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Abstract In the educational field, it is common to analyze test data through item 
response theory models. In this context, a key role is played by item characteristic curves 
(ICCs) and item information curves (IICs). In many real cases, practitioners are interested 
in understanding if some factors have a significant influence on the probability of correctly 
answering items. In the literature, this problem has been addressed by applying the stand-
ard analysis of variance model, which is based on the total scores or the proportion of 
correct responses. However, this method needs to meet some strong assumptions and may 
present some limitations because it does not consider useful information typical of the IRT, 
such as the shapes of the ICCs and IICs, which provide interesting insights for different 
ability levels. To overcome these issues, this research suggests the use of the functional 
analysis of variance approach and a novel functional tool in the IRT context. The main 
advantages of this approach are that it is distribution-free and allows us to check the degree 
of consistency with the hypothesis of equality among mean curves for different ability lev-
els. Specifically, the proposed method is applied on ICCs and IICs for improving the exist-
ing techniques in the educational studies. A real dataset drawn from the IPRASE Trentino 
Language Testing Survey 2016 is considered. The final purpose of this study is to provide 
additional tools for scholars and practitioners in defining specific educational plans.
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1 Introduction

In the global economy, foreign languages proficiency has become an increasingly 
important issue. The ability to understand and communicate in other languages is recog-
nized as a driver of economic growth, wealth, and competition because it contributes to 
the cultural richness of our society, increases personal fulfilment, and encourages global 
citizenship. As a consequence, the promotion of foreign language instruction represents 
an integral part of learning process and a considerable effort is made in order to rede-
fine educational systems in the modern global world. In this context, the Council of 
Europe has developed the Common European Framework of Reference (CEFR) for the 
language learning, teaching, and assessment (Council of Europe 2011). This document 
promotes methodological innovations for designing teaching programmes, encourages 
the development of a communicative approach, and enables comparison across edu-
cational systems. Obviously, the revision of foreign languages teaching policies raises 
the need of assessing the level of students competencies through periodic standardized 
tests. However, in Italy, such information is not yet available. This aspect highlights the 
gap between foreign language and other disciplines, such as maths and Italian language, 
which are subject to periodic national evaluations. Thus, it seems necessary to foster ini-
tiatives that provide valid, reliable, and accurate information on students skills, as is the 
case for other disciplines. For this reason, in 2016, the Autonomous Province of Trento 
(in Northern Italy) has approved the “Trentino Trilingual Plan 2016–2020” to improve 
the knowledge of English and German languages in the provincial schools (Covi and 
Dutto 2017). This plan defines learning objectives, modalities, and application tools 
for the provincial school system. The research centre IPRASE (Provincial Institute for 
Experimental Research and Educational Research) has been designated for monitoring 
the implementation of the strategic plan. At this purpose, the IPRASE has developed the 
IPRASE Trentino language testing (TLT) 2016 for assessing students language skills 
in German and English. The TLT 2016 represents the first systematic initiative at the 
provincial level for evaluating foreign language skills and places the Trentino educa-
tional system within a common international framework. Indeed, it is a commonplace 
to claim the importance of assessment in language teaching and learning. Teachers need 
to know learner acquired skills in order to individuate their strength and weakness, and 
plan their instruction appropriately.

In the educational field, tests for students assessment are analyzed through item response 
theory (IRT) models. They refer to a family of latent trait models used to describe the asso-
ciation between the response behaviour of subjects to a set of categorically scored items 
and the underlying latent trait, which is indirectly measured by the items (Lord and Novick 
1968a). This relation is given by the item characteristic curve (ICC), which shows how 
the probability of success on a test item changes as the level of the latent trait increases or 
decreases. Thus, the probability of a correct response to an item is modeled as a continuous 
function of the item parameters and the subject ability. In most parametric families of IRT 
models, it is assumed that the ICC is included in a restricted class of functions defined by 
specific mathematical models, such as the logistic function. IRT models allow to examine 
latent constructs in a rigorous way, providing more accurate and consistent results com-
pared to traditional measurement instruments, such as the Classical Test Theory (Ayala 
2009). Indeed, IRT offers a powerful framework for understanding and optimizing tests in 
that they reveal how items and tests perform at all levels of the latent trait (O’Connor et al. 
2015; Chen et al. 2013; Ceccatelli et al. 2013).
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In the IRT context, another source of information is given by the item information curve 
(IIC), which reveals the amount of information that an item provides at a particular value of 
the latent trait. IICs play an important role in test development and item evaluation because 
they may highlight ability levels that are inadequately covered by the items.

