
Vol.:(0123456789)

Social Indicators Research (2019) 144:497–537
https://doi.org/10.1007/s11205-018-02056-x

1 3

ORIGINAL RESEARCH

A Hybrid Enhanced Scatter Search—Composite I‑Distance 
Indicator (eSS‑CIDI) Optimization Approach for Determining 
Weights Within Composite Indicators

Milica Maricic1  · Jose A. Egea2 · Veljko Jeremic1

Accepted: 20 December 2018 / Published online: 5 January 2019 
© Springer Nature B.V. 2019

Abstract
Considering the impact composite indicators can have on public opinion and policy devel-
opment, the need for their frameworks to be methodologically sound and statistically veri-
fied is growing daily. One of the issues in the process of composite indicator construction 
which has generated much debate is how to choose the weighting scheme. To address this 
slippery step, we propose an optimization approach based on the enhanced Scatter Search 
(eSS) metaheuristic. In this paper, the eSS algorithm is applied to obtain a weighting 
scheme which will increase the stability of the composite indicator. The objective func-
tion is based on the relative contributions of indicators, while the problem constraints rely 
on the bootstrap Composite I-distance Indicator (CIDI) approach which is also proposed 
herein. The eSS-CIDI approach combines the exploration capability of eSS and the data-
driven constraints devised from the bootstrap CIDI. This novel weighting approach was 
tested on two acknowledged composite indicators: the Academic Ranking of World Univer-
sities (ARWU) and the Networked Readiness Index (NRI). Results indicate that the com-
posite indicators created using the eSS-CIDI weighting approach are more stable than the 
official ones.
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1 Introduction

The Organisation for Economic Co-operation and Development (2004) delineates com-
posite indicators as metrics formed “when individual indicators are compiled into a sin-
gle index, on the basis of an underlying model of the multi-dimensional concept that is 
being measured”. At the very outset, this definition provokes a number of questions: Which 
individual indicators to choose? How to compile the chosen indicators? Whether or not 
to apply weights to the indicators? How to devise an underlying model which will best 
describe the observed phenomenon? It can be observed that the creation of a composite 
metric might be a frustrating process since there are many questions with different possible 
subjective answers.

Nevertheless, composite indicators or composite indexes have become popular and 
widely used metrics for the assessment of complex and sophisticated phenomena which 
cannot be captured with a single variable. According to Saisana and Tarantola (2002), 
there are several reasons for the increased popularity of composite indicators. Namely, they 
provide a single number which summarizes a multi-dimensional phenomenon, making it 
easier to understand and communicate. Furthermore, a single number provides a ‘bigger 
picture’, offers the possibility of comparison and ranking between entities, and can be used 
to assess progress of entities over time.

On the other hand, there are drawbacks of the idea to compile individual indica-
tors. Namely, the results of composite indicators should be interpreted with caution and 
 policymakers and other stakeholders who interpret them should have prior knowledge of the 
measured multi-dimensional phenomenon (Zornic et al. 2015). Next, they may be misused 
to gauge the desired policy or may even lead to inappropriate policies if certain dimensions 
or indicators are not included in the original framework (Nardo et al. 2005). Also, as there 
is no simple answer to the methodological choices, various experts can easily initiate debate 
(e.g. Cherchye et al. 2007; Decancq and Lugo 2013; Jeremic et al. 2011; Ray 2007).

Having in mind the pros and cons of composite indicators, their possible policy impli-
cations should be more closely observed. According to Birkmann (2007), the purposes of 
assessment using composite indicators are to assist policy makers in defining strategies, 
developing policies, and identifying priorities, and to promote the exchange of information 
between the government and the wider public. Also, composite indicators can be used to 
initiate public and political discourse on various policies, for example on national univer-
sity systems (Saisana et al. 2011). It can be concluded that various stakeholders establish 
opinions and make decisions based on these ranking results. Therefore, composite indica-
tors can have significant policy implications and should be created and interpreted with 
caution. Grupp and Mogee (2004) warn that results of composite indicators should not be 
blindly followed as good policymaking in one country may be poor in another one. As 
there is absence of transparency and clear rule for the methodological choices, the results 
of composite indicators should have a complementary function in policymaking (Grupp 
and Schubert 2010; Saltelli 2007; Sébastien et al. 2014).

On one hand, there is a clear demand for composite measures, while on the other hand 
the process of their creation is not straightforward and involves assumptions (Saltelli 2007). 
Policymakers and other stakeholders are in need of stable and methodologically sound 
composite indicators. This provoked a new research direction in the process of composite 
indicator creation: the robustness analysis of the composite indicator through uncertainty 
and sensitivity analysis of methodological assumptions (Saisana et  al. 2005). The main 
purpose of the uncertainty and sensitivity analysis is to act as a ‘quality assurance’ tool 
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which should indicate how sensitive the ranking is to methodological choices (Greco et al. 
2018a). Although both analyses provide important insights on the robustness of the created 
metric, this step is still not universally conducted in the process of composite indicator 
creation (Burgass et al. 2017; Freudenberg 2003; Nardo et al. 2005; Saisana et al. 2005).

The methodological assumption within the creation of composite indicators that 
attracted our attention is the weighting scheme and its impact on the overall stability of 
the metric. The question we aim to answer is how to assign weights to indicators within a 
composite indicator, in a manner which will improve the stability of the metric. Therefore, 
herein the focus will be how to minimize the effects of the weighting scheme in terms of 
rank sensitivity and rank reversal. This study attempts to provide an optimization approach 
that proposes a new weighting scheme, which is data-driven and maximizes the stability of 
the composite indicator considering specific weight constraints.

The purpose of this study is to devise a fresh weighting approach using non-partici-
patory unsupervised methods with the goal to improve the robustness of the final metric. 
Such methods do not depend on expert opinion inputs and therefore reduce the possible 
bias (Singh et al. 2007). However, one should have in mind that the results of such meth-
ods should act as a starting point for experts and decision makers upon which they will 
form the final decision on the weighting scheme (Burgass et al. 2017; Zanakis et al. 2016). 
Namely, our approach proposes a weighting scheme which should inform the experts from 
which ‘neighbourhood’ or ‘environment’ they should aim to choose the final weights so as 
to be sure that their composite indicator will be stable. One of the benefits of the proposed 
approach is that it might accelerate the process of assigning weights which includes expert 
opinion.

