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Abstract
In this paper, we develop a new statistical procedure for the comparison of frequency dis-
tributions on systems of ordinal indicators, based on a multidimensional fuzzy extension of 
the first order dominance (FOD) criterion. The procedure, named fuzzy-first order domi-
nance (F-FOD), employs concepts and tools from partially ordered set theory and from 
fuzzy relational calculus and is designed to overcome the main limitations of previously 
developed algorithms for FOD analysis. In particular, F-FOD produces full pairwise com-
parison matrices, allows for partial orderings and rankings of the statistical units to be 
derived from the input data, is computationally sufficiently light to be applied in most cases 
of practical interest and is freely available in the R package PARSEC. To illustrate its effec-
tiveness, we also show F-FOD in action on two real datasets concerning health in Denmark 
and child well-being in the Democratic Republic of Congo.

Keywords  First order dominance · Fuzzy relation · Multi-indicator system · Partially 
ordered set · Ranking

1  Introduction

The development of effective procedures to compare and rank populations scored on mul-
tidimensional indicator systems (MISes) is a relevant and still open problem, in the socio-
economic analysis of complex traits, like deprivation, well-being or development. To these 
goals, one can proceed in either two ways: (i) by comparing some synthetic scores, sum-
marizing the achievement levels of the populations on the MIS, or (ii) by directly compar-
ing the distributions of the statistical populations, on the set of possible multidimensional 
score configurations over the MIS. Since any dimensionality reduction process implies 
some information loss, the second approach is preferable, but, at the same time, it raises 
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non-trivial methodological issues. In fact, indicators are often of an ordinal kind and the 
“space of score configurations” is naturally structured as a partially ordered set, or poset 
for short (e.g. see Fattore 2016), so that ways must be found to compare multidimensional 
frequency distributions over a domain whose elements may well be incomparable.1 Up to 
now, the main dominance concept adopted for distribution comparisons in such complex 
settings is First Order Dominance (FOD), particularly through a procedure popularized by 
Arndt and colleagues Arndt et al. (2012). This approach has been increasingly employed, 
for comparative studies in socio-economics (Arndt et al. 2014; Siersbæk et al. 2016; Hus-
sain et al. 2016; Mishra and Shukla 2016; Nanivazo 2015; Olu et al. 2014; Permanyer and 
Hussain 2017), giving rise to a research line mainly hosted by this Journal. The pros and 
cons of FOD are well outlined by the authors in the cited paper:

The FOD approach obviates the need for the analyst to apply an (arbitrary) weighting 
scheme across multiple criteria or to impose conditions on the social welfare func-
tion, which can be a considerable advantage. However, as with any other ‘ robust’ 
method, this gain comes at some cost. First, the procedure may be unable to deter-
mine any difference between two populations. [...] Second, as a pure binary indicator, 
the FOD procedure provides no sense as to the degree of dominance (or similarity) 
between two populations.

To address these problems, Arndt et al. “fuzzify” FOD using bootstrap samples to compute 
dominance degrees, so as to get larger and more informative comparability systems. As 
shown by the results reported in Hussain et al. (2016) and Nanivazo (2015), however, this 
procedure is only partly successful and still tends to produce highly indeterminate com-
parison matrices, i.e. matrices where some pairwise dominance degrees cannot be defined, 
since for no bootstrap samples one population dominates the other. In the attempt to reduce 
the number of indeterminate cases as much as possible, El Sayed and Zahran (2016) apply 
a hierarchy of first and second order dominance comparisons, each of which tries to resolve 
the indeterminacies not resolved by the comparisons coming first in the hierarchy. Actually, 
even this “ disambiguation algorithm” is unsatisfactory: (i) it is not guaranteed that all of 
the FOD indeterminacies are in the end resolved and (ii) it mixes up different notions of 
dominance, getting to an ad hoc procedure, whose internal logical coherence is not clear. 
In summary, the indeterminacy problem of FOD analysis is still open and it is currently a 
critical issue in multidimensional comparisons of statistical populations.

A second major problem, related to the FOD procedure, is how to convert the compari-
son matrix into a final ranking of the populations. Following a very rough and pragmatic 
approach, Nanivazo (2015), El Sayed and Zahran (2016) use mean and/or net dominance 
scores, as a way to totally order the distributions. Again, this approach is an ad hoc one, 
with no clear theoretical justification; moreover, it provides no control over the information 
loss implied by the dimensionality reduction process, which turns the input poset into the 
final linear order or ranking.

All in all, the FOD approach is valuable in principle but, as currently implemented, less 
useful than it could be. As it will be clarified in the next section, the root problem lies 
in the inadequacy of the mathematical setting the proposal of Arndt et al. is based upon, 

1  We stress, however, that the problem of information loss and dimensionality reduction on partially 
ordered domains is not confined to the study of ordinal MISes; in fact, the same issue occurs whenever 
evaluation and ranking involve multidimensional profiles built on systems of weakly interrelated variables, 
even of a cardinal type.
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which makes the procedure non-neat in its theoretical foundations and partly ineffective 
in practice. All these issues readily vanish (although, admittedly, at the cost of some non-
trivial technical developments) as soon as the FOD analysis is embedded into the math-
ematical theory of partially ordered sets and to do that is the main goal of the present work.

More explicitly, the aim of the paper is to reformulate the FOD approach, so as to get 
a comprehensive and effective framework for the analysis of dominance among popula-
tions, or frequency distributions, defined on ordinal multi-indicator systems. The new pro-
cedure, named Fuzzy First Order Dominance or F-FOD for short, can be seen as a way (i) 
to build a complete (i.e. without indeterminate cells) matrix of fuzzy dominance degrees 
between pairs of distributions, (ii) to “ approximate” it with a partial order relation and 
(iii) to derive from this a final ranking of the populations. Along this process, F-FOD pro-
duces various additional insights and indicators that provide a comprehensive picture on 
the “ comparability structure” of the data and allow the analyst to keep complete control 
over the process and its various steps. F-FOD employs tools from fuzzy relational calculus 
Peeva and Kyosev (2004) and from poset theory (Davey and Priestley 2002; Neggers and 
Kim 1998; Schröder 2002), showing that an effective “ ordinal” calculus can be indeed 
implemented, giving firm and sound basis to this kind of analysis. Despite its non-trivial 
structure, the procedure can be easily implemented in any scripting language, masking 
its technical complexity to the final user; in particular, the R functions used to elaborate 
the examples discussed in the paper are available within the R package PARSEC Arcagni 
(2017), on the CRAN website (R Core Team 2017). The paper draws heavily on previous 
works by Annoni et al. (2011), by Fattore (2016) and by Fattore and Arcagni (2016), where 
fuzzy relation and partial order theories are applied to the analysis of multidimensional 
deprivation. F-FOD comes out by combining, in an original way, the main results worked 
out in these papers and adapting them to the context of FOD analysis. The paper is organ-
ized as follows: in Sect. 2, we discuss the limits of the bootstrap approach and reformulate 
the FOD criterion in posetic terms. In Sect. 3, we develop the F-FOD procedure, using a 
simple but real test example on health in Denmark; in Sect. 4, we show the effectiveness of 
F-FOD, elaborating on a more complex dataset pertaining to child well-being in the Demo-
cratic Republic of Congo; in Sect. 5, we address the computational aspects of F-FOD; in 
Sect. 6, we briefly discuss some possible generalizations of F-FOD; Section 7 concludes. 
Finally, "Appendix 1" gives the proof of a key technical result needed in the paper and 
"Appendix 2" reports the R code used to work out the child well-being example.