Generally, tests assessment through IRT models focuses on the analysis of item parame-
ters (i.e. difficulty, discriminatively, and so on). However, because ICCs and IICs are func-
tions in a continuous domain (the subject ability), it is possible to analyze them through the 
functional data analysis (FDA) approach (Ramsay and Silverman 2005; Ferraty and Vieu 
2006). In this context, most of the proposed approaches recommend to estimate the shape 
of the item characteristic curve with non-parametric techniques, such as Kernel regression 
(Ramsay 1991) or B-splines expansion (Rossi et al. 2002; Matthew 2007), without prior 
assumptions about the ICC functional form. On the contrary, Battista and Fortuna (2016) 
have suggested an alternative method that combines the parametric specification of the 
common IRT with the FDA framework. This approach allows to preserve the usual inter-
pretation of item parameters but takes advantage of functional data analysis tools. Indeed, 
the FDA approach grants a deeper analysis of those phenomena varying in a fixed domain, 
and, in an educational framework, it enables the evaluation of items behavior for all levels 
of the latent trait. For example, the graphical inspection of ICCs and IICs plays a key role 
in the IRT framework because it might show problematic items, which should be revised 
or excluded from the test. However, this procedure is not always so straightforward. In this 
context, the FDA approach may be helpful to improve the graphical interpretation by ana-
lyzing the behaviour of ICCs and IICs with additional functional tools (such as integrals, 
derivatives, and so on; Fortuna and Maturo 2018). Moreover, functional versions of clas-
sical statistical methods can be extended to IRT without losing information about different 
ability levels. For example, a functional k-means algorithm could allow to identify a set 
of homogeneous clusters among the items by jointly consider items and students proper-
ties over the whole domain (Battista and Fortuna 2016). Moreover, functional principal 
component analysis can be used to explore the variations across items in the shapes of the 
ICCs (Rossi et al. 2002), and functional linear discriminant analysis may be useful to study 
differential item functioning (Liu 2016) for each ability levels. Thus, the FDA approach 
can be viewed as a powerful tool to improve the existing techniques in educational stud-
ies. This aspect is particularly evident when one wishes to test for a treatment effect on 
the probability of correctly answering an item. This problem is usually dealt with a stand-
ard one-way analysis of variance (ANOVA). However, the applicability of such method is 
not always straightforward in the educational context because we consider a latent trait, 
whereas ANOVA uses an observable outcome variable. Indeed, the ANOVA model has 
been applied to the total scores or proportion of correct responses, which are derived from 
classical test theory (Carpita 2017). The FDA approach provides a useful solution to this 
problem because it grants to extend ANOVA to the IRT context. Indeed, functional analy-
sis of variance (FANOVA) allows to test the possible differences in responses according to 
the treatments used, considering that the data are curves. Moreover, this method permits 
to analyze possible treatment effects for different levels of students ability by providing 
the instructor with useful directions for defining specific educational plans. In this study, 
we extend the FANOVA model (Ramsay and Silverman 2005) to the IRT context; spe-
cifically, we test the equality of ICCs and IICs across multiple experimental conditions 
by combining the classical parametric specification of IRT models and the FDA approach 
(Battista and Fortuna 2016). Hence, we propose the FANOVA approach for a parametric 
model with a functional form that is known in advance, preserving the usual interpretation 
of item parameters.
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In this context, a new functional measure is proposed for evaluating the degree of con-
sistency with the null hypothesis for different ability levels: the functional P-statistic (func-
tional ratio).

The proposed functional approach is applied to a real dataset drawn from the IPRASE 
Trentino Language Testing (TLT) Survey 2016. The test has been administered with four 
different versions (QSET-Question set) whose difficulty has been recognized by a team of 
experts as equivalent from a linguistic point of view. With reference to these data, our pur-
pose is to check if the factor QSET (with treatments given by the different versions of the 
test) has a statistical significant effect on the functional response variables ICCs and IICs. 
The remainder of this paper is organized as follows. Section 2 illustrates the materials and 
methods. In particular, it begins with the analysis of standard parametric IRT models in a 
functional framework and continues with a brief overview of the FANOVA model. In addi-
tion, it provides the proposed functional tool for assessing the degree of consistency with 
the null hypothesis of equality of mean functions. In Sect. 3, we illustrate the main results 
obtained by applying the proposed approach to test data drawn from the TLT 2016. Finally, 
Sect. 4 presents the discussion and conclusions of this study.

2  Materials and Methods

2.1  Functional Parametric IRT Models

IRT encompasses a variety of statistical methods to study a latent trait (usually the sub-
ject ability) associated with a set of categorically scored items in a test (Lord and Novick 
1968b). The core of IRT is the ICC, which provides a mathematical model to explain the 
relationship among item characteristics, subject ability and the probability of a correct 
response. The basic representation of IRT models for dichotomous items (Lord and Novick 
1968b) is given by:

where X represents the observed response on the test item, with X = 1 representing the cor-
rect responses and X = 0 the incorrect one; � is a vector of parameters, which denotes the 
characteristics of the item; � represents a proficiency parameter for the subject; and f is a 
function which defines the relationship among the item parameters, the subject ability and 
the probability of a correct response. Different IRT models arise from different functional 
forms assumed for f, and different number of item parameters. The most common paramet-
ric IRT models define f in Eq. 1 as a logistic function and specify one, two, or three item 
parameters, giving rise to the so-called one (1PL), two (2PL), and three (3PL) parametric 
logistic models, respectively. The 3PL model (Birnbaum 1968) represents the general form 
and specifies the ICC of the j-th item ( j = 1,… , J ) as follows:

where Xij denotes the observed response of the i-th subject ( i = 1,… , n ) to the j-th item 
( j = 1,… , J ), �i indicates the ability of the i-th subject, while �j , �j and �j are the pseudo-
guessing, the discrimination, and the difficulty parameter of the j-th item, respectively. For 

(1)P(X = 1|�) = f (�,�)

(2)ICCj(�) = P(Xij = 1|�i, �j, �j, �j) = �j + (1 − �j)
exp[�j(�i − �j)]

1 + exp[�j(�i − �j)]
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a detailed explanation of the item parameters see Lord and Novick (1968b) and Birnbaum 
(1968).

