–340.

Iribarren, D., Martín-Gamboa, M., O’Mahony, T., & Dufour, J. (2016). Screening of socio-economic indica-
tors for sustainability assessment: A combined life cycle assessment and data envelopment analysis 
approach. The International Journal of Life Cycle Assessment, 21(2), 202–214.

Jollands, N., Lermit, J., & Patterson, M. (2004). Aggregate eco-efficiency indices for New Zealand—A prin-
cipal components analysis. Journal of Environmental Management, 73(4), 293–305.

Kohler, M. (2014). Differential electricity pricing and energy efficiency in South Africa. Energy, 64(1), 
524–532.

Lebel, L., Anderies, J. M., Campbell, B., Folke, C., Hatfield-Dodds, S., Hughes, T. P., et al. (2006). Govern-
ance and the capacity to manage resilience in regional social-ecological systems. Ecology and Soci-
ety, 11(1), 19.

Lee, K., & Farzipoor Saen, R. (2012). Measuring corporate sustainability management: A data envelop-
ment analysis approach. International Journal of Production Economics, 140(1), 219–226.

Liming, H., Haque, E., & Barg, S. (2008). Public policy discourse, planning and measures toward sus-
tainable energy strategies in Canada. Renewable and Sustainable Energy Reviews, 12(1), 91–115.

Lin, H., Wang, Q., Wang, Y., Liu, Y., Sun, Q., & Wennersten, R. (2017). The energy-saving potential 
of an office under different pricing mechanisms: Application of an agent-based model. Applied 
Energy, 202(15), 248–258.

Liu, Y., Wang, W., Li, X., & Zhang, G. (2010). Eco-efficiency of urban material metabolism: A case 
study in Xiamen, China. International Journal of Sustainable Development and World Ecology, 
17(2), 142–148.

Lo, C. K., Pagell, M., Fan, D., Wiengarten, F., & Yeung, A. C. (2014). OHSAS 18001 certification and 
operating performance: The role of complexity and coupling. Journal of Operations Management, 
32(5), 268–280.

Lovell, C. K., & Pastor, J. T. (1995). Units invariant and translation invariant DEA models. Operations 
Research Letters, 18(3), 147–151.

Lovell, C. K., Pastor, J. T., & Turner, J. A. (1995). Measuring macroeconomic performance in the 
OECD: A comparison of European and non-European countries. European Journal of Operational 
Research, 87(3), 507–518.

Lozano, S., & Gutierrez, E. (2008). Non-parametric frontier approach to modelling the relationships 
among population, GDP, energy consumption and CO2 emissions. Ecological Economics, 66(4), 
687–699.

Mahdiloo, M., Saen, R. F., & Lee, K. (2015). Technical, environmental and eco-efficiency measurement 
for supplier selection: An extension and application of data envelopment analysis. International 
Journal of Production Economics, 168, 279–289.

Mahlberg, B., & Sahoo, B. K. (2011). Radial and non-radial decompositions of Luenberger productivity 
indicator with an illustrative application. International Journal of Production Economics, 131(2), 
721–726.

Malmquist, S. (1953). Index numbers and indifference surfaces. Trabajos de estadística, 4(2), 209–242.
Melyn, W., & Moesen, W. (1991). Towards a synthetic indicator of macroeconomic performance: Une-

qual weighting when limited information is available. Public Economics Research Paper 17, CES, 
KU Leuven.

Michelsen, O., Fet, A. M., & Dahlsrud, A. (2006). Eco-efficiency in extended supply chains: A case 
study of furniture production. Journal of Environmental Management, 79(3), 290–297.

Miles, M. P., & Munilla, L. S. (2004). The potential impact of social accountability certification on mar-
keting: A short note. Journal of Business Ethics, 50(1), 1–11.



1347Benchmarking and Performance Evaluation Towards the Sustainable…

1 3

Murias, P., Martinez, F., & De Miguel, C. (2006). An economic wellbeing index for the Spanish prov-
inces: A data envelopment analysis approach. Social Indicators Research, 77(3), 395–417.

NCSD (National Council for Sustainable Development) (2009). Sustainable development policy guide-
lines. https​://nsdn.epa.gov.tw/. Accessed 30 July 2017.

Nissi, E., & Sarra, A. (2018). A measure of well-being across the Italian urban areas: An integrated 
DEA-entropy approach. Social Indicators Research, 136(3), 1183–1209.

Pastor, J. T., Ruiz, J. L., & Sirvent, I. (1999). An enhanced DEA Russell graph efficiency measure. Euro-
pean Journal of Operational Research, 115(3), 596–607.