2 � Reformulation of FOD on Ordinal Multi‑Indicator Systems

In this section, we reformulate the FOD criterion, casting it into the setting of partial order 
theory. While equivalent to the original definition given in Arndt et al. (2012), our refor-
mulation sheds light on the relation between first order dominance and the partial order 
structure of the data, paving the way to the “ fuzzified” dominance criterion, employed 
within the F-FOD procedure. Before getting to the analytical developments, however, we 
introduce some basic concepts of poset theory and discuss the flaw of the approach of 
Arndt and coauthors.

1. Ordinal Multi‑Indicator Systems and Product Orders  Let M be a MIS comprising k ordi-
nal attributes, scored on scales with possibly different number of degrees. The set of all of 
the possible score configurations s = (s1,… , sk) on the k attributes (here called profiles) 
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is naturally structured into a partially ordered set2, called the product order of (the lin-
ear orders associated to) the attributes. In it, profile p dominates profile q (in formulas, 
q ≤ p ), if and only if qi ≤ pi for each i = 1,… , k . Figure 1 depicts the Hasse diagram of 
the product order � of four binary indicators (written � = 2 × 2 × 2 × 2 = 2

4 , see Davey 
and Priestley 2002); in this diagram, q ≤ p if and only if there is a downward sequence of 
edges linking p to q . Product orders associated to MISes are the domains of the frequency 
distributions to be compared and their properties will play a fundamental role in the defini-
tion of F-FOD.

2. The Flaw of the Bootstrap Approach  Let F and G be two frequency distributions defined 
over a poset � , like that depicted in Fig. 1. We say that G first order dominates F (writ-
ten F ≤FOD G ) if, for any down-set3 𝛿 ⊆ 𝜋 , the following condition holds (see Arndt et al. 
2012):

(1)
∑

p∈�

G(p) ≤
∑

p∈�

F(p).

Fig. 1   Hasse diagram of the product order of (the linear orders associated to) four binary attributes. Compa-
rable profiles are linked by downward (or upward) sequences of edges

3  A down-set � of a poset � is a subset of � such that if p ∈ � and q ≤ p , then q ∈ � . Dually, an up-set u of a 
poset � is a subset of � such that if p ∈ u and p ≤ q , then q ∈ u . The down-set ↓p of an element p of � is the 
same as the set of elements equal to or smaller than p : ↓p = {x ∈ � ∶ x ≤ p} ; similarly, the up-set ↑p of p is 
the same as the subset of elements equal to or higher than p : ↑p = {x ∈ � ∶ x ≥ p} . In Arndt et al. (2012), 
down-sets are called comprehensive sets, but this is not standard posetic terminology.

2  A partially ordered set is a set endowed with a reflexive, anti-symmetric and transitive binary relation 
Davey and Priestley (2002).
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Informally speaking, FOD dominance requires that, given any subset of poset profiles, dis-
tribution G is more concentrated on or above them, than distribution F (in fact, in a finite 
poset, it can be easily proved that, for any up-set, one can find a set � of incomparable pro-
files, a so-called antichain, such that the elements of the up-set are all and only the profiles 
which are greater than or equal to elements of � , in the poset Davey and Priestley 2002). 
First order dominance is a binary condition which does not properly capture the nuances 
of comparisons between distributions, particularly in the multidimensional case where, in 
a fuzzy spirit, it is rather natural to admit that one frequency distribution may dominate 
another to “ a certain degree”. According to this point of view, Arndt and colleagues com-
pute the dominance degree of G over F as the probability that G dominates F, estimated by 
repeatedly extracting bootstrap samples from the two distributions and checking, on each 
pair of samples, the FOD criterion stated above Arndt et al. (2012). Notice that the out-
come of each comparison may be that either one sample dominates the other or that none 
of the two does (FOD-incomparability), so that, in the end, the bootstrap procedure can be 
inconclusive, leaving the comparison between F and G indeterminate (something that fre-
quently happens, as discussed in the "Introduction").

To see why this bootstrap approach is not that effective, and where its flaw lies, consider 
the following trivial example. Let F and G be concentrated on profiles 0001 and 1110 of 
the poset of Fig. 1. Intuitively, G should dominate F “ to a certain degree”, since 1110, 
although incomparable with 0001, belongs to a higher level of the diagram, has a smaller 
distance from top (1111), has a greater distance from bottom (0000), has a larger down-set 
and a smaller up-set. In less technical terms, and directly referring to condition 1, we see 
that: (i) profile 1110 dominates more (and is dominated by less) profiles than 0001, (ii) the 
only profile dominating 1110—i.e. 1111—dominates also 0001, but all of the other profiles 
dominating 0001 do not dominate 1110 and that (iii) “ small changes”, like turning to 1 
the last digit of 1110, would lead to dominance over 0001. To be more concrete, if scores 
would be interpreted as ownership (1) or deprivation (0) on a set of goods, 1110 would be 
“ almost full ownership”, while 0001 would be “ almost full deprivation”. Notwithstanding 
this, according to Arndt et al. (2012), the FOD degree between F and G is indeterminate 
since, trivially, any two bootstrap samples from F and G are FOD-incomparable. Speaking 
informally, the bootstrap procedure overlooks that 1110 and 0001 are “ comparable to a 
certain degree”; it only accounts for fuzziness due to the existence of “ FOD comparable 
subgroups of the populations” and not for the “ intrinsic fuzziness due to the existence of 
comparability degrees among incomparable profiles”. This way, a great deal of informa-
tion on pairwise dominance gets lost and incomplete dominance matrices are generated. 
The FOD criterion must then be reformulated, so as to account for the intrinsic fuzziness 
implied by the partial order structure of the profile set; to this aim, some further concepts 
of partial order theory are needed.

3. Linear Extensions of a Finite Poset  Consider again the Hasse diagram of Fig. 1 and sup-
pose to add an edge between a pair of incomparable profiles (i.e. a pair of profiles not 
linked by downward or upward edge sequences). The resulting poset is called an extension 
of � , since the set of comparable pairs has been enlarged by the addition of both the edge 
and of the comparabilities implied by transitivity. Proceeding this way, progressively add-
ing edges, we end up with a linear (or complete) order, i.e. with an extension of � where no 
incomparabilities are left. This linear order is called a linear extension (LE) of � and can 
be seen as a ranking of elements of � , which preserves the comparabilities of the original 
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poset (see Fig. 2). It can be shown that the set Ω(�) of the LEs of � completely identifies � ; 
in fact, a fundamental theorem of partial order theory (Dushnik and Miller 1941; Schröder 
2002; Szpilrajn 1930) states that the comparabilities of � are all and only the comparabili-
ties common to its LEs or, equivalently, that � can be reconstructed by Ω(�) , as the inter-
section of its LEs. This result provides the formal justification to “ reduce” the problem of 
comparing distributions on a poset, to the problem of comparing them on the set of LEs of 
it; as illustrated in the next step, such a “ reduction to LEs” lies at the heart of the F-FOD 
procedure.

4. Reformulation of Multidimensional FOD  We now employ linear extensions, to provide 
the desired reformulation of the FOD criterion on ordinal MISes. The key result is pro-
vided by the following proposition:

Proposition  Let � be a finite poset; then F ≤FOD G on � if and only if, for each linear 
extension � of � , F ≤FOD G on �.