The proposed approach is named enhanced Scatter Search—Composite I-distance Indi-
cator (eSS-CIDI) approach. In order to obtain weight constraints, we applied the bootstrap 
Composite I-distance Indicator (CIDI), to form the objective function we used relative con-
tributions (Sect. 3.1) and to solve the optimization problem we chose the enhanced Scatter 
Search (eSS) (Sect. 3.2).

The optimization problem that this study addresses is formulated as:

Minimize  (a) Sum of standard deviations of relative contributions of indicators which 
make a composite indicator through weighting scheme

Subject to  (b) Each weight should be within the interval based on the bootstrap CIDI 
results

  (c) Sum of weights must equal 1

  (d) Weights are greater or equal to 0

The question which arises is where does this study position itself in the literature. Is it a 
contribution to the field of weighting schemes or the field of robustness analysis? Having 
in mind the rising importance of both fields in the novel literature (e.g. Becker et al. 2017; 
Dobbie and Dail 2013; Foster et al. 2013; Greco et al. 2018a; Van Puyenbroeck and Rogge 
2017) and the need to develop tools to reduce uncertainty and sensitivity of composite 
scores (Dialga and Thi Hang Giang 2017) we aimed to propose an approach which will 
encompass both issues at the same time. Namely, in the previous researches usually a novel 
weighting scheme is proposed, and in the next step, the robustness analysis is performed. 
Such an approach has been taken in several researches so far (e.g. Dobrota et  al. 2015, 
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2016; Saisana and D’Hombres 2008). The eSS-CIDI approach, on the other hand, does the 
two at once and can thus speed up the process of composite indicator creation. It proposes 
a weighting scheme and automatically verifies that it is the most stable one if the robust-
ness analysis is conducted.

The paper is organized as follows: Sect.  2 presents a literature review on the issues 
in the process of composite indicator creation with a special overview on the weighting 
approaches based on optimization. The same Section also provides insights on the robust-
ness analysis and the issue of measuring composite indicator stability. Section 3 features 
the theoretical background of the chosen methods which form the proposed approach, pre-
sented in detail in Sect.  4.1. In Sect.  5.3, the results of the application of the proposed 
approach on the Academic Ranking of World Universities (ARWU) 2017 and the Networked 
Readiness Index (NRI) 2016 are presented. In Sect. 6 we analyse the prospects of future 
research, and finally, we provide concluding remarks in Sect. 7.

2  Related Work

2.1  Issues in the process of composite indicator creation

Although composite indicators are appealing and informative, several steps in their crea-
tion raise significant concerns among academics and researchers (see e.g. Paruolo et  al. 
2013; Saisana and D’Hombres 2008). The commonly cited slippery steps are the choice 
of method of normalisation, weighting approach, and aggregation. Therefore, the uncer-
tainty and sensitivity analysis are commonly conducted to explore the effects of differ-
ent approaches to these steps (Cherchye et  al. 2008a; Paruolo et  al. 2013; Saisana et  al. 
2011, 2005). Herein, we provide a brief literature review on the most commonly chosen 
approaches for the above-mentioned steps.

2.1.1  Normalization

After choosing individual indicators and prior to their weighting and aggregation, the raw 
data usually measured in different scales (euros, percentages, meters, …) should be put on 
a standard scale. The step which deals with this issue is normalization. Again, the question 
arises which method of normalization to use? Freudenberg (2003) lists out several meth-
ods: standard deviation from the mean (z-scores), distance from the group leader, distance 
from the mean, distance from the best and worst performers (min–max), and categorical 
scale. The normalization method does not affect the ranking of entities per individual indi-
cators, but how does it impact the overall composite indicator value? As different normali-
zation methods produce different results (Freudenberg 2003) they might have significant 
effects on composite indicator scores (Cherchye et al. 2007; Ebert and Welsch 2004).

Several studies have been conducted so as to explore the impact of the normalization 
method on the overall composite indicator values. For example, Jovanovic et  al. (2012) 
showed that depending on whether raw or normalized data is used different rankings could 
be obtained. Pollesch and Dale (2016) conducted an analysis using partial derivatives of 
the aggregation and normalization functions to inspect their impact. They showed that the 
overall composite indicator value significantly changes if the value of the indicator changes 
for a unit depending on the normalization method employed. Talukder et al. (2017) tested 
and compared various normalization and aggregation techniques for developing composite 
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indicators and also showed that that the normalization gravely impacts the overall results. 
The conclusion can be made that whichever normalization method is employed it should be 
chosen with care (Nardo et al. 2005) and in line with the weighting approach which is to be 
used (Mazziotta and Pareto 2012).

2.1.2  Weighting

According to the OECD Handbook on constructing composite indicators, weights should 
ideally reflect the contribution of each indicator to the overall composite indicator (Nardo 
et al. 2005). Therefore, prior to aggregation, the composite indicator creators are given the 
possibility to assign weight to indicators which will reflect their relative importance to the 
overall composite indicator (Booysen 2002). The question arises how to choose an appro-
priate weighting scheme as undeniably, the weighting scheme might have an impact on the 
entities ranked (Greco et al. 2018a).

Decancq and Lugo (2013) distinguish three essential classes of approach to assigning 
weights: data-driven, normative, and hybrid. Data-driven weights allow the collected data 
to determine the weights associated with each indicator, thus bypassing the value judg-
ments of experts. Data-driven methods are usually based on a statistical approach, such as 
Principal Component Analysis (PCA) or an optimization method such as Data Envelop-
ment Analysis (DEA), Linear programming, or Goal programming (Nardo et  al. 2005). 
As weighting approaches based on optimization are of great importance for this paper, we 
elaborate more on them in Sect. 2.2.1. Normative approaches, in contrast, rely solely on 
the judgements of the surveyed experts or stakeholders about the importance of the indica-
tors which make up the composite indicator. Some of the normative weighting approaches 
include equal weighting, Analytic Hierarchy Process (AHP), Conjoint Analysis (CA), pub-
lic opinion, budget allocation and others (Singh et al. 2007). Hybrid approaches integrate 
data-driven and normative approaches. Namely, weights at one level of the composite indi-
cator can be data-driven and expert-driven at the other (Maricic et al. 2015). Another type 
of hybrid weighting is when expert opinion acts as a constraint for data-driven optimization 
procedures (Joro and Viitala 2004; Reggi et al. 2014). Although the results of data-driven 
and hybrid weighting approaches are promising, new approaches are needed to develop 
a weighting scheme which will differentiate the indicators by importance, but which will 
also consider the stability of the composite indicator.