Rashidi, K., & Farzipoor Saen, R. (2015). Measuring eco-efficiency based on green indicators and 
potentials in energy saving and undesirable output abatement. Energy Economics, 50, 18–26.

Reinhard, S., Lovell, C. K., & Thijssen, G. (1999). Econometric estimation of technical and environmen-
tal efficiency: An application to Dutch dairy farms. American Journal of Agricultural Economics, 
81(1), 44–60.

Rondinelli, D. A., & Berry, M. A. (2000). Environmental citizenship in multinational corporations: 
social responsibility and sustainable development. European Management Journal, 18(1), 70–84.

Ross, A., & Droge, C. (2002). An integrated benchmarking approach to distribution center performance 
using DEA modeling. Journal of Operations Management, 20(1), 19–32.

Sahoo, B. K., Luptacik, M., & Mahlberg, B. (2011). Alternative measures of environmental technology 
structure in DEA: An application. European Journal of Operational Research, 215(3), 750–762.

Santos, G., Murmura, F., & Bravi, L. (2018). SA 8000 as a tool for a sustainable development strategy. 
Corporate Social Responsibility and Environmental Management, 25(1), 95–105.

Schaltegger, S., & Sturm, A. (1990). Ökologische Rationalität-Ansatzpunkte zur Ausgestaltung von 
Ökologieorientierten Managementinstrumenten. Die Unternehmung, 4(4), 273–290.

Scheel, H. (2001). Undesirable outputs in efficiency valuations. European Journal of Operational 
Research, 132(2), 400–410.

Seiford, L. M., & Zhu, J. (2002). Modeling undesirable factors in efficiency evaluation. European Journal of 
Operational Research, 142(1), 16–20.

Shen, C., Huang, C. Y., & Chu, P. Y. (2003). A performance evaluation model for governmental conflict 
management organisations: A study of labour management departments. International Journal of 
Management and Decision Making, 4(4), 312–336.

Strezov, V., Evans, A., & Evans, T. J. (2017). Assessment of the economic, social and environmental dimen-
sions of the indicators for sustainable development. Sustainable Development, 25(3), 242–253.

Sueyoshi, T., Goto, M., & Sugiyama, M. (2013). DEA window analysis for environmental assessment in a 
dynamic time shift: Performance assessment of US coal-fired power plants. Energy Economics, 40, 
845–857.

Sueyoshi, T., & Sekitani, K. (2007). The measurement of returns to scale under a simultaneous occurrence 
of multiple solutions in a reference set and a supporting hyperplane. European Journal of Opera-
tional Research, 181(2), 549–570.

Sun, L., & Stuebs, M. (2013). Corporate social responsibility and firm productivity: Evidence from the 
chemical industry in the United States. Journal of Business Ethics, 118(2), 251–263.

Tajbakhsh, A., & Hassini, E. (2018). Evaluating sustainability performance in fossil-fuel power plants using 
a two-stage data envelopment analysis. Energy Economics, 74, 154–178.

Tatari, O., Egilmez, G., & Kurmapu, D. (2016). Socio-eco-efficiency analysis of highways: A data envelop-
ment analysis. Journal of Civil Engineering and Management, 22(6), 747–757.

Tone, K. (2001). A slacks-based measure of efficiency in data envelopment analysis. European Journal of 
Operational Research, 130(3), 498–509.

Tuczek, F., Castka, P., & Wakolbinger, T. (2018). A review of management theories in the context of qual-
ity, environmental and social responsibility voluntary standards. Journal of Cleaner Production, 176, 
399–416.

Tyteca, D. (1996). On the measurement of the environmental performance of firms—A literature review and 
a productive efficiency perspective. Journal of Environmental Management, 46(3), 281–308.

UN (United Nations) (2015). Transforming our world: The 2030 agenda for sustainable development. Reso-
lution adopted by the General Assembly on 25 September 2015.

Vajnhandl, S., & Valh, J. V. (2014). The status of water reuse in European textile sector. Journal of Environ-
mental Management, 141(1), 29–35.

Wang, L., Chen, Z., Ma, D., & Zhao, P. (2013a). Measuring carbon emissions performance in 123 coun-
tries: Application of minimum distance to the strong efficiency frontier analysis. Sustainability, 5(12), 
5319–5332.

Wang, Q., Hang, Y., Sun, L., & Zhao, Z. (2016). Two-stage innovation efficiency of new energy enterprises 
in china: A non-radial DEA approach. Technological Forecasting and Social Change, 112, 254–261.

https://nsdn.epa.gov.tw/


1348	 S.-H. Yu 

1 3

Wang, Y., Sun, M., Wang, R., & Lou, F. (2015). Promoting regional sustainability by eco-province con-
struction in china: A critical assessment. Ecological Indicators, 51, 127–138.