Proof  See "Appendix 1". 	�  □

The above proposition reformulates multidimensional FOD on one MIS, stating its 
equivalence to unidimensional FOD on all of the LEs of the associated poset (in fact, LEs 
are linear orders and FOD on them reduces to the simpler and usual unidimensional first 
order dominance criterion). Simple as it may seem, this result allows for the aforemen-
tioned intrinsic fuzziness to be accounted for, leading to the fuzzy extension of FOD.

5. Fuzzy Extension of FOD  On a single linear extension � of � , it is straightforward to “ 
fuzzify” FOD, by defining the degree of dominance of distribution G on F, in terms of 
dominance probability. To be practical, let us interpret F and G as probability distributions 

Fig. 2   A poset with six elements, and the set of its 5 linear extensions. Elements “ b” and “ e” are incompa-
rable, but in the set of linear extensions, “ b” dominates “ e” four times out of five
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of some random variables, let q be a profile in � and let us (with a little abuse of notation) 
indicate with PF(q|�) = Prob(F ≤ q|�) the cumulative distribution of F according to the 
order of � and with pG(q) = Prob(G = q) the probability (relative frequency) that G equals 
q ; then the probability p(F ≤ G|�) that G dominates F in � is readily computed as (assum-
ing independence):

Once we have the dominance degrees p(F ≤ G|�) on all the linear extensions, we can fuzz-
ify FOD on the whole � , by computing the overall dominance degree p(F ≤ G) = ΔFG of 
G on F, as the average of the p(F ≤ G|�) s over Ω(�):

Remark  The choice of aggregating the p(F ≤ G|�) s (here, by averaging) to get ΔFG is well 
supported by the following theoretical result, proved in Fattore (2017): any well-behaved 
functional over a finite poset can be expressed as a quasi-arithmetic mean of its values 
on the set of the linear extensions of the poset. In practice, this means that the only way 
to aggregate dominance degrees on linear extensions into dominance degrees associated 
to the input poset is by some kind of means and, if we require additional properties (e.g. 
homogeneity) we are led to power means and to the arithmetic mean in particular. For the 
details and a more formal statement of the result, see the cited paper.

To see what we gain with this approach, consider Fig.  2, which reports the Hasse diagram 
of a small poset, together with its 5 linear extensions. There one can see that the existence of 
incomparabilities in the poset is turned into the existence of LEs, which order poset elements 
differently; in particular, the linear extensions reveal the non-equivalent positions, in the Hasse 
diagram of the original poset, of elements “ b” and “ e”; namely, the former is ranked higher 
than the latter four times out of five, in the set of LEs. Consider now two distributions G and 
F, concentrated on profiles “ b” and “ e” respectively; G dominates F on four linear extensions 
out of five, so the degrees of dominance of G on F and F on G are naturally measured as 4 / 5 
and 1 / 5, respectively. In the approach of Arndt et al., instead, the two dominance degrees 
would be indeterminate. This trivial example shows also that, for distributions concentrated on 
single profiles, our fuzzification procedure reduces to the computation of the so-called mutual 
ranking probabilities (De Loof et al. 2006, 2008; De Loof 2010), while that of Arndt et al. 
would not. So our approach is intrinsically more consistent with the posetic framework where 
FOD is naturally set. Finally, notice that in any linear extension the degree of dominance of 
a distribution over another is determined; this is why the matrices of pairwise dominance 
degrees between distributions, computed as outlined above, have no empty cells. 

3 � The F‑FOD Procedure

In this section, we develop the F-FOD procedure, which takes a MIS as input and produces 
a poset and, finally, a ranking of the compared populations, as outputs. We describe the 
procedure step-by-step, working out a simple example; before turning to the details, how-
ever, we give a non-technical outline of F-FOD, to clarify its logic thread.

(2)p(F ≤ G|𝓁) =
∑

q∈�

pG(q) ⋅ PF(q|𝓁).

(3)p(F ≤ G) = ΔFG =
1

|Ω(�)|
∑

�∈Ω(�)

p(F ≤ G|�).
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3.1 � Outline of F‑FOD

The F-FOD procedure is composed of three main data processing parts, sequentially 
connected, which start with a MIS and end with a ranking of the frequency distributions 
defined on it. In the first part (steps 1.1 and 1.2), the score configurations derived from the 
input MIS are structured into a poset and frequency distributions are compared, by com-
puting the respective dominance degrees, as described in Sect. 2. The resulting system of 
pairwise comparisons, however, is not transitive (the exact meaning of transitivity in this 
setting will be clarified later) and does not allow to draw logical implications on domi-
nance among distributions. Hence, in the second part of the procedure (steps 2.1, 2.2 and 
2.3), the dominance system is turned into a so called min-transitive fuzzy relation De Baets 
and De Meyer (2003) and a dominance poset among distributions is derived from it (in the 
spirit of Annoni et al. 2011). In the third and conclusive part (step 3), a linear order (pos-
sibly with ties) is extracted from the dominance poset and distributions are finally ranked 
Bruggemann and Patil (2011).

3.2 � Details of F‑FOD

We develop F-FOD elaborating on the data taken from a study on health in Denmark Hus-
sain et al. (2016). To avoid too much technical preambles, we provide formal definitions 
when needed along the text.

The data  Data refer to health in Denmark and are taken from The National Health Inter-
view Survey 2010, a dataset presented and analyzed in Hussain et al. (2016). To keep com-
putations simple, we focus on the figures reported in Table 3 of the cited paper, where the 
authors introduce four high-level binary dimensions, v1,… , v4 , which correspond to groups 
of questions pertaining to different aspects of health. A health dimension assumes value 1 
if the respondent is “ free from problems with respect to all indicators in that dimension” 
Hussain et al. (2016), otherwise it assumes value 0, The four dimensions refer to the fol-
lowing general aspects of health (for further details on the specific questions behind them, 
refer to the original paper):

•	 Dimension 1 Subjective and self-reported health.
•	 Dimension 2 Pain or discomfort in shoulder, back, arms, legs...; headaches; sleeping 

problems, depression, anxiety...
•	 Dimension 3 Asthma, allergy; migraine; diabetes; hypertension; chronic bronchitis.
•	 Dimension 4 Tobacco use; excessive alcohol consumption, obesity; unhealthy life 

style...

The respondent population is divided into five subpopulations, based on educational attain-
ment, namely D1 = Basic , D2 = Vocational , D3 = Shorthigher , D4 = Mediumhigher , 
D5 = Longhigher . For each of these populations, Table  1 reports the relative frequency 
distribution, on the set of profiles over the four dimensions.
Step 1.1. Building the Input Poset  The four binary health dimensions give rise to 24 = 16 
different profiles, which are structured into the product order � = 2

4 whose Hasse diagram 
is reported in Fig. 1. As mentioned above, this poset is the domain of the distributions to be 
pairwise compared.
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Step 1.2. Computing the  Matrix Δ of dominance degrees  For each pair of distributions 
on � , we compute the pairwise dominance degrees, following the strategy illustrated in 
Sect.  2. Here, however, a computational problem emerges, since the number of LEs of 
product orders increases extremely fast with the number of attributes and with the number 
of degrees of each of them (for example, poset 24 has more than 4 × 105 LEs, but poset 25 
has more than 1.8 × 1017 LEs), making it impossible, in general, to get the whole Ω(�) . For 
this reason, we introduce a simplification and compute dominance probabilities on a subset 
of Ω(�) , namely on the subset of so-called lexicographic linear extensions (LLEs). Given a 
permutation vh1 ,… , vh4 of the four dimensions of the health MIS, LLEs are obtained order-
ing profiles of � first according to vh1 , then to vh2 and so on, in an “ alphabetic fashion”. For 
the health poset, there are 4! = 24 LLEs, listed in Table 2; calling LEX(�) the set of LLEs 
of � , Formula 3 is then substituted by:

Remark  A complete illustration of the concept and the use of LLEs, and of the pros and 
cons of their employment in posetic analysis, can be found in Fattore and Arcagni (2016); 
here, we just provide some hints, in order to justify the choice. As mentioned in Sect. 2, 
the set Ω(�) of LEs of a finite poset � uniquely identifies it, thus providing a faithful repre-
sentation of its structure. This representation is much more useful, for our purposes, than 
that provided by the attributes comprised in the input MIS, since the latter does not allow 
to directly extract information on comparability degrees among profiles and among dis-
tributions defined over them. By unfolding the input poset in terms of its LEs, we turn “ 
one complex object into many simple objects”, which can be handled much more easily, 
making it possible to extract the desired information, as described previously. As a matter 
of fact, however, a finite poset � can be uniquely identified not only by Ω(�) , but also by 
suitable subsets of it (Fattore 2017; Schröder 2002), so that many poset representations 

(4)Δij = ΔDiDj
=

1

|LEX(�)|
∑

�∈LEX(�)

p(Di ≤ Dj|�).

Table 1   Frequency distributions 
on the health profiles, for levels 
of educational attainment. Source 
Hussain et al. (2016); data 
have been expressed as relative 
frequencies)

Profile Basic Vocat. Short Medium Long

0000 0.0912 0.0254 0.0189 0.0220 0.0096
1000 0.0415 0.0369 0.0512 0.0238 0.0065
0100 0.0092 0.0016 0.0038 0.0062 0.0011
1100 0.0930 0.0810 0.0814 0.0669 0.0528
0010 0.0384 0.0248 0.0224 0.0159 0.0032
1010 0.0790 0.0553 0.0452 0.0407 0.0091
0110 0.0217 0.0052 0.0049 0.0045 0.0000
1110 0.2337 0.2294 0.1995 0.1709 0.1232
0001 0.0144 0.0164 0.0100 0.0060 0.0103
1001 0.0405 0.0337 0.0603 0.0517 0.0476
0101 0.0022 0.0014 0.0039 0.0028 0.0023
1101 0.0679 0.1162 0.1358 0.1826 0.2067
0011 0.0183 0.0094 0.0000 0.0041 0.0095
1011 0.0555 0.0554 0.0408 0.0485 0.0638
0111 0.0038 0.0045 0.0040 0.0032 0.0074
1111 0.1896 0.3034 0.3180 0.3501 0.4468
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are available and can be employed in practice. Such alternative representations, however, 
are not equivalent and choosing one or the other can lead to different results. It can be 
proved that the set of LLEs does provide a representation of the input poset (see Fattore 
and Arcagni 2016) having two pleasant properties: (i) it comprises much less linear exten-
sions than Ω(�) , thus dramatically reducing the computational burden of the F-FOD proce-
dure, and (ii) it gives no privileged role to any attributes, being generated by the set of all 
attribute permutations. So LLEs provide a reasonable compromise between computational 
efficiency and the ability to extract reliable information on dominance. Notice that for the 
poset of Fig. 1, it could be indeed possible to compute dominance degrees on the whole 
Ω(�) , but for more complex posets this is unfeasible; since F-FOD aims to be suitable for a 
wide range of MISes, we consider Formula 4 as the standard choice (further comments on 
this issue can be found in Sect. 5).

To give a concrete idea of the source of fuzziness in the construction of the FOD 
degrees, in Table  2 we report the 24 LLEs of the health poset and in Figs.  3 and 4 we 
depict the cumulative distributions of the five populations over them; there, one sees how 
the dominance between distributions changes as different linear extensions are considered. 
Finally, Table 3 reports the matrix Δ associated to the data of Table 1. A direct inspection 
shows that Long dominates quite neatly the other subpopoulations, while Basic is substan-
tially dominated by all of the other distributions. Dominances among the Vocational, Short 
and Medium populations are instead more nuanced.

Step 2.1. Turning  Δ into a Min‑transitive Fuzzy Relation  The procedure developed in the 
previous step had the aim to “ squeeze” out of the achievement poset, and to load into Δ 
as much information as possible, on first order dominance between distributions. In view 
of partially ordering them and computing a final ranking, however, a major problem is the 
non-transitivity of Δ ; this, in fact, prevents logical implications, about dominance among 
distributions, to be drawn from the knowledge of pairwise dominance degrees. More con-
cretely, let us write Di ⊴x Dj to state that distribution Dj dominates distribution Di to a 
degree equal to x; then, from Di ⊴u Dj and Dj ⊴v Dh , in general nothing can be said on 
the dominance degree of Dh on Di . So, after we compute FOD degrees between distribu-
tions, we are left with a set of pairwise comparisons, which however does not constitute 
a “ comparison system”. This lack of “ dominance transitivity” has major drawbacks on 
the whole comparison procedure, particularly in view of partially ordering distributions. 
In fact, partial orders are indeed transitive relations and, even intuitively, one cannot hope 
to get to them, directly starting from a set of non-transitive comparison degrees. The way 
out to this issue is to turn the original non-transitive matrix Δ into a new transitive matrix 
Δ , which approximates the former and allows for partial orders among distributions to be 
built. First of all, however, it must be specified what we mean by “ transitivity” of a fuzzy 
relation. In its full generality, the concept of transitivity of a fuzzy relation is not trivial 
and is related to the notion of triangular norm (or t-norm, for short, see Lee 2005), which 
is a kind of binary operation used to generalize, to the fuzzy case, the classic logic notion 
of “ and”. The theory of t-norms is not trivial and cannot be addressed here; suffice it to 
say that there are many t-norms, each of which leads to a specific notion of transitivity 
and that, among them, we are interested in the simplest one, which is the min operator. In 
practice, we want to build a system of pairwise comparison degrees such that (Di ⊴u Dj 
and Dj ⊴v Dh) implies (Di ⊴w Dh) with w ≥ min(u, v) , i.e. we want to build a min-transitive 
comparison system. The choice of the min operator is the most natural for our purposes. 
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In fact from min-transitivy fuzzy relations we are able, using standard tools from fuzzy 
relation and poset theory, to partially order the distributions, in such a way that the domi-
nance degrees in each chain of comparisons are guaranteed to be not less than a specified 
minimum (and since we are interested in “ controlling” for the level of dominance of the 
distributions we partially order, this is of primary importance). Our next goal is thus to 
turn the original set of pairwise comparisons, into a min-transitive system. To this aim, 

LE
X

 6

Population fraction

0000

0001

0100

0101

0010

0011

0110

0111

1000

1001

1100

1101

1010

1011

1110

1111

0.0 0.2 0.4 0.6 0.8 1.0

LE
X

 7

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

0.0 0.2 0.4 0.6 0.8 1.0

LE
X

 1
3

Population fraction

0000

1000

0001

1001

0100

1100

0101

1101

0010

1010

0011

1011

0110

1110

0111

1111

0.0 0.2 0.4 0.6 0.8 1.0

LE
X

 2
3

0000

0100

0010

0110

1000

1100

1010

1110

0001

0101

0011

0111

1001

1101

1011

1111

0.0 0.2 0.4 0.6 0.8 1.0

Fig. 3   Cumulative distributions for the Basic (black), Vocational (red), Short (green), Medium (blue) and 
Long (golden) populations of the example pertaining to health in Denmark, along four lexicographic linear 
extensions of the input poset of Fig. 1 (see Table 2). (Color figure online)
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Fig. 4   Cumulative distributions for the Basic (black), Vocational (red), Short (green), Medium (blue) and 
Long (golden) populations of the example pertaining to health in Denmark, along all 24 lexicographic lin-
ear extensions of the input poset of Fig. 1 (see Table 2). (Color figure online)