Neither weighting approach is flawless (Greco et al. 2018a). Namely, data-driven meth-
ods tend to exclude expert opinion completely and introduce a high level of conceptual 
rigidity into the metric generated (Booysen 2002). Moreover, they are sometimes based 
on an over-complex multivariate analysis which final users do not understand (Cox et al. 
1992). Also, the measured statistical relationships between indicators might not always 
indicate an actual relation between them (Saisana and Tarantola 2002). On the other hand, 
expert-driven weighting is often characterized by strong inter-individual disagreement 
(Rogge 2012) which can lead to conflicting opinions that may, in turn, compromise the 
validity of the suggested weights (Giannetti et al. 2009). When it comes to equal weighting, 
it is criticized for not being adequately justified (Greco et al. 2018a) and because it may 
imply unequal weighting to indicators. Initially, the equal weighting scheme considers all 
dimensions in the composite indicator equally important. If dimensions consist of a differ-
ent number of indicators, the indicators in the dimension with the largest number of indi-
cators will be given less weight in the calculation of the overall metric (Dobbie and Dail 
2013). However, if a composite indicator has a hierarchy, meaning that each dimension 
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consists of the same number of indicators, all indicators will be equally weighted. Another 
issue of equal weighting is “double counting”, which occurs when two collinear indicators 
are included in the composite indicator. In that case, a unique dimension of the observed 
multi-dimensional concept will be assigned double weight (Nardo et al. 2005).

2.1.3  Aggregation

After weighting of individual indicators, aggregation comes as a final step before obtain-
ing the results of the composite indicator. As in case with normalization and weighting, 
there are multiple approaches to choose from. The first issue is how to divide aggregation 
methods into categories. Booysen (2002) states they can be additive or functional in nature. 
The OECD observes them as linear, geometric, and multi-criteria (Nardo et  al. 2005), 
while Munda (2005a) divides them on compensatory and non-compensatory. Nevertheless, 
in their review on aggregation methods, Greco et al. (2018a) also list “mixed strategies” 
which are both weighting and aggregation and could not perfectly fit in neither category. 
Examples of such approaches are Mazziotta–Pareto Index (MPI) (Mazziotta and Pareto 
2007), Penalty for a Bottleneck methodology (Ács et al. 2014), and Mean–Min Function 
(Casadio Tarabusi and Guarini 2013). Herein, we will briefly present and compare the lin-
ear and geometric methods, as they are still the most commonly used aggregation methods 
in the composite indicator literature (Greco et al. 2018a).

The linear approach allows trade-off, while the geometric does not. Namely, if the linear 
approach is taken, low results in one indicator can easily be compensated with higher result 
in the other (Munda and Nardo 2009). Therefore, one should be cautioned when assigning 
weights led by the idea of giving importance to indicators, as the perceived importance 
will be transformed to trade-off (Paruolo et al. 2013). A mean of skipping the possibility 
of constant trade-off is to use the geometric mean, as it offers inferior compensability (Van 
Puyenbroeck and Rogge 2017). Also, if the geometric mean is used, entities with lower 
results would be motivated more to increase their results, as a small increase in the indica-
tor value will have more effect on the final results than for the entities with a higher rank 
(Dobbie and Dail 2013; Greco et al. 2018a).

2.2  Weighting Approaches Based on Optimization

The approach based on optimization caught our attention from different data-driven and 
non-participatory weighting approaches. The idea of assigning weights through opti-
mization is to maximize or minimize a specific objective function in which the decision 
variables are the indicator weights. Our literature review shows that this can be achieved 
through the use of Data Envelopment Analysis (DEA) and various metaheuristics.

2.2.1  Data Envelopment Analysis (DEA) and DEA‑Like Approaches

The basic idea which underpins DEA, devised by Charnes et  al. (1978), is to calculate 
the relative efficiency of decision-making units (DMUs) based on their inputs and out-
puts. DEA can be used in the process of composite indicator development to devise an 
optimal set of weights. Namely, a series of multiplicative DEA models that can be trans-
formed into equivalent linear programs are solved (Zhou et  al. 2010). The key obstacle 
in the application of DEA and DEA-like models in composite indicator creation is that 
without constraints, all the observed entities can achieve a maximum or close to maximum 
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score (Hatefi and Torabi 2010). So far, several solutions to this problem have emerged. For 
example, Despotis (2005) proposed a two-phase method: first, the application of a standard 
DEA-like model and then the application of parametric goal programming to discriminate 
entities which receive a performance score of 1. Zhou et al. (2010) suggested the creation 
of a composite indicator which will be the weighted sum of the “best” and “worst” case 
scenario. Both scenarios are created using a multiplicative DEA model, whereas the “best” 
case scenario aims to assign weights that maximise the index value, while the “worst” aims 
for the opposite. Their approach is valuable as it avoids the inclusion of constraints but 
takes the extremes into account. On the other hand, Ramón et al. (2012) suggested a DEA 
approach which is based on the idea of minimizing the deviations of the common set of 
weights from DEA profiles of weights provided by the CCR model for efficient DMUs. 
Another, more recent approach is to use the results of the multivariate Composite I-dis-
tance Indicator (CIDI) approach as constraints for the DEA model (Radojicic et al. 2015, 
2018).