The 1PL and 2PL models can be considered as special cases of Eq.  2 (Lord 1980). 
Indeed, the 2PL model (Birnbaum 1968) can be obtained by fixing �j to 0; while the 1PL 
model or Rasch model (Rasch 1960) can be derived by additionally fixing �j to 1. The 
basic assumptions behind the above models are that the probability of a correct response 
increases as the ability of the examinees increases (monotonicity), the items are indicators 
of a single continuous latent variable (unidimensionality), and the item responses are dis-
tributed independently, given the value of the latent trait (local independence).

Because, in the IRT framework, test data are expressed as curves, the FDA approach 
(Ramsay and Silverman 2005) can be adopted. In particular, this study refers to the 
approach proposed by Battista and Fortuna (2016) that extends parametric IRT models 
by using some techniques of the FDA framework. In this context, the observed data con-
sist of a set of item response functions, ICCj(�i) , j = 1, 2,… , J , one per test item, that are 
expressed by a specific parametric model. Thus, ICCs belong to a function space, say S, 
with m real parameters, that is:

where f is a parametric function; � = (�1, �2,… , �m)
� represents the item parameter vector; 

� is the domain of the function; and S is a subset of some Lp space. The peculiarity of test 
data is that, under the IRT models, the functional form of the ICC is known in advance. For 
this reason, the approximation of the function underlying the data through smoothing tech-
niques can be avoided (Battista and Fortuna 2016, 2017; Battista et al. 2017; Maturo et al. 
2016, 2018; Maturo and Di Battista 2018; Maturo 2018). The study of test data through 
the combined use of the IRT parametric specification and the FDA approach yields several 
advantages. Firstly, it allows to preserve the usual interpretation of test data in the IRT 
framework by exhibiting desirable statistical and mathematical properties of their para-
metric specification. Secondly, it allows to analyze the item as a function, providing more 
accurate information about the data. Indeed, the main advantage of the FDA approach is 
the analysis of curve characteristics with functional tools. In this way, each item can be 
studied through the shape of the item characteristic curve, which can be evaluated at each 
point of the latent trait. Finally, contrary to the standard FDA approach, the use of the ICC 
parametric form avoids that the results vary according to the method used for fitting the 
curves.

This approach can be easily extended to IIC. The latter reveals the amount of informa-
tion that an item provides at a particular value of the latent trait and can be viewed as a 
statistical indicator of the quality of ability estimation. Specifically, the IIC for the j-th item 
can be defined as follows (Hambleton and Linden 1997):

where ICC�
j
(�) represents the derivative of ICCj(�) with respect to � . Because IIC provides 

information for all values of � , it is usually represented as a function of the latent trait 
rather than as a single value. IICs play an important role in test development and item eval-
uation. Indeed, item selection for test construction is based on the analysis of IICs which 
might reveal poorly informative items, and thus suggest to substituting other questions in 

(3)S = {f (�;�)}

(4)IICj(�) =

[
ICC�

j
(�)

]2

ICCj(�)
(
1 − ICCj(�)

)
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their place. On the other hand, IICs can also show areas in the �-scale that are inadequately 
covered, and which would benefit by the addition of extra test items.

Although the IRT parametric specification yields several advantages, it is important to 
highlight that it entails the risk of not accounting for unusual features of the items, such 
as the non-monotonicity and other systematic shape departures that can not be accommo-
dated in existing models (Ramsay 1991). However, if the parametric IRT models are able 
to capture the characteristics of test data, then they represent a suitable choice due to their 
statistical and mathematical properties (Ramsay 1997) and their easy interpretation for 
practitioners.

2.2  The FANOVA Model

The functional version of the ANOVA model, called FANOVA, focuses on cases where 
the independent variable is a scalar and the response variable is a curve, which is decom-
posed into contributions of the overall mean and the main effects, which are both func-
tional (Ramsay and Silverman 2005; Battista et al. 2016; Maturo et al. 2017; Di Battista 
et al. 2014). Our research extends this method to the IRT context in order to understand 
if some factors have significant influence on ICCs and IICs. As for the FDA approach, the 
first step is to reconstruct the functional form of the data. To this purpose, the most com-
mon methods are the parametric approach of Ramsay and Silverman (2005) and the non-
parametric one of Ferraty and Vieu (2006). However, in the IRT context, ICCs and IICs 
can be expressed by parametric models known in advance, such as the 3PL model in Eq. 2. 
The estimation of this class of models is usually performed using the marginal maximum 
likelihood estimation (Bock and Aitkin 1981), which allows us evaluating the goodness of 
fit of the model. Once the raw-data are expressed as functions, we can adopt the FANOVA 
model following the parametric point-wise approach of Ramsay and Silverman (2005).