Table 3   Matrix representation of the fuzzy binary relation of dominance Δ among distributions of Table 1 
(element Δij is the degree of dominance of Dj over Di)

Profile Basic Vocat. Short Medium Long

Basic 1.0000000 0.6674314 0.6673559 0.6958827 0.7593298
Vocat. 0.4733054 1.0000000 0.5899266 0.6230925 0.6976675
Short 0.4696461 0.5846117 1.0000000 0.6226161 0.6978073
Medium 0.4410232 0.5576872 0.5621088 1.0000000 0.6779831
Long 0.3809700 0.5009704 0.5078376 0.5472973 1.0000000
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the key result is that any binary fuzzy relation Δ can be transformed into a min-transi-
tive relation Δ , called the min-transitive closure of Δ (De Baets and De Meyer 2003; De 
Meyer et al. 2004), by using a simple algorithm, due to Floyd (De Baets and De Meyer 
2003). Informally speaking, Floyd’s algorithm changes the entries of matrix Δ “ as little 
as possible” in order to achieve min-transitivity (in this respect, matrix Δ is—or, more 
precisely, represents—the min-transitive binary relation “ closest” to Δ ). Table 4 reports Δ 
for the health example. As expected, some entries of Δ are different from the correspond-
ing entries of Δ , which is in fact just an approximation to the input matrix. In order not to 
produce poor and artificial results, such approximations must be kept under control and 
the degree of approximation of Δ to Δ must be measured. This can be done by computing 
the relative L1 error E, defined as E =

∑5

i,j=1
�Δij − Δij�∕(

∑5

i,j=1
Δij) , which turns out to be 

equal to 0.013; since the diagonal elements of Δ and Δ are always 1, a more honest meas-
ure is E∗ =

∑5

i,j=1
�Δij − Δij�∕(

∑5

i,j=1
Δij − 5) , which equals 0.019. In both cases the relative 

errors are extremely small. For a more proper control on the procedure, it is indeed impor-
tant to check approximation errors on single entries of Δ ; comparing Tables 3 and 4, we 
see that just six entries have been modified by Floyd’s algorithm to assure min-transitivity 
and that the maximum relative error is 0.092 (it occurs for Δ51 ). The min-transitive approx-
imation to the original fuzzy relation thus proves very good.

Step 2.2. Extracting Partial Orders from Δ  In view of partially ordering and ranking distri-
butions D1,… ,D5 , relation Δ must be, so as to say, “ defuzzified” and turned into a crisp 
binary dominance relation. To achieve this, the notion of �-cut must be introduced. Let 
� ∈ (0, 1] and let Δ� be the binary relation defined as follows:

In practice, � acts as a threshold: if the degree of dominance of Dj on Di is lower than � , 
then we state that Dj does not dominate Di , otherwise we state the Dj does dominate Di . 
Δ� is called an �-cut of Δ (see Table 5). As � varies in (0, 1], a sequence {Δ�} of �-cuts is 
generated, where the condition to state dominance becomes progressively stricter. Since Δ 
comprises 15 different entry values, we have 15 different �-cuts, as well. It can be directly 
checked (and proved in general for any min-transitive fuzzy relation Bandler and Kohout 
1988) that the �-cuts of Δ are quasi-orders, i.e. that they are reflexive and transitive, but 
not anti-symmetric, relations. In practice, putting Di ⊴

𝛼 Dj to state that Dj dominates Di 
in Δ� , it may happen that Di ⊴

𝛼 Dj and Dj ⊴
𝛼 Di , even if Di ≠ Dj (for example, in the �

-cut of Table 5, Vocational and Short co-dominate each other). Since we want to get domi-
nance posets, we must restore anti-symmetry, by simply clustering into equivalence classes 

(5)Δ𝛼

ij
= 0 ⇔ Δij < 𝛼; Δ𝛼

ij
= 1 ⇔ Δij ≥ 𝛼.

Table 4   Min-transitive closure Δ of the fuzzy binary dominance relation Δ (in bold, degrees modified by 
Floyd’s algorithm)

Profile Basic Vocat. Short Medium Long

Basic 1.0000000 0.6674314 0.6673559 0.6958827 0.7593298
Vocat. 0.4733054 1.0000000 0.5899266 0.6230925 0.6976675
Short 0.4733054 0.5846117 1.0000000 0.6226161 0.6978073
Medium 0.4733054 0.5621088 0.5621088 1.0000000 0.6779831
Long 0.4733054 0.5472973 0.5472973 0.5472973 1.0000000
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distributions which co-dominate each other in Δ� ; the resulting relations Π� on such classes 
are indeed partial orders indexed by � (e.g. see Table 6). 

Step 2.3. Selection of the Final Partial Order  A distinguished dominance poset Π∗ is now 
singled out of the sequence of 15 �-cut posets Π� , as the dominance poset on distributions 
D1,… ,D5 , finally associated to the input health MIS. As in many multidimensional analy-
sis processes, here the choice of the final poset involves some exogenous considerations by 
the analyst, as to the “ best” � value to select. The choice of Π∗ is supported by three prin-
cipal indicators. First, the �-value itself, which specifies which is the degree of dominance 
accepted as threshold, to state whether a distribution dominates another. Second, the num-
ber of elements n� of the posets Π� , which determines the “ resolution” of the dominance 
posets, i.e. reveals to what extent distributions are clustered together and “ confused” or 
kept as distinct and “ resolved”, as � varies. Third, the ratio R� = C�∕I� between the num-
ber of comparabilities C� and the number of incomparabilities I� of Π� . Usually, R� is high 
for low � values, since in that case Π� is likely to be composed of few, large and compara-
ble equivalence classes, and is low for high � values, when dominance posets are usually “ 
pulverized” into incomparable elements, due to the stricter dominance threshold. The most 
interesting situation is between these two extremes, when Π∗ is neither composed of few 
clusters, nor it is poor of comparabilities, and a non-trivial dominance structure emerges. 
Table 7 reports the set of indicators for the health data and Fig. 5 depicts the Hasse dia-
grams of all 15 �-cut posets Π� . By direct inspection, one sees that as � grows, distribu-
tions are progressively resolved and from � = 0.5899266 they are all kept distinct. The first 
five �-cut posets are complete orders; from � = 0.6226161 on, as the dominance threshold 
becomes stricter, incomparabilities begin to emerge and their number increases, reducing 
the dominance poset to an antichain, when � = 1.0000000 . To single out a distinguished 
poset, we observe that when � is about 0.62 all frequency distributions are resolved and 
distinct and that, around such a value, R� rapidly decreases, producing posets with a non-
trivial structure. We thus may select the critical � value as �∗ = 0.6230925 and the corre-
sponding poset Π∗ = Π0.6230925 (see Fig. 5) as the final dominance poset (notice, however, 
that given the purpose of the example and the low number of poset elements, the choice 

Table 5   Matrix representation 
of � -cut Δ0.58461167 derived from 
Δ , by setting � = 0.58461167 
( Δ0.58461167

ij
= 1 means that Dj 

dominates Di in the quasi-order)

Profile Basic Vocat. Short Medium Long

Basic 1 1 1 1 1
Vocat. 0 1 1 1 1
Short 0 1 1 1 1
Medium 0 0 0 1 1
Long 0 0 0 0 1

Table 6   Incidence matrix of 
the partial order Π0.58461167 
(which is in fact a chain) derived 
from Δ0.58461167 by clustering 
Vocational and Short into the 
equivalence class VS

Profile Basic VS Medium Long

Basic 1 1 1 1
VS 0 1 1 1
Medium 0 0 1 1
Long 0 0 0 1
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has mainly an illustrative aim; for a more realistic example and some general remarks on �
-cut selection, see Sect. 4).