Led by the idea of DEA, Melyn and Moesen (1991) proposed the Benefit-of-Doubt 
(BoD) model. Namely, in essence, the BoD model is a DEA CCR model with unitary 
inputs. Therefore, BoD is sometimes defined as output-oriented DEA (Rogge 2012). The 
BoD model aims at maximizing the overall composite indicator value of each entity with-
out prior information on the weighting scheme. Clearly, there are conceptual similarities 
between DEA and BoD: first, between their goals and second, in the lack of available infor-
mation on weights (Cherchye et  al. 2007). Recently, the entity-specific BoD weighting 
technique has become an established method in the composite indicator literature (Amado 
et  al. 2016; Mariano et  al. 2015; Van Puyenbroeck and Rogge 2017). Because the BoD 
model is a linear programming problem (Rogge 2012), the question of additional model 
constraints arises. There is a number of approaches to model restriction. Cherchye et al. 
(2007) presented four different models of constraints to the BoD: absolute restrictions, 
ordinal sub-indicator share restrictions, relative restrictions, and proportional sub-indicator 
share restrictions. Blancas et al. (2013) followed the idea of weight restrictions and sug-
gested a common-weight model, inspired by the DEA, but included an objective in the 
determination of weights: to minimize the number of ties. Giambona and Vassallo (2013) 
proposed to restrict the weights using the proportional share of index dimensions. Maricic 
et  al. (2016) presented the possibility of integrating the BoD and the CIDI approach. In 
addition to the original BoD, new types of BoD model have emerged. Directional-BoD, 
based on a directional distance function model (Zanella et al. 2015), the Meta-Goal Pro-
gramming BoD with two sets of goals and two meta-goals (Sayed et  al. 2015), and the 
Goal Programming BoD (GP-BoD) (Sayed et al. 2018) which aims to obtain consistent and 
stable rankings through BoD weights.

2.2.2  Application of Metaheuristics

Metaheuristics can be defined as solution methods that conduct an interaction between 
the local improvement procedures and complex strategies to create a method able to move 
from local optima and perform a robust search of the solution space (Glover and Kochen-
berger 2003). Blum and Roli (2003) outlined fundamental properties of metaheuristics. 
They state that metaheuristics are strategies that “guide” or “lead” the search process with 
the goal to find (near-) optimal solutions, that the complexity of their algorithms vary, that 
they are not problem specific and can easily be modified to solve a particular problem, and 
that some of them can incorporate mechanisms to avoid getting trapped in the local optima. 
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The possibility of emerging from the local optima and finding a better solution is what has 
made metaheuristics remarkably effective and appealing (Gendreau and Potvin 2010). Due 
to many benefits that metaheuristics offer in solving complex problems, this research field 
is in constant expansion since 1980s (Sörensen et al. 2018).

Various efforts at obtaining weights using metaheuristics have been summarized in 
Table 1. Kim and Han (2000) proposed the application of genetic algorithm (GA) approach 
to feature discretization and determination of connection weights for artificial neural net-
works (ANNs) to predict the stock price index. Socha and Blum (2007), on the other hand, 
used Ant Colony Optimization (ACO) to train feed-forward neural networks for pattern 
classification. Again, to solve the issue of connection weights in ANNs Karaboga et  al. 
(2007) applied Artificial Bee Colony (ABC) algorithm while Mirjalili et al. (2012) used 
Particle Swarm Optimization (PSO) and the Gravitational Search algorithm (GSA).

Chowdhury et al. (2008) suggested using the Predator-Prey optimization (PPO) to solve 
the multi-objective optimization problem. The idea in multi-objective optimization is to 
assign different weights to each objective so as to minimize the objective function. Again, 
to solve the problem of weights within a multi-objective function Taghdisian et al. (2015) 
used GA, Macedo et  al. (2017) employed Evolutionary Algorithms (EA), while Dubey 
et al. (2016) used Ant Lion optimization (ALO).

Jain et al. (2015) aimed to resolve the weights flexibility problem of DEA. They imple-
mented a GA approach to find a set of weights which maximize the DMUs’ efficiency and 
which are at a minimum distance from all the decision makers’ preferences.

Two especially interesting papers are those by Grupp and Schubert (2010) and Becker 
et al. (2017). Both aim to optimize an aspect of the composite indicator through indicator 
weights using different approaches. The first seeks to minimize the difference between the 
best and the worst achievable rank of each ranked entity when weights change arbitrarily. 
They formulate the problem as a non-linear, mixed-integer problem which they solve using 
GA. Becker et al. (2017) based their approach on a normalized correlation ratio. The objec-
tive function aims to minimize the sum of square difference between the normalized corre-
lation ratio based on the weights suggested by experts and the normalized correlation ratio 
based on the newly proposed weights. To solve the problem they utilized the Nelder-Mead 
simplex search (Lagarias et al. 1998).

The presented overview of methods employed to optimize a goal function through 
the weighting scheme shows that the DEA and DEA-like approaches have been used 
more often in the process of creating composite indicators while metaheuristics have 
been employed with a lot of success to optimize weights in ANNs and in multi-objec-
tive functions. A research direction which started to develop recently is the application 
of metaheuristics to optimize the weighting scheme and the structure of composite indi-
cators and DEA models. A valuable insight provided additionally by Table 1 is that the 
metaheuristics most commonly used to solve the issue of assigning weights are population-
based metaheuristics. Research shows that the ANNs which used the weights devised from 
population-based metaheuristics outperformed the gradient descent algorithm (Gupta and 
Sexton 1999) and random search and Levenberg–Marquardt algorithms (Socha and Blum 
2007). Such a result can indicate that metaheuristics can be used with success in the pro-
cess of establishing weighting schemes.
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2.3  Robustness Analysis of Composite Indicators

Robustness and stability are considered to be important issues in the process of composite 
indicator development (Dobrota et al. 2015). Nardo et al. (2005) state that there are multi-
ple approaches to be considered when constructing a composite indicator. Therefore, anal-
yses should be undertaken to assess the impact of the different methodological approaches 
employed on the values and ranks of entities. According to Greco et al. (2018a), there are 
three ways to conduct the robustness analysis using: uncertainty and sensitivity analy-
sis, stochastic multicriteria acceptability analysis, and other approaches which are mostly 
based on linear programming and optimization. Herein, we provide a literature review on 
the first two approaches, as the third group will be more closely observed in the following 
subsection as it is based on the minimization of rank-reversals.