Assuming that there is a single factor with K different levels (k = 1,… ,K) , the 
FANOVA model for the j-th item (j = 1,… , J) in the k-th treatment can be expressed as 
follows:

where �jk(�) can be the ICC or the IIC of the j-th item in the k-th treatment; �(�) is the 
average function across all treatments; ak(�) represents the specific functional effect of 
being in the k-th treatment, with:

for their unique identification; and �ij(�) is the residual error function, which expresses the 
unexplained variation of the j-th item within the k-th treatment. The FANOVA model in 
Eq. 5 can be expressed in matrix notation as follows:

where �(�) is a vector of J functional observations; 
�(�) = [�1(�) = �(�), �2(�) = a1(�),… , �K+1(�) = aK(�)]

� is a vector of K + 1 parameter 
functions; Z is a (J,K + 1) design matrix, similar to that used in traditional ANOVA for 
coding group membership; and �(�) is a vector of J residual functions. The parameter 

(5)�jk(�) = �(�) + ak(�) + �jk(�) j = 1,… , J; k = 1,… ,K

(6)
K∑

k=1

ak = 0 ∀� ∈ [�min, �max]

(7)�(�) = Z�(�) + �(�)
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vector �(�) can be estimated using the standard least squares criterion, that is by minimiz-
ing the residual sum of squares:

subject to the constraint (6). It is possible to minimize the discrete version of Eq. 8, that is: 
||�(�) − Z�(�)||2 , individually for each point of the domain, leading to the pointwise least 
squares estimates of the functional parameters (Ramsay and Silverman 2005):

Thus, we calculate �̂(�) for a suitable grid of values of � using ordinary regression analysis, 
and then interpolate between these fitted values generating continuous estimates.

Within the FANOVA framework, one wants to test for a difference in mean curves from 
K groups anywhere in � . The FANOVA testing problem can be expressed as follows:

To solve this problem, a pointwise F statistic can be used (Ramsay and Silverman 2005):

where SSY(�) represents the total sums of squares function:

where �̂�(𝜃) is an estimate of the overall mean function. SSE(�) is the error sums of squares 
function:

where �̂jk(�) is the predicted ICC or IIC value for the j-th item in the k-th treatment from a 
fitted FANOVA model such as that in Eq. 7.

Equation 11 provides the observed F-statistic function; that is a function built by cal-
culating the Fisher test statistic at each point of the domain. Thus, in the IRT framework, 
Fobs(�) is a function of � and varies over the whole domain, unlike classical statistical tests.

In many circumstances (e.g. in a functional context) the null distribution of the test statistic 
is unknown, and thus a permutation test can be adopted. The latter is an alternative way to 
test for differences in population means in a non-parametric fashion; hence, we do not need to 
make specific assumptions about the sampling distribution of the test statistic. The basic idea 
is to consider the sampling distribution of some test statistic under all possible permutations 
of the labels of the observed data. Specifically, in a functional context, this method is based on 
randomly shuffling curve labels and calculating the test statistic each time, obtaining Fperm(�) . 
This process is repeated several times, say nperm, in order to obtain the sampling distribution 
of the test statistic when the null hypothesis is true. To perform inference across each point 

(8)LMSSE(�) = ∫
[
�(�) − Z�(�)

]�[
�(�) − Z�(�)

]
d�

(9)�̂(�) = (ZT
Z)−1ZT�(�)

(10)
H0 ∶ a1(�) = a2(�) = ⋯ = aK(�)

H1 ∶ ai(�) ≠ ai� (�) for at least one � and i ≠ i�

(11)Fobs(�) =

[
SSY(�) − SSE(�)

]
∕(K − 1)

SSE(�)∕(J − K)

(12)SSY(𝜃) =

J∑

j=1

K∑

k=1

[
𝛷jk(𝜃) − �̂�(𝜃)

]2

(13)SSE(�) =

J∑

j=1

K∑

k=1

[
�jk(�) − �̂jk(�)

]2
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of the domain, we can compare Fobs(�) in Eq. 11 with the permutation �-level critical value 
(Ramsay and Silverman 2005). To find the pointwise 0.05 critical value of the null distribu-
tion, at each point of the domain, we calculate the 95th percentile of the permuted F-statistic. 
Calculating the 95th percentile of the maxima of the nperm permutations, the maximum 0.05 
critical value of the null distribution can be used as a reference to test the null hypothesis over-
all the domain (Ramsay and Silverman 2005).