Step 3. Building the Final Ranking  Once poset Π∗ is got, we can stop the procedure and 
content ourselves with a partial order of distributions, or we may want to take a further step 
and extract a final ranking, out of it. Poset theory provides different tools to extract rank-
ings (possibly with ties) from partially ordered sets (Bruggemann and Patil 2011; Neggers 
and Kim 1998); here we integrate into F-FOD the simplest one, based on the computation 
of the average rank. The ranking procedure involves again the set of linear extensions and 
runs as follows:

1.	 Extract all of the linear extensions of Π∗ and build Ω(Π∗).
2.	 For each element q ∈ Π∗ and for each � ∈ Ω(Π∗) , compute the rank r�(q) of q in � , 

which is defined as 1 + the number of edges linking q to the maximum of � (in graph 
theoretical terms, this is 1 + the distance of q from the maximum of �).

3.	 For each q ∈ Π∗ , compute the average r(q) of r�(q) over Ω(Π∗) , getting the average rank 
of the element.

4.	 Order elements based on their average rank (notice that two elements having equivalent 
positions4 within the Hasse diagram of the dominance poset will get the same average 
rank and thus will be tied in the final order).

5.	 To help assessing the robustness of the ranking, complement the average rank with some 
measure of variability, e.g. with the range of ranks assumed by q over Ω(Π∗) , or with 
rank intervals covering (at least) a fixed degree of probability.

Table 7   Indicators relative to the 
sequence of �-cut posets Π� for 
the health distributions

Prog. � n
�

C
�

I
�

R
�

1 0.4733054 1 0 0 –
2 0.5472973 2 1 0 ∞

3 0.5621088 3 3 0 ∞

4 0.5846117 4 6 0 ∞

5 0.5899266 5 10 0 ∞

6 0.6226161 5 9 1 9.00
7 0.6230925 5 8 2 4.00
8 0.6673559 5 7 3 2.33

9 0.6674314 5 6 4 1.50
10 0.6779831 5 5 5 1.00
11 0.6958827 5 4 6 0.66

12 0.6976675 5 3 7 0.43
13 0.6978073 5 2 8 0.25
14 0.7593298 5 1 9 0.11

15 1.0000000 5 0 10 0.00

4  By “ equivalent position” of two poset elements, we mean that the poset is invariant upon exchanging 
their labels.
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As before, building the whole of Ω(Π∗) is likely to be computationally impossible, so 
average ranks are usually computed on a sample of linear extensions, drawn through the 
Bubley-Dyer algorithm (Bubley and Dyer 1999, see also Sect. 5), so extending the range 
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of applicability of the procedure to most cases of practical interest. In our oversimplified 
example, however, poset Π∗ has only three linear extensions, reported in Fig. 6, where one 
can see that elements B and L are always the bottom and the top of the ranking, respec-
tively, while V, S and M vary their positions in the three linear extensions. The final rank-
ing with associated ranges is reported in Table 8.

This concludes the F-FOD process, whose flow is reported in Fig.  7, for ease of 
reference.

4 � An Application to Regional Child Well‑being in the Democratic 
Republic of Congo

We now show F-FOD in action on a slightly more complex dataset, pertaining to child 
well-being in the Democratic Republic of Congo (DRC), for year 2007. Data are taken 
from the paper of Nanivazo (2015), namely from Table 3, on page 244. There, the author 
considers the following four binary attributes:

1.	 Sanitation deprivation: Children with no access to any kind of improved latrines or 
toilets.

Fig. 6   The selected poset of Fig. 5 and its three linear extensions

Table 8   Final ranking of the five health frequency distributions, extracted from Π∗ , together with their aver-
age rank, the highest and lowest ranks over Ω(Π∗) and the corresponding range widths

Distribution Final rank r Highest rank Lowest rank Range width

Long 1 1.0 1 1 0
Medium 2 2.3 2 3 1

Short 3 3.0 2 4 2
Vocat. 4 3.6 3 4 1

Basic 5 5.0 5 5 0
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2.	 Water deprivation: Children with only access to surface water for drinking or for whom 
the nearest source of water is more than a 15 minutes walking distance from their dwell-
ings.

3.	 Shelter deprivation: Children living in dwellings with more than five people per room 
or with no flooring material (e.g., a mud floor).

4.	 Health deprivation: Children for whom the nearest health service provider is more than 
a 15 minutes walking distance from their dwellings.

For each DRC province, and for the entire nation, Table 9 reports the relative frequency 
distributions of people aged 0-17, on each of the configurations of four binary scores 
resulting from the input MIS (0 denotes deprivation and 1 denotes non-deprivation; for 
details on the data, see the original paper). The application of F-FOD is described and 
commented here below.

1.	 The poset � associated to the deprivation MIS is the product order 24 , whose Hasse 
diagram is the same as that in Fig. 1; it comprises 16 different profiles and has 4! = 24 
lexicographic linear extensions.

2.	 Running F-FOD first produces the binary dominance matrix Δ12×12 and its transitive 
closure Δ12×12 ; the latter turns out to be quite close to the former: in fact, the relative 
errors of approximation are E = 0.054 and E∗ = 0.063 , while the maximum relative 
approximation error for a single entry is 0.235. We do not report here the two matrices, 

Fig. 7   Flow of the F-FOD proce-
dure, turning a MIS into a poset 
and a final ranking of frequency 
distributions
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stressing however that, by construction, both of them assign a dominance degree to each 
pair of distributions, while in the original paper the FOD matrix is highly incomplete 
and most entries are empty (see Table 9 of Nanivazo (2015), where 58 inter-provincial 
comparisons out of 110 are indeterminate).

3.	 The sequence of �-cuts extracted from Δ is composed of 77 elements. Indicator R� (see 
Fig. 8) first quickly drops, with some oscillations, as parameter � increases and prov-
inces are being resolved; for � ≥ 0.599 , provinces are all distinct and the cardinality of 
the dominance posets is 12. From about � = 0.600 on, R� decreases more smoothly, the 
dominance posets progressively lose comparabilities and their structure approaches that 
of an antichain (where all provinces become incomparable). A value of � about 0.600 
can thus be considered as the lower bound for the choice of the final dominance poset 
Π∗.