The most commonly used robustness analyses to evaluate the stability of a particular 
composite indicator are uncertainty and sensitivity analysis (Dijkstra et  al. 2011; Paru-
olo et  al. 2013; Saisana and D’Hombres 2008; Saltelli et  al. 2000). Usually, uncertainty 
analysis is performed first to quantify the impact of alternative models on the rankings. 
Each model is, in fact, a different composite indicator, in which the normalization method, 
weighting approach, the aggregation method or another factor have been randomly cho-
sen from the predefined methods for each of the methodological assumptions (Freudenberg 
2003). Alongside uncertainty analysis lies sensitivity analysis. The goal here is to present, 
qualitatively and quantitatively, the variability of the scores and ranks which occur due to 
different methodological assumptions (Saltelli et al. 2007). The sensitivity analysis can be 
used to test composite indicators for robustness as it shows how much an individual source 
of uncertainty influences the output variance (Saisana et  al. 2005). There are multiple 
examples in which the uncertainty and sensitivity analysis have been conducted. For exam-
ple, Dijkstra et al. (2011) observed the uncertainty of the threshold for the definition of the 
development stage of countries and the weighting scheme of the Regional Competitive-
ness Index (RCI). Saisana and Saltelli (2014) observed the uncertainty of the aggregation 
method, missing data imputation method, and the weighting scheme of the Rule of Law 
Index (RoL), while Cherchye et al. (2008a) had 23 uncertain input factors in the analysis 
of the Technology Achievement Index (TAI). Importantly, both uncertainty and sensitivity 
analysis can be used to assess a single methodological assumption, for example solely for 
the normalization method. Namely, sometimes, it is of interest to explore the robustness of 
the results when solely the weights are considered. Dobrota et al. (2015) inspected the sta-
bility of the information and communication technology (ICT) Development Index (IDI), 
Dobrota and Dobrota (2016) observed the stability of ARWU and Alternative ARWU 
ranking, while Dobrota and Jeremic (2017) analysed the robustness of the Quacquarelli 
Symonds (QS) and University Ranking by Academic Performance (URAP) rankings. All 
three papers measured the stability through relative contributions of indicators (Sect. 3.1) 
and indicated that the original weighting scheme could be altered so as to improve the sta-
bility of the composite indicator.

Another approach is to apply the stochastic multicriteria acceptability analysis (SMAA) 
initially proposed by Lahdelma et al. (1998). The SMAA was first used in the field of mul-
tiple criteria decision making, but recently it has been used in the field of composite indi-
cators. Greco et al. (2018b) observed the robustness through weights assigned to indica-
tors. They ranked 20 Italian regions based on 65 indicators and used SMAA to analyse the 
whole space of possible weight vectors considering the spectrum of possible individual 
preferences. The result of their analysis is the probability of a region to be on a certain 
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rank. Corrente et al. (2018) proposed a novel technique, namely SMAA for strategic man-
agement analytics and assessment, or SMAA squared (SMAA-S) for ranking entrepreneur-
ial ecosystems. Compared to the SMAA, the SMAA-S allows the definition of additional 
weight constraints. They ranked 23 European countries using 12 indicators and as a result, 
again obtained the probability of a country to be on a certain rank. Angilella et al. (2018) 
went a step further and proposed a hierarchical-SMAA-Choquet integral approach to cre-
ate a composite index of sustainable development. Compared to the previous two versions 
of SMAA, this one is based on a more complex aggregation method, the Choquet integral 
which finds the balance between linear and geometric aggregation (Choquet 1953). They 
ranked 51 Italian municipalities using 10 indicators. We can conclude that the application 
of SMAA in the field of robustness analysis is a new promising field of study.

As it can be observed, the robustness analyses is commonly conducted to evaluate com-
posite indicators as it allows the assessment to what extent, and for which entities, in par-
ticular, the modelling assumptions affect ranking results (Saisana and Saltelli 2014). Thus, 
the analysis provides valuable feedback to both composite indicator creators and policy-
makers. It can be argued that the stability of a composite indicator is highly important for 
policymakers as it assures them that the measure they are using is not susceptible to rank 
changes (Dobrota et al. 2015). Therefore, it can be debated that the statistical stability is 
one of the key attributes of any composite indicator (Renzi et al. 2017).

2.4  Measuring Composite Indicator Stability

The question which arises is how to define and measure the stability of a composite indi-
cator? In this paper, we observed stability through the lens of rank reversals. Namely, the 
more rank reversals a weighting scheme yields compared to the official weighting scheme, 
the less stable it is. So far, the issue of rank reversal has been explored in the sphere of 
multicriteria decision making (MCDM). However, recent studies show that rank reversal in 
the sphere of composite indicators is slowly but surely becoming a topic of research inter-
est. In the following paragraphs, we provide a literature review on the definition of stability 
through rank reversals in MCDM and composite indicators sphere and on the remedies to 
minimize it.

In the MCDM literature there are several definitions of rank reversal. One is that rank 
reversal is a ranking contradiction which occurs when the original set of alternatives alters 
by adding new alternatives or deleting one or more alternatives (Wang and Triantaphyllou 
2008; Wang and Luo 2009). Macharis et  al. (2004) define rank reversal as the phenom-
enon which occurs when a copy or a near copy of a choice is added to the set of options. 
The alternative term is equivalent to a country or entity in the composite indicator context 
(Sayed et al. 2018). According to Mousavi-Nasab and Sotoudeh-Anvari (2018) however the 
rank reversal is defined, it is an undesirable phenomenon that indicates unreliability. The 
same authors stress out that the research on rank reversal has great practical importance 
and should be continued.

The issue of rank reversal in MCDA has been a topic of thorough research as it is per-
ceived as a drawback of almost all MCDA techniques. For example, Mousavi-Nasab and 
Sotoudeh-Anvari (2018) showed that COPRAS (Complex Proportional Assessment), TOP-
SIS (Technique for Order Preference by Similarity to Ideal Solution) and VIKOR (VIseKri-
terijumska Optimizacija i Kompromisno Resenje, Serbian term) may produce rank rever-
sals. Herein, we list several studies which tackled the issue of rank reversal occurring due 
to weighting scheme. In an interesting study by Ligmann-Zielinska and Jankowski (2008), 



508 M. Maricic et al.

1 3

in which they presented a framework for sensitivity analysis in multiple criteria evalua-
tion, they devoted special attention to weights as weights “have been most often criticized”. 
They state that it should be possible to devise “critical weights” for which a relatively small 
change in the weight will cause minimal rank reversal. In their study on Analytical Hierar-
chy Process (AHP) Bojórquez-Tapia et al. (2005) chose, as the best solution, the structure 
which presented the lowest rank reversal sensitivity to weight uncertainty. Their analysis 
showed that the robustness of decisions based on the AHP depends on the relative weights. 
Munda (2005b) also pointed out the importance of weights by giving evidence that chang-
ing the weights in a multi-criterion framework for devising urban sustainability index sig-
nificantly changes entity ranking.