2.3  The Functional P‑Statistic (Functional Ratio) for Evaluating the Degree 
of Consistency with the Null Hypothesis for Different Ability Levels

Following the classical FANOVA approach (Ramsay and Silverman 2005), we obtain the plot 
of Fobs(�) , which allows us to test if there are any significant differences among groups. How-
ever, given the specificity of the IRT context, practitioners and scholars may be interested in 
understanding how much the test is poorly formulated for different ability intervals. For this 
reason, we do not focus on an overall test of the null hypothesis, but we analyze different 
domain intervals for finding a measure of the degree of consistency with H0 for different abil-
ity levels. Specifically, when the hypothesis testing provides conflicting results for different 
intervals (i.e. H0 is supported only in some parts of the domain), this approach may help in the 
questionnaire assessment according to different evaluation purposes. Therefore, we propose 
a functional tools for facilitating the detection of those ability levels for which the degree of 
consistency/inconsistency with H0 is relevant.

Certainly, a first rough measure of the degree of consistency with H0 is the functional 
F-statistic. Indeed, if Fobs(�) is high, then we have evidence that the means are different 
(against H0 ), and viceversa. This should be a good clue but it is not a reliable measure because 
the value of Fobs(�) should be compared with the critical value. Thus, to introduce a measure 
for assessing the degree of consistency with the null hypothesis, we propose the functional 
P-statistic, which is based on the functional p value. The significance level of a statistic is the 
proportion of values that are as extreme as, or more extreme than the test statistic in the refer-
ence distribution, which is either obtained by permutations or found in a table of the appro-
priate statistical distribution. The level of significance should be regarded as the strength of 
evidence against the null hypothesis (Manly 1997). In the context of permutation-tests, the p 
value is the proportion of permutations that are greater or equal to Fobs . Thus in our context, 
the P-statistic is the following:

where � is a generic point of the domain, and nperm is the total number of permutations. 
Computing Eq. 14, we obtain the functional p value. The plot of P� could be directly com-
pared with the critical value � to understand, if for which ability level, there is (or not) 
enough evidence against H0.

For each � , the p value is an exact measure of the degree of consistency with the null 
hypothesis. Because it may happen that the graph of P� intersects the critical value in some 
� intervals, we introduce this functional tool for understanding if, on average, the amount of 
information against H0 is greater than that in favour of H0 . Hence, the following functional 
statistic, say P(�m, �n) , may be defined as follows:

(14)P� =
#(Fobs�

≥ Fperm�
)

nperm
� ∈ [−4, 4]

(15)P(�m, �n) =
∫ �n
�m

P(�)d �

∫ �n
�m

�d �



27Testing Equality of Functions Across Multiple Experimental…

1 3

where the denominator of the fraction is introduced to emphasize the p value magnitude 
relative to the significance level � . Following, we consider � = 0.05 and the ability domain 
� ∈ [−4, 4] divided into four equally-spaced intervals: P(−4,−2) , P(−2, 0) , P(0,  2), and 
finally P(2, 4), for low, middle–low, middle–high, and high ability levels, respectively.

Computing the P-statistic, two circumstances may occur:

– P(�m, �n) ⩾ 1 if P(�) is, on average higher or equal to � in the interval [�m, �n] ; thus, for 
this ability interval there is not enough evidence against H0;

– P(𝜃m, 𝜃n) < 1 if P(�) is, on average lower than � in the interval [�m, �n] ; hence, for this 
ability level, there is enough evidence against H0.

Consequently, the higher is P(�m, �n) , the more there is not enough evidence against H0 , 
and equality among group means can be declared. The P-statistic, being a ratio, empha-
sizes this inconsistency (or consistency) with the null hypothesis because it is characterized 
by a multiplicative effect. Hence, we can use it to compare the degree of coherence with 
the null hypothesis for different intervals of ability.

3  Application: Trentino Language Testing 2016

The proposed functional approach is applied to a real dataset, which has been drawn from 
the IPRASE Trentino Language Testing (TLT) Survey 2016. The latter is part of the “Tren-
tino Trilungual Plan 2016–2020”, which is promoted by the Autonomous Province of 
Trento (Northern Italy) for improving the knowledge of English and German languages 
in the provincial schools (Covi and Dutto 2017). The questionnaire was developed by the 
research centre IPRASE (Provincial Institute for Experimental Research and Educational 
Research) by referring to the levels of the Common European Framework of Reference 
(CEFR) for language skills assessment (Council of Europe 2011). The tests has been 
administered in the spring of 2016 and involved pupils in the last year of primary and 
lower secondary school, and in the second year of the upper secondary school, for a total 
of about 3000 students. In this paper, we focus on the available data, i.e. a sample of 300 
students of the last year of first grade secondary school that has responded to the English 
test. The latter consists of 66 items, which cover three main language skills: listening (A); 
reading (L); and formal skills (F). Each of them is composed of subgroups of questions: 
two sets for listening and reading (A1, A2, L1 and L2, respectively) and one set for formal 
skills (F1). In order to reduce the possibility of cheating, each set of items has been admin-
istered in four different versions (QSET-Question set), whose difficulty has been evaluated 
by a group of experts as perfectly similar from a linguistic point of view. With reference 
to these data, our interest is not to evaluate students performance or to check the diffi-
culty or the discriminating power of the items, but rather to verify if the use of different 
QSETs has significantly influenced the average probability of correctly response to items 
(ICCs) and also the average amount of information that items provide (IICs). Specifically, 
the main purpose of this study is to check the effect of different QSETs for various ability 
levels. Therefore, the FANOVA model (see Sect. 2.2) has been applied to the English test. 
For the sake of brevity, in this paper, we focus only on the two subgroups of items of the 
listening section (A1 and A2 tests). In particular, we investigate the possible effect of the 
four different QSET versions of the questionnaire, i.e. QSETs 46, 47, 48, and 49 for the 
A1 test, and QSETs 92, 93, 94, and 95 for the A2 test. ICCs and IICs for both tests have 
been obtained by considering a 2PL IRT model (Birnbaum 1968) carried out through the 
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R package “ltm” (Rizopoulos 2006), using marginal maximum likelihood estimation (Bock 
and Aitkin 1981).