4.	 In order to determine an upper bound for the identification of Π∗ , we check for the 
stability of the provincial rankings associated to the �-cut posets. Figure 9 depicts the 
average ranks of DRC provinces, and their corresponding rankings, for the elements and 
the values of the �-sequence. The plots show that: (i) over a wide part of the �-sequence 
(up to about � = 0.72 ), the ranking is stable; (ii) in that range, DRC provinces can be 
grouped into four clusters (namely bottom—{ETR}, middle-low—{BDD, ORT, NKV, 
KOC}, middle-high—{DRC, BCO, MNM, SKV, KTG, KOT} and top—{KSS}); (iii) 
around � = 0.73 (50th element of the �-sequence), the middle-high and middle-low 
groups tend to mix and the rankings become unstable; (iv) the instability increases as 
� approaches to 1, when also ETR and, eventually, KSS get involved into the mixing 
(there, the dominance posets become too similar to antichains and lose any capability 
to order provinces). Interestingly, the “ transition to chaos” of the plots occurs quite 

Table 9   Frequency distribution on deprivation profiles, for DRC regions. Source Nanivazo (2015)

BCO Bas-Congo, BDD Bandundu, DRC Democratic Republic of Congo, ETR Equateur, KOC Kasai-Occi-
dental, KOT Kasai-Oriental, KSS Kinshasa, KTG Katanga, MNM Maniema, NKV North-Kivu, ORT Orien-
tale, SKV South-Kivu

Profile DRC KSS BCO BDD ETR ORT NKV MNM SKV KTG KOT KOC

0000 0.31 0.03 0.31 0.34 0.57 0.47 0.40 0.19 0.22 0.22 0.17 0.36
1000 0.04 0.04 0.01 0.02 0.01 0.03 0.15 0.03 0.11 0.06 0.02 0.03
0100 0.14 0.01 0.06 0.07 0.13 0.25 0.08 0.35 0.16 0.10 0.24 0.16
1100 0.04 0.04 0.00 0.00 0.01 0.04 0.01 0.03 0.04 0.10 0.08 0.00
0010 0.03 0.02 0.01 0.11 0.01 0.01 0.01 0.01 0.02 0.01 0.01 0.02
1010 0.02 0.06 0.01 0.00 0.00 0.02 0.03 0.01 0.05 0.02 0.02 0.00
0110 0.01 0.02 0.03 0.00 0.00 0.00 0.02 0.01 0.03 0.00 0.04 0.01
1110 0.03 0.12 0.02 0.00 0.01 0.01 0.03 0.00 0.04 0.07 0.05 0.00
0001 0.15 0.03 0.24 0.40 0.16 0.08 0.07 0.11 0.10 0.06 0.07 0.22
1001 0.03 0.06 0.02 0.01 0.00 0.01 0.10 0.03 0.03 0.06 0.03 0.06
0101 0.06 0.01 0.10 0.02 0.05 0.04 0.04 0.17 0.05 0.07 0.11 0.11
1101 0.04 0.09 0.02 0.00 0.00 0.03 0.01 0.02 0.04 0.08 0.12 0.00
0011 0.01 0.03 0.02 0.02 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.01
1011 0.02 0.12 0.08 0.00 0.00 0.00 0.01 0.00 0.01 0.02 0.01 0.01
0111 0.01 0.02 0.02 0.00 0.01 0.00 0.02 0.02 0.03 0.00 0.00 0.01
1111 0.06 0.31 0.06 0.00 0.00 0.01 0.01 0.00 0.07 0.13 0.03 0.00
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suddenly at � = 0.73 ; this value is thus the searched natural upper bound for the choice 
of Π∗.

5.	 The “ critical region” where to look for the final dominance poset Π∗ is thus between 
about � = 0.6 (where all provinces are split) and about � = 0.7 (just before the beginning 
of the ranking instability). To see how the structures of the dominance posets change 
in that interval, in Fig. 10 we depict the Hasse diagrams of the dominance posets cor-
responding to � = 0.6063265 (19-th element of the sequence) and � = 0.7085943 (42-th 
element of the sequence). The diagrams are quite different, as revealed by the respective 
numbers of comparabilities and incomparabilities (59 and 7 for Π0.6063265 ; 36 and 30 for 
Π0.7085943 ) and by the different lengths5 of their longest chains (8 and 4, respectively).

6.	 The rankings extracted out of Π0.6063265 and Π0.7085943 , however, basically depict the same 
situation (see Fig. 9; the rank intervals have been constructed so as to assure a prob-
ability coverage of at least6 90%, over the set of linear extensions of the posets). Given 
the structure of the dominance posets, KSS and ETR occupy the top and the bottom of 
the rankings and provinces having equivalent positions in the original posets are ranked 
at the same level and with the same rank intervals (possible small differences are due 
to the numerical approximations involved in the computations). The main difference 
between the two rankings stems in the widths of the rank intervals, which are larger for 
Π0.7085943 , as a consequence of the increased number of incomparabilities.

All in all, given that: (i) a higher value of � is preferable (being the threshold to “ declare” 
the dominance of a distribution over another); (ii) making � greater does not change signifi-
cantly the ranking, but (iii) increase the rank widths (which is a more conservative choice), 
we select Π0.7085943 as the final dominance poset associated to the 12 distributions defined 

Fig. 8   Graph of R� , as a function 
of the � values
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6  Dealing with discrete variables, it is in general not possible to build rank intervals covering exactly the 
desired probability level.

5  The length of a chain is defined as the number of edges in it Davey and Priestley (2002).



23F-FOD: Fuzzy First Order Dominance Analysis and Populations…

1 3

on the deprivation MIS and assume the corresponding ranking, shown in the bottom panel 
of Fig. 11, as a realistic picture of child well-being ordering of provinces in the Democratic 
Republic of Congo.

Remark  It is now worth providing some general comments on the problem of identify-
ing the distinguished �-cut, out of the sequence of � values. Considering both the health 
(Sect. 2) and the child well-being examples, it is clear that the choice of the final poset is 
the most critical step, in the whole procedure, and that there is no “ mechanical” way to 
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Fig. 9   Left upper plot: average ranks of DRC provinces associated to the sequence of �-cut posets; right 
upper plot: rankings of DRC provinces associated to the sequence of �-cut posets; left lower plot: average 
ranks of DRC provinces associated to the sequence of � values; right lower plot: rankings of DRC provinces 
associated to the sequence of � values. The plots clearly reveal how provinces are resolved as one moves 
along the �-cut sequence and how, towards the end of it, all provinces “ collapse” together. Provinces are 
listed on the left side after the average ranks and the ranking extracted from the 15th element ( Π0.5930417 ) 
of the sequence (the first element such that all of the provinces are resolved). Province labels: BCO Bas-
Congo, BDD Bandundu, DRC Democratic Republic of Congo, ETR Equateur, KOC Kasai-Occidental, KOT 
Kasai-Oriental, KSS Kinshasa, KTG Katanga, MNM Maniema, NKV North-Kivu, ORT Orientale, SKV 
South-Kivu. (Color figure online)
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perform it. While this choice is supported by various indicators, which can reasonably and 
quite neatly lead to identify a range of candidate � cuts, it intrinsically involves some sub-
jectivity, as to the specific � to pick up. This kind of subjectivity is indeed typical of many 
statistical procedures, both descriptive and inferential. In Principal Component Analysis, 
and in many other dimensionality reduction procedures, the choice of the number of com-
ponents or dimensions to retain is basically up to the analyst, although some general crite-
ria can be invoked. Similarly, for the choice of the critical p-value, in statistical hypothesis 
testing. In the F-FOD framework, the problem arises since choosing a distinguished poset 
amounts at partly disregarding the nuances and ambiguities affecting the system of distri-
bution comparisons. The most faithful representation of such nuances is the �-cut sequence 
itself, but since in view of decision-making a single poset (and even a final ranking) is 
required, one is forced to a choice which, in some cases, can be at odds with the very 
nature of the issue. Metaphorically, this is like picking up a still image (a frame) out of a 
movie, “ losing the dynamics of the scene”, so as to say. One of the goals of the F-FOD 
procedure is to provide outputs capable to unveil the “ nuanced complexity” of the com-
parison systems, making the analyst more aware of it and of the critical issues involved in 
the choice of the final poset and ranking.