In the composite indicator literature on rank reversal, there are several researches 
needed to be mentioned. The first one is the work of Cherchye et al. (2008b) in which they 
inspected the robustness of the Human Development Index (HDI) through the effects of 
weighting and aggregation on eventual country rankings. They proposed several possible 
weight scenarios and using a dominance criterion conducted pairwise country compari-
sons. Several years later, Permanyer (2011) presented innovative ways to measure the sen-
sitivity of a composite measure due to the choice of specific weights. Namely, he proposed 
an approach which aims to find a “neighbourhood system”, a close, nested, and bounded 
neighbourhood of weights from which a decision maker can consider to choose the weight-
ing scheme. He also proposed a robustness function which shows the percentage of rank 
shifts as the weighting scheme changes. Next, Foster et  al. (2013) did a research in two 
directions and showed that a higher positive association between indicators leads to maxi-
mal robustness and that their novel robustness measure can be used to compare aggregate 
robustness properties of different composite indicators. In a more recent study, Sayed et al. 
(2018) wanted to avoid some of the drawbacks of the BoD and proposed a Goal Program-
ming BoD (GP-BoD) model. The main benefit of the proposed method is that it overcomes 
the rank reversal issue by assigning data-driven weights which minimize rank reversal.

Robustness of the composite indicator in terms of capacity to produce stable measures 
should be conducted (Maggino 2009) to find the most stable model. Sayed et  al. (2018) 
noted that the credibility of the composite indicator is limited if it produces inconsistent 
countries’ rankings. Therefore, when creating a composite indicator, the issue of rank sta-
bility should be considered. Also, it is desirable that the chosen weighting method should 
be such that it avoids or minimizes rank reversal (Paracchini et al. 2008). Still, robustness 
is not a goal in itself, and the results of weighting schemes which are most stable should be 
analysed with caution (Permanyer 2011).

3  Background

In this Section, we provide insights into the methods used in our proposed approach for 
weight determination. First, we introduce the bootstrap CIDI, the methods it builds upon, 
and the rationale for its implementation. Second, we present the relative contributions and 
their role in the measurement of composite indicator stability. Finally, we give a brief over-
view of the enhanced Scatter Search (eSS), the metaheuristics used to solve the optimiza-
tion model and provide the optimal weighting scheme.

Before introducing the above-mentioned methodologies, we provide notations used in 
the model development process and in the proposed approach.
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Notation

i  Index for indicators within a composite indicator, I = {1,… , k} , i ∈ I

xie  Value of indicator i for entity e, i ∈ I , e ∈ E

di(e, f ) = xie − xif   Distance between the values of indicator i of the entity e and fictive 
entity f, i ∈ I , e ∈ E

rji.12…j−1  Coefficient of partial correlation between indicators i and j where j < i, 
i ∈ I , j ∈ I

D2(e, f )  Value of the I-distance between entity e and fictive entity f, e ∈ E

wCIDIi
  Weight assigned to indicator i using CIDI approach, i ∈ I

s  Index for bootstrap samples, S = {1,… , p} , s ∈ S

wmini  Minimum weight of indicator i obtained after bootstrap CIDI, i ∈ I

wi  Weight assigned to indicator I, i ∈ I

e  Index for entities ranked by a composite indicator, E = {1,… , n} , 
e ∈ E

f  Fictive entity from which the distances are calculated
�
2

i
  Variance of indicator i, i ∈ I

r2
ji.12…j−1

  Coefficient of partial determination between indicators i and j where 
j < i, i ∈ I , j ∈ I

ri  Pearson’s correlation coefficient between indicator i and the I-distance 
value, i ∈ I

vie  Relative contribution of indicator i to the overall composite indicator 
value of entity e, i ∈ I , e ∈ E

wCIDIis
  Weight assigned to indicator i using CIDI approach based on the sam-

ple s, i ∈ I , s ∈ S

wmaxi  Maximum weight of indicator i obtained after bootstrap CIDI, i ∈ I

3.1  Bootstrap Composite I‑Distance Indicator (Bootstrap CIDI)

This subsection provides insights to the Composite I-distance Indicator (CIDI) approach, 
a brief introduction to the bootstrap method, and the rationale for combining the bootstrap 
and the CIDI.

In the 1970s the growing need for a multivariate statistical analysis that could rank 
countries based on their level of socio-economic development led to the creation of the 
I-distance method (Ivanovic 1977). Since then the method has been applied for ranking 
entities in various fields, such as in education (Zornic et al. 2015), sustainable development 
(Savic et  al. 2016), corporate social responsibility (Maricic and Kostic-Stankovic 2016) 
and ICT development (Dobrota et al. 2015).

In order to rank the entities (e.g. countries, regions, universities) using the I-distance 
method, we first select the entity with the minimal values for all indicators as a referent one 
in the observed dataset (Jeremic et al. 2013; Maricic and Kostic-Stankovic 2016). If such 
entity does not exist, a fictive entity, depicting minimal values for each observed indicator, 
is created.