A preliminary analysis has been conducted to compare the performance of the Rasch 
model and the 2PL model, for each of the eight IRT models (4 subgroups for test A1 and 
4 subgroups for test A2). According to the likelihood ratio (LR) tests, the 2PL models fit 
the data significantly better than the Rasch models. Information criteria supported these 
results, as the Akaike’s Information criterion (AIC) (Akaike 1974) and the Bayesian Infor-
mation criterion (BIC) (Schwarz 1978) for the 2PL are lower than those of the Rasch 
models. Thus, we conclude for a significant difference in discriminating power among the 
items. Hence, test data are analyzed according to the 2PL parametrization. However, we 
underline that our approach can be extended to other IRT models.

Moreover, to check the fit of the models to the data, the “margins()” function of the 
“ltm” R package has been used, adopting as a rule of thumb the value 3.5 (Rizopoulos 
2006); particularly, it consists in constructing the 2 × 2 contingency tables obtained by tak-
ing the variables two at a time, and then comparing the observed and expected two-way 
margins using the so called Chi-squared residuals. As stressed by Rizopoulos (2006), this 
method is analogous to comparing the observed and expected correlations when judging 
the fit of a factor analysis model, and moreover it can be extended to the three-way mar-
gins. According to our results, the 2PL models present a good fit to the data (values lower 
than 3.5).

3.1  Application to A1 Test

Figure 1 shows the ICCs for each QSET of the A1 test, and also the four average ICCs. 
Figure 2a illustrates the functional effects of each QSET. The plot highlights that the QSET 
49 has a positive effect on the probability of correctly answer for each level of ability. Con-
versely, the QSET 46 appears to be the more difficult over the whole domain. The other 
two QSETs have different functional effects according to the levels of ability. Hence, we 
perform the FANOVA model for understanding if this first evidence of difference among 
groups is statistically significant.

Figure 2b displays the permutation functional F-test of the FANOVA model based on 
the ICCs of the A1 test. The observed functional F-statistic lies below both the 0.05 maxi-
mum and point-wise critical values over the whole domain. In this case, there is not enough 
evidence against the null hypothesis of equality of group means; thus the use of different 
QSETs has not a significant effect on ICCs. Nevertheless, we apply the functional P-sta-
tistic proposed in Sect. 2.3 to check its coherence with the evidence of Fig. 2b. Figure 2c 
shows the plot of the functional p value whereas Fig. 2d displays the functional P-statistic, 
which is computed using Eq. 15 and whose values are shown in Table 1. The functional p 
value is always higher than the 0.05 line, and the P-statistic is greater than 1 over the whole 
domain. In particular, for middle–low abilities, we obtain a high degree of consistency with 
H0 . Thus, we can state that the four QSETs are equally difficult according to the probability 
of correctly answer the items; however, the values of the functional instrument confirms 
that this statement is particularly true for middle–low abilities.

The second FANOVA is performed on the IICs of the A1 test for checking the pos-
sible effect of QSET on the level of information that items provide. Figure  3 shows 
the IICs and their means for different QSETs whereas Fig.  4 displays the functional 
effect of being in each of the four QSETs, functional F-test, functional p value, and 
functional P-statistic. We observe that the QSET 49 has a strong information power for 
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middle abilities due to the high peak of the item A1.2. In summary, the QSETs 46 and 
47 have a negative impact for middle abilities whereas the QSET 48 varies between 
positive and negative effects for different ability levels.

The analysis of Fig.  4 and Table  2 confirms that, also for the IICs, there is not 
enough evidence against H0 for each ability level. Thus, there are not significant differ-
ences among group means according to their informative power. Indeed, the P-statistic 
is always greater than 1, and Fobs(�) is always below the critical level � . Therefore, we 
can state that the four QSETs are similar according to their information power; and this 
statement is particularly true for low abilities ( P-statistic = 14.12).

In summary, the experts have done a good job in preparing the four QSETs with 
similarly difficult and informative items for the A1 test.