Wang, K., Xian, Y., Lee, C., Wei, Y., & Huang, Z. (2017). On selecting directions for directional distance 
functions in a non-parametric framework: A review. Annals of Operations Research. https​://doi.
org/10.1007/s1047​9-017-2423-5

Wang, K., Yu, S., & Zhang, W. (2013b). China’s regional energy and environmental efficiency: A DEA 
window analysis based dynamic evaluation. Mathematical and Computer Modelling, 58(5–6), 
1117–1127.

WBCSD (World Business Council For Sustainable Development) (2005). Eco-efficiency learning module. 
http://www.wbcsd​.org/pages​/EDocu​ment/EDocu​mentD​etail​s.aspx?ID=13593​. Accessed 30 July 
2017.

WCED (World Commission on Environment and Development). (1987). Our common future. Oxford: 
Oxford University Press.

Wu, J., An, Q., Yao, X., & Wang, B. (2014a). Environmental efficiency evaluation of industry in China 
based on a new fixed sum undesirable output data envelopment analysis. Journal of Cleaner Produc-
tion, 74(1), 96–104.

Wu, P., Huang, T., & Pan, S. (2014b). Country performance evaluation: The DEA model approach. Social 
Indicators Research, 118(2), 835–849.

Wursthorn, S., Poganietz, W., & Schebek, L. (2011). Economic–environmental monitoring indicators for 
european countries: A disaggregated sector-based approach for monitoring eco-efficiency. Ecological 
Economics, 70(3), 487–496.

Xiong, B., Li, Y., Santibanez Gonzalez, E. D. R., & Song, M. (2017). Eco-efficiency measurement and 
improvement of Chinese industry using a new closest target method. International Journal of Climate 
Change Strategies and Management, 9(5), 666–681.

Yang, W. C., Lee, Y. M., & Hu, J. L. (2016). Urban sustainability assessment of Taiwan based on data envel-
opment analysis. Renewable and Sustainable Energy Reviews, 61, 341–353.

Yang, H., & Pollitt, M. (2009). Incorporating both undesirable outputs and uncontrollable variables into 
DEA: The performance of Chinese coal-fired power plants. European Journal of Operational 
Research, 197(3), 1095–1105.

Yin, K., Wang, R., An, Q., Yao, L., & Liang, J. (2014). Using eco-efficiency as an indicator for sustain-
able urban development: A case study of Chinese provincial capital cities. Ecological Indicators, 36, 
665–671.

Yu, S. H., Gao, Y., & Shiue, Y. C. (2017). A comprehensive evaluation of sustainable development ability 
and pathway for major cities in China. Sustainability, 9(8), 1483.

Zanella, A., Camanho, A. S., & Dias, T. G. (2015). Undesirable outputs and weighting schemes in com-
posite indicators based on data envelopment analysis. European Journal of Operational Research, 
245(2), 517–530.

Zhou, P., Ang, B. W., & Zhou, D. Q. (2010). Weighting and aggregation in composite indicator construc-
tion: A multiplicative optimization approach. Social Indicators Research, 96(1), 169–181.

Zhou, P., Poh, K. L., & Ang, B. W. (2007). A non-radial DEA approach to measuring environmental perfor-
mance. European Journal of Operational Research, 178(1), 1–9.

Zhou, H., Yang, Y., Chen, Y., & Zhu, J. (2018). Data envelopment analysis application in sustainability: The 
origins, development and future directions. European Journal of Operational Research, 264(1), 1–16.

Zhu, J. (1996). Data envelopment analysis with preference structure. The Journal of the Operational 
Research Society, 47(1), 136–150.

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

https://doi.org/10.1007/s10479-017-2423-5
https://doi.org/10.1007/s10479-017-2423-5
http://www.wbcsd.org/pages/EDocument/EDocumentDetails.aspx?ID=13593

	Benchmarking and Performance Evaluation Towards the Sustainable Development of Regions in Taiwan: A Minimum Distance-Based Measure with Undesirable Outputs in Additive DEA
	Abstract
	1 Introduction
	2 Data Envelopment Analysis
	2.1 Radial DEA Model
	2.2 Additive DEA model

	3 A minimum distance-based additive model with undesirable outputs
	3.1 Incorporating undesirable outputs into additive DEA
	3.2 Closest benchmarking target and minimum distance-based measure
	3.3 Window analysis for time-varying data

	4 Research sample and data collection
	5 Empirical Results and Discussions for Regional SD in Taiwan
	6 Concluding Remarks
	References