For a selected set of indicators k chosen to characterize the entities, the square I-distance 
between the entity e, e ∈ E , and fictive entity f is defined as (Ivanovic 1977):

(1)D2(e, f ) =

k∑
i=1

d2
i
(e, f )

�
2

i

i−1∏
j=1

(
1 − r2

ji.12…j−1

)
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The I-distance stands out for its ability to incorporate a number of variables into a sin-
gle number without explicitly assigning weights. Therefore, it provides the possibility of 
ranking entities (Jeremic et al. 2011). Another benefit is that the importance of each vari-
able for the ranking process can be obtained through the Pearson’s correlation coefficients. 
The more the variable is correlated with the I-distance value, the more it contributes to 
the overall I-distance value and the ranking process (Maricic and Kostic-Stankovic 2016). 
Therefore, the obtained correlation coefficients can act as a foundation for determining 
weights. Accordingly, the new weights are formed using the Pearson’s correlation coeffi-
cient between the variable and the obtained I-distance value. The weights suggested by the 
Composite I-distance Indicator (CIDI) approach are based on the ratio of the (I) correlation 
coefficient of a particular variable and (II) the I-distance value and the sum of correlation 
coefficients of variables with the I-distance value (Dobrota et al. 2015). The rationale of 
this approach is in line with the Hellwig’s (1969) “weights based on the correlation matrix” 
approach. Namely, he proposed indicator weights as the ratio of correlation coefficient of 
a particular variable and the exogenous criterion and the sum of correlation coefficients of 
variables with the exogenous criterion (Ray 2007). Comparing the two approaches, in case 
of the CIDI methodology, the exogenous criterion is the I-distance value. The formula is 
given as:

where ri is the Pearson’s correlation coefficient between the indicator i, i ∈ I and the 
obtained I-distance value and 

∑k

j=1
rj is the sum of all Pearson’s correlation coefficients 

between the indicators and the obtained I-distance value. The sum of weights obtained 
using CIDI is 1 (Dobrota et  al. 2016) and the new weighting scheme is unbiased in the 
sense that it is data-driven and that no expert opinion has been included in the weighting 
process. The obtained CIDI weights can be used to evaluate a composite indicator or to 
create a novel one (Dobrota et al. 2015), but they can also be used to create weight con-
straints (Maricic et al. 2016; Radojicic et al. 2018).

Efron (1979) coined the term bootstrap and described both the parametric and nonpara-
metric bootstrap. In his parametric approach, random samples are drawn for a specified 
probability density function. On the other hand, in the nonparametric approach, thousands 
of resamples are drawn with replacement from the original sample, and each resample is 
of the same size as the original sample (Kline 2005). The idea of both parametric and non-
parametric bootstrap is to assess the quality of estimates based on finite data (Kleiner et al. 
2014). The goal is to obtain confidence intervals, quality assessments that provide more 
information than a simple point estimate obtained using the Maximum Likelihood Method 
(Efron and Tibshirani 1993).

However, statistical shortcomings of the nonparametric bootstrap have been discussed 
(Bickel et  al. 1997; Mammen 1992). These led to the development of related methods 
such as the m out of n bootstrap with replacement (Bickel et al. 1997) and the m out of n 
bootstrap without replacement, known as subsampling (Politis et  al. 1999). The idea of 
reducing the bootstrap sample size came from Bretagnolle (1983) and Beran and Ducha-
rme (1991). They showed that the failure of Efron’s (1979) bootstrap with resampling size 
equal to the original sample size may be solved in some cases by undersampling. The idea 
of the m out of n bootstrap is to draw samples of size m with or without replacement, 
instead of resampling bootstrap samples of size n, where m → ∞ , and m∕n → 0.

(2)wCIDIi
=

ri∑k

j=1
rj
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The type of bootstrap which caught our attention is the subsampling, the m out of n 
bootstrap without replacement. Namely, subsampling is more general than the m-boot-
strap since fewer assumptions are required (Bickel and Sakov 2008). It is based on two 
basic ideas – one being undersampling, the other the absence of replacement (Politis and 
Romano 1994). Such an approach to sampling, without replacement, results in deliberate 
avoidance of choosing any member of the population more than once. This process should 
be used when outcomes are mutually exclusive and when the researcher wants to eliminate 
the possibility of the same entity being repeated in the sample. Also, the bootstrap method 
without replacement improves the stability and accuracy of the estimate (Kawaguchi and 
Nishii 2007) and shows asymptotic consistency even in cases where the classical bootstrap 
fails (Davison et al. 2003).

On the other hand, bootstrap with replacement is easier to use and more widely used 
(Geyer 2013). We chose the m out of n bootstrap without replacement (subsampling) so as 
to avoid the possibility of choosing any entity more than once. Namely, composite indica-
tors are used to rank different entities. Although it is always possible to get two or three 
entities with the same values of indicators, this cannot happen for a large percentage of the 
sample. Theoretically, if a bootstrap with replacement was used, no matter the sample size, 
we could observe a sample made out of just one or two entities. The possibility of such an 
occurrence is small, but we wanted to be sure no entity will repeat. Such an approach is 
used in medical researches, when there is a strict need that a subject is no longer eligible 
for consideration (Austin and Small 2014). Also, Strobl et  al. (2007) showed that when 
bootstrap without replacement is conducted no bias occurs. Having these considerations in 
mind, we opted for the m out of n bootstrap without replacement.

Using a smaller bootstrap sample requires a choice of m. Several solutions have been 
suggested (see e.g. Arcones and Gine 1989; Bickel and Sakov 2008). An interesting 
approach to choosing m is to make it equal to 0.632 ⋅ n , namely to its nearest integer. This 
idea was first introduced by Efron and Tibshirani (1997) with the goal to reduce the bias 
of the leave-one-out bootstrap. The idea of this approach is to have a number of observa-
tions in the subsample equal to the average number of unique observations in the bootstrap 
sub-samples (Braga-Neto and Dougherty 2004; De Bin et al. 2016). If a bootstrap n out of 
n with replacement is conducted, in each of the subsamples, there will be 0.632 ⋅ n original 
data points. Namely, the probability that each data point will not appear in the subsample is 
(1 − 1∕n)n ≈ e−1 . If a subsample of size n is drawn then (1 − 1∕n)n ⋅ n ≈ e−1 ⋅ n ≈ 0.632 ⋅ n . 
This approach to defining m has become popular because it shows low variability and mod-
erate bias (Jiang and Simon 2007). In our study, we, as in Strobl et  al. (2007), used the 
0.632 ⋅ n as m.

When it comes to bootstrap, one must decide on the number of replications. Again, sev-
eral suggestions have been made. For example, Hedges (1992) recommended performing 
400–2000 bootstrap replications, while a more recent study by Pattengale et al. (2009) sug-
gest between 100 and 500 replicates. They also state that the stopping criteria can recom-
mend very different numbers of replicates for different datasets of comparable size. In our 
study, we chose 1000 bootstrap replications.

The idea of implementing the bootstrap for various forms of multivariate analysis 
emerged in the 1990s. For example, Ferrier and Hirschberg (1999) combined bootstrapping 
methods to measure bank efficiency using DEA. Nevitt and Hancock (2001) showed that 
bootstrap methods could be applied in structural equations models. Kim et al. (2008) com-
bined the bootstrap and discriminant analysis. More recently, Xu et al. (2013) conducted 
a parametric bootstrap approach for the two-way ANOVA, and Konietschke et al. (2015) 
applied parametric and nonparametric bootstrap to MANOVA. Lead by these positive 
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experiences and reputable results, we propose the application of the bootstrap to CIDI 
approach.

In a typical application of the CIDI approach, the researcher would obtain new, data-
driven CIDI weights (Dobrota et al. 2016). However, by performing bootstrap and repeat-
ing the CIDI approach multiple times on various samples, one obtains an interval for each 
weight. Such an interval can be used as constraint in GAR DEA method (Global assur-
ance region DEA method) (Radojicic et al. 2018). Therefore, we propose the application of 
the CIDI approach to each of the bootstrap samples and the calculation the minimum and 
maximum weight assigned to each indicator. The obtained values can be used as weight 
constraints.

The procedure for the m out of n bootstrap CIDI without replacement with p replica-
tions is as follows:

1. From the observed n entities create p random samples Ss of size m (m = 0.632 ⋅ n)
2. Perform the CIDI approach on each of the p created random samples
3. Obtain the minimum and maximum of the CIDI weights assigned to each of the k indica-

tors.

The results of the bootstrap CIDI will be used in the next steps of the proposed hybrid 
weighting approach.

3.2  Relative Contributions

The weight assigned to the indicator does not guarantee its final contribution in the overall 
value (Saisana and D’Hombres 2008). One of the means to assess the share of an indicator 
in the overall value is using relative contributions. The relative contribution of each indica-
tor to the overall composite indicator value is calculated as the proportion of the (I) product 
of the indicator score with the associated weight compared to the (II) total score (Murias 
et al. 2008). The formula is given as:

where the relative contribution vie represents the relative contribution of indicator i, 
i ∈ I to the overall index value of entity e, e ∈ E.

The relative contribution can be interpreted as percentual impact of the weighted indi-
cator i to the overall composite indicator value of entity e. Therefore, we can say that as 
the value of the relative contribution of an indicator i of entity e rises, the impact of the 
indicator i in the overall composite indicator value of the entity e rises. The presented anal-
ysis can be quite useful when it comes to the assessment of composite indicators, espe-
cially when the values of relative contributions are analysed per indicator. Namely, such 
an approach can give insight into whether certain indicators are dominating the overall 
composite indicator values (Dobrota et  al. 2016). It can also show that the relative con-
tribution of an indicator to the overall composite indicator value might not necessarily be 
captured by the weight assigned (Saisana and D’Hombres 2008). This is measured through 
the mean relative contribution per indicator. It can deviate from the official weight assigned 
to the indicator thus indicating that an indicator has a higher or smaller impact. Therefore, 
relative contributions can indicate the level of composite indicator and/or rank stability. 
Accordingly, a higher standard deviation of relative contributions leads to a greater degree 

(3)vie =
xiewi∑k

j=1
xjewj
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of oscillation of overall composite indicator value subsequently leading to higher rank 
oscillation (Savic et al. 2016).

So far, relative contributions have been used with a great deal of success in the com-
plex procedure of composite indicator creation. Besides being used to inspect the differ-
ence between nominal (explicit) and relative (implicit) weights, relative contributions can 
be used as input to the uncertainty and sensitivity analysis of weighting schemes such as 
in Dobrota and Dobrota (2016) and Dobrota et al. (2016). Another interesting application 
of relative contributions in uncertainty and sensitivity analysis is their use as constraints in 
the DEA model. Murias et al. (2008) aimed to create a composite indicator for the quality 
assessment of Spanish public universities using nine indicators and the DEA model. Since 
they wanted to allow every unit to choose its individual weights, but also to limit the flex-
ibility of the weights, they imposed additional restrictions to the relative contributions of 
indicator weights. Similarly, Pérez et al. (2013) used linear programming to maximize the 
value of the composite indicator, while restraining the weights using relative contributions 
of indicators. Relative contributions can also be used as a stopping rule. Savic et al. (2016) 
suggested stopping post hoc I-distance (proposed by Marković et al. (2016)) when the sum 
of standard deviations of relative contributions starts to increase.

3.3  Enhanced Scatter Search (eSS)

Scatter Search (SS) is a population-based metaheuristics based on formulations proposed 
in the 1960s for combining decision rules and problem constraints. The SS was intro-
duced by Glover (1977) for integer programming. However, the SS has recently produced 
promising results for solving combinatorial and nonlinear optimization problems (Glover 
et al. 2000). For that, it has seen several modifications of the original method such as the 
enhanced Scatter Search (eSS) (Egea et  al. 2009), Cooperative enhanced Scatter Search 
(CeSS) (Villaverde et al. 2012), and the self-adaptive cooperative enhanced scatter search 
(saCeSS) (Penas et al. 2017). One of the reasons for the interest of academics and research-
ers in the SS is because it uses strategies for combining solution vectors that have proved 
effective in a variety of problem settings. As the modifications of SS have become more 
widely used, there was a growing need to implement them in the programming language R 
and make them more accessible (Egea et al. 2014).

The optimization algorithm used, the enhanced Scatter Search (eSS), can be consid-
ered as an evolutionary method similar to e.g. genetic algorithms but based on systematic 
combinations of the population members instead of recombination and mutation opera-
tors. Metaheuristic classification places Scatter Search in the group of population-based 
algorithms that constructs solutions by applying strategies of diversification, improvement, 
combination and population update (Penas et al. 2015). It is a naturally inspired and non-
linear metaheuristic which is suited for global dynamic optimization of nonlinear prob-
lems. The aim of the eSS is to enable the implementation of various solution strategies that 
can produce new solutions from combined elements to derive better solutions than strate-
gies whose combinations are only based on a set of original elements. The SS algorithm 
uses different heuristics to choose suitable initial points for the local search which helps 
overcome the problem of switching from global to local search (Rodriguez-Fernandez 