Fig. 1  ICCs and their average for the four QSETs of the A1 test
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3.2  Application to A2 Test

The same analysis is performed on the A2 test. Figure 5 shows the ICCs and their means 
for the QSETs 92, 93, 94, and 95 of the A2 test.

Figure  6a displays the functional effects of each QSET. The most difficult QSET is 
the number 93 whereas the most easy is the number 95, which is positive over the whole 

Fig. 2  F-test and P-statistic for ICCs of the A1 test

Table 1  Functional P-statistic 
on FANOVA model of ICCs of 
the A1 test

Abilities P-Statistic Evidence

Low 5.24 > 1 Not enough evidence against H
0

Middle–low 12.59 > 1 Not enough evidence against H
0

Middle–high 7.55 > 1 Not enough evidence against H
0

High 9.52 > 1 Not enough evidence against H
0
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domain. Figure  6b illustrates the permutation functional F-test for the FANOVA model. 
The Fobs(�) provides conflicting results because the curve intersect many times Fperm(�) . 
An overall judgement based on the whole domain would lead us to state that there is 
enough evidence against H0 . However, due to the specificity of the educational context, we 
focus on different intervals of abilities for assessing the equality of the four QSETs. Fig-
ure 6c displays the functional p value whereas Fig. 6d and Table 3 show the graph of the 
functional P-statistic and its values, respectively. We observe that, for low abilities, there 
is not enough evidence against the hypothesis of equality among group means, and we can 
establish that the use of different QSETs has not a significant effect on the ICCs. Indeed, in 
the interval [−4,−2] , the P-statistic is equal to 2.11. On the contrary, for middle–low, mid-
dle–high, and high abilities, there is enough evidence against H0 because the P-statistic is 
lower than 1.

This result provides an additional information with respect to the classical FANOVA 
model. In effect, in this context, experts should revise items according to these evidences 
(i.e. according to the probability of correctly answer items, the four QSETs are similar 

Fig. 3  IICs and their average for the four QSETs of the A1 test
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only for low-ability levels). Because the functional P-statistic is a measure of the degree of 
consistency (or “inconsistency”) with H0 , we have to consider that the lower the P-statistic, 
the more different the QSETs. This circumstance highlights that the test should be revised 
with particular attention to those levels of ability for which the incongruence is more evi-
dent. In this application, Table 3 underlines that the difference among groups is particularly 
strong for high abilities ( P-statistic = 0.30 ). We point out that the P-statistic, being a ratio, 

Fig. 4  F-test and functional statistics for IICs of the A1 test

Table 2  Functional P-statistic 
on FANOVA model of IICs of 
the A1 test

Abilities P-Statistic Evidence

Low 14.12 > 1 Not enough evidence against H
0

Middle–low 7.04 > 1 Not enough evidence against H
0

Middle–high 9.17 > 1 Not enough evidence against H
0

High 8.52 > 1 Not enough evidence against H
0
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emphasizes the gap among group means because it is characterized by a multiplicative 
effect.

Figure 7 shows the IICs of the A2 test for different QSETs, and suggests that the four 
QSETs are informative for different ability levels (the average peaks are in different points 
of the � domain). Indeed, the QSETs 92 and 95 are useful for testing middle–low abili-
ties whereas the QSET 93 plays a key role for assessing middle–high skills. Also Fig. 8a 
highlights this circumstance because the QSET 92 has a positive functional effect for mid-
dle–low abilities.

To statistically test this first evidence, we refer to the FANOVA model by plotting the 
functional F-statistic over the whole domain (Fig.  8b). Also in this case, an overall test 
may be inconsistent for our purposes because the curves intersect. Thus, we consider the 
P-statistics for different ability intervals to understand if there is enough evidence against 
H0 (equal average information power among QSETs). Contrary to the FANOVA model on 
ICCs, Table 4 shows that group means are not equal for low ability levels whereas there 
is not enough evidence against H0 for middle–low, middle–high, and high abilities. This 

Fig. 5  ICCs and their average for the four QSETs of the A2 test
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result is quite interesting in the context of IRT models. Indeed, the FANOVA model on 
ICCs suggests that the group means are equal only for low ability levels whereas the 
FANOVA model on IICs asserts the contrary (i.e. the group means are equal for ability 
levels greater than � = −2 ). This is a useful additional information provided by the func-
tional approach. In effect, if we consider the probability of correctly answering the items 
(ICCs), the QSETs result to be well formulated for 𝜃 < −2 . Nevertheless, regarding the 

Fig. 6  F-test and functional statistics for ICCs of the A2 test

Table 3  Functional P-statistic 
on FANOVA model of ICCs of 
the A2 test

Abilities P-Statistic Evidence

Low 2.11 > 1 Not enough evidence against H
0

Middle–low 0.73 < 1 Enough evidence against H
0

Middle–high 0.49 < 1 Enough evidence against H
0

High 0.30 < 1 Enough evidence against H
0
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information power (IICs), we observe that the four QSETs differently represent various 
ability levels for 𝜃 < −2 . This information naturally has an interesting insight into the edu-
cational field and should be used by practitioners to better calibrate the questionnaire and 
the different QSETs.