ETR
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BDD

DRCBCO

MNM

KOC NKV
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SKV
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Fig. 10   Left: dominance poset Π0.6063265 ; right: dominance poset Π0.7085943 . Province labels: BCO Bas-
Congo, BDD Bandundu, DRC Democratic Republic of Congo, ETR Equateur, KOC Kasai-Occidental, 
KOT Kasai-Oriental, KSS Kinshasa, KTG Katanga, MNM Maniema, NKV North-Kivu, ORT Orientale, SKV 
South-Kivu
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5 � Computational Issues

We finally provide a brief remark on computational aspects. The computations needed to 
work out the deprivation exercise of Sect. 4 took less than 6 seconds, on a standard pc (see 
"Appendix 2", for details). This shows that F-FOD is quite fast, on data of that complexity. 
The use of F-FOD, however, is by no means limited to binary attributes, as in the examples 
provided in the paper. Clearly, as data complexity grows, computation times increase more 
than linearly in the number of attributes and in the number of the degrees of the measure-
ment scales. With 10 attributes, for instance, the number of lexicographic linear extensions 
is 3628800 and, if some tens of distributions are to be compared, the resulting computa-
tional effort may be relevant. In case the number of attributes, and of LLEs as well, should 
grow excessively, the computations of dominance degrees could be based on a sampling 
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Fig. 11   Rankings extracted from dominance posets Π0.6063265 (above) and Π0.7085943 (below), with rank 
intervals with at least 90% of coverage probability. Province labels: BCO Bas-Congo, BDD Bandundu, 
DRC Democratic Republic of Congo, ETR Equateur, KOC Kasai-Occidental, KOT Kasai-Oriental, KSS 
Kinshasa, KTG Katanga, MNM Maniema, NKV North-Kivu, ORT Orientale, SKV South-Kivu
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strategy, as also mentioned at the end of Sect. 3, using the Bubley-Dyer algorithm7 Bubley 
and Dyer (1999) to sample almost uniformly from the set of lexicographic linear exten-
sions. This would extend the applicability of F-FOD, making it a practical tool for most of 
the socio-economic applications of FOD analysis, proposed in the literature.

6 � Generalization

The F-FOD procedure developed in previous sections has been illustrated with reference 
to product orders, derived from MISes. This is, in fact, the most natural setting where to 
perform populations comparisons, starting from ordinal indicator systems. However, the 
F-FOD procedure is by no means confined to this special kind of posets and can be applied 
to any finite partially ordered set (as implicitly anticipated, in the example of Fig. 2). Actu-
ally, dealing with posets other than product orders is quite frequent and usually occurs in 
two cases: (i) when the poset is not derived by a MIS (e.g. when a set of alternatives is 
partially ordered according to incomplete preferences) or (ii) when the poset of score con-
figurations derived from the input MIS is an extension (see Sect. 2) of the product order 
associated to the MIS itself (this may happen, for example, when some indicators in the 
MIS are considered as more relevant than others, as explained in Fattore 2016). In these 
cases, no modification has to be made to the logic thread of the procedure; the only issue is 
that pairwise dominance degrees between distributions could have to be computed on the 
whole set of linear extensions (at present, not implemented in PARSEC), thus increasing 
the complexity of the computations (in fact, for posets not arising from MISes, the concept 
of lexicographic linear extensions is not defined).

7 � Conclusion

Comparing and ranking populations assessed on multidimensional systems of ordinal indica-
tors is definitely a key step, in order to get synthetic views of complex social issues, to track 
their internal dynamics and to assess and to communicate the effects of policies. Many com-
parative studies are nowadays based on the FOD criterion, which is accepted as the reference 
tool for robust comparisons among populations; it is then crucial, for procedures implement-
ing FOD analysis, to be well-founded, reliable and effective in practice. F-FOD has been 
designed and developed to fulfill these requirements, by providing social scientists with a 
dominance analysis framework which: (i) is built on firm mathematical and methodological 
bases, (ii) proves much more effective, in reconstructing comparison patterns, than the boot-
strap approach proposed by Arndt and coauthors Arndt et al. (2012), (iii) is computationally 
sufficiently light, to be applied in most cases of practical interest and (iv) is implemented and 
freely available in the R package PARSEC. F-FOD enriches the statistical toolbox developed 
from applying posetic algorithms to data analysis and shows that multidimensional systems of 
ordinal indicators can be treated and analyzed in a fully consistent and effective way, by using 
the “ grammar of ordinal data”, i.e. partial order theory. This is of great importance, given the 

7  The Bubley-Dyer algorithm is, to our knowledge, the most efficient algorithm for quasi-uniform sampling 
from the set of linear extensions of a poset. Based on it, an algorithm for quasi-uniform sampling of LLEs 
could be easily derived.
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spreading of this kind of data in socio-economic sciences and this paper aims to be also an 
invitation, for social scientists, to integrate partial order concepts in their daily data analysis 
practice.

Appendix 1

In this Appendix, we provide the proof of the following proposition, which plays a fundamen-
tal role in the development of F-FOD (see Sect. 2):

Proposition  Let � be a finite poset; then F ≤FOD G on � if and only if, for each linear 
extension � of � , F ≤FOD G on �.

Proof  (Necessity) Let F ≤FOD G in � and let � be a linear extension of � . Consider an 
element q and its down-set �q in � ; �q is the union of two subsets, namely the subset A of 
elements lower than or equal to q in � (i.e. the down-set ↓q of q in � ) and the subset B of 
elements of �q which are incomparable with q in � (which is possibly empty). As a conse-
quence, �q , as a set, is the same as the down-set C of � generated by B ∪ {q} (i.e. the set 
of elements p of � such that p ≤ y , for at least one y ∈ B ∪ {q} ). Since F ≤FOD G in � , it 
holds:

Since q is arbitrary, and � is a linear order, we get F ≤FOD G in � . 	� □

(Sufficiency) Let F ≤FOD G for each linear extension � of � ; let � be a down-set of � and let 
n be the cardinality of � . There exists at least one linear extension � such that the elements of � 
are the first (from below) n elements q1,… qn of � . Since F ≤FOD G in � , it holds

Since this holds for any down-set � , it is proved that F ≤FOD G in �.

Appendix 2

In this appendix, we report the R code used to elaborate the example pertaining to child well-
being in the Democratic Republic of Congo (Sect. 4). Readers may easily replicate the compu-
tations and use the following scripts for further applications.

1.	 Definition of the set of binary profiles. 

(6)
∑

p∈�q

G(p) =
∑

p∈C

G(p) ≤
∑

p∈C

F(p) =
∑

p∈�q

F(p).

(7)
∑

p∈�

G(p) =

n∑

i=1

G(qi) ≤

n∑

i=1

F(qi) =
∑

p∈�

F(p).
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2.	 Data reported in Table 9 are put into the data.frame CONGO (notice that the profiles in 
CONGO must be listed in the same order as in prf).

3.	 Application of the F-FOD procedure. 

4.	 Function FFOD returns several results (e.g. the matrix Δ of dominance degrees and the 
cover matrices of the �-cut posets) and feeds the function rank_stability, which com-
putes in each �-cut poset the average rank of each profile and the rank intervals with the 
chosen least coverage probability. 

5.	 The graphs shown in Fig. 9 are finally produced by: 

Running the above computations took 5.46 secs on a pc equipped with Intel(R) Core(TM) 
i7-3632QM CPU @ 2.20GHz, 8GB ram, Windows 10, R version 3.4.3 and R Studio 
1.1.382.
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