4  Discussion and Conclusions

IRT models refer to a family of latent trait models used to describe the association 
between the response behaviour of subjects to a set of categorically scored items and 
the underlying latent trait which is indirectly measured by the item. In the IRT context, 
mainly two functions are considered of great importance for the evaluation of items 
and tests: the item characteristic curve and item information curve. The item charac-
teristic curve provides the probability of correctly response to items whereas the item 
information function shows the amount of information that each item provides. The 

Fig. 7  IICs and their average for the four QSETs of the A2 test
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latter is calculated by multiplying the probability of endorsing a correct response by 
the probability of answering incorrectly (in the case of the 2PLM model, this product 
is further multiplied by the square of the discrimination parameter). Thus, the larger the 
discrimination parameter, the greater the information provided by the item. Hence, the 
information contained in these two functions is linked but different. In this work, using 
the functional analysis of variance applied to IRT, we focused on these two functions 

Fig. 8  F-test and functional statistics for IICs of the A2 test

Table 4  Functional P-statistic 
on FANOVA model of IICs of 
the A2 test

Abilities P-Statistic Evidence

Low 0.10 < 1 Enough evidence against H
0

Middle–low 10.63 > 1 Not enough evidence against H
0

Middle–high 16.26 > 1 Not enough evidence against H
0

High 7.57 > 1 Not enough evidence against H
0
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by considering them as dependent variables of our model. Our purpose was to check if 
different versions of the questionnaire (QSETs), which were judged as equivalent from 
experts, have had a significant effect on ICCs and IICs. At the same time, we have pro-
posed a functional tools to assess the degree of consistency with the null hypothesis in a 
functional framework: the P-statistic. Due to the specificity of the IRT context, the latter 
has been separately considered for different skill ranges. This choice is due to the need 
to find a tool for evaluating the degree of consistency with the null hypothesis in various 
parts of the domain, and thus provides useful indications for modifying the question-
naire (in case of need).

In recent decades, many scholars have focused on the problem of differential item func-
tioning (DIF) analysis. DIF is present when the relationship between the item score and 
the latent trait is not identical across subpopulations (Drasgow 1984). Despite the purposes 
of DIF methods have a common point with our proposal, that is to understand if there 
are significant differences between groups, our approach checks differences between two 
or more tests whereas DIF techniques focus on discovering differences between pairs of 
items. Moreover, the DIF analysis primarily considers differences among item parameters 
or total scores whereas our method allows us to treat data directly as curves. In addition, 
IRT DIF analysis is typically conducted between two groups where the reference group is 
often the majority socio-demographic group that has a larger sample and the focal one is 
the minority socio-demographic group with a smaller sample.

Recently, some studies have dealt with the issue of differential test functioning (DTF). 
Assessing DTF is considered an important extension of DIF for understanding tests and 
the effect of scoring bias, but unfortunately it has received relatively little attention in the 
applied measurement literature. DTF indicates that the test as a whole is not equivalent 
across groups, and naturally it can depend on cumulative DIF across all items. The seminal 
work on this topic is by Roju et al. (1995). Similarly to our method, Roju et al. aim also to 
discover differences considering the questionnaire as a whole and adopt the area between 
curves for testing statistical differences among items (or tests). Despite there is this com-
mon idea of considering areas to find the differences between tests, our method is quite 
different from these based on DTF. First, the latter adopts the expected score, i.e. they con-
sider the expected test score for a trait level given all the estimated item parameters; in this 
context, the expected scores is also used as a measure of effect size because it is a direct 
measure of the difference in expected scores across groups. Contrary, we do not take into 
account the total score but focus on the behavior of ICCs and IICs over the whole domain. 
This because our purpose is to use a functional approach for not losing important informa-
tion about different domain ranges in considering both the probability of correctly answer 
to items and their informative power. Second, we do not consider the difference between 
a reference group and a focal group; indeed, our approach is generalizable to multiple 
groups without selecting anyone as a focal one. Finally, the DFT hypothesis test applies 
to the whole domain and is based on the assumption that the differences between the focal 
and control groups are normally distributed; on the contrary, our approach is based on 
decomposition of the domain in different skill ranges and the normality assumption is not 
required, i.e. our method is distribution-free.

The FDA approach can be viewed as a powerful tool to improve the existing techniques 
in the educational studies. Indeed, it allows us to preserve the usual interpretation of item 
parameters but takes advantage of functional data analysis tools. Specifically, the FDA 
approach grants a deeper analysis of those phenomena varying in a fixed domain, and, in 
an educational framework, it enables the evaluation of items behavior for all levels of the 
latent trait. In addition, the graphical inspection of the P-statistic may improve information 
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for practitioners showing possible limitations of tests in specific ability intervals. Hence, 
this method may provide useful directions for defining specific educational plans.

Following this perspective, future developments of this study could focus on defining 
procedures to compare treatment groups when there is evidence against H0 by introducing 
functional contrasts in the context of FANOVA.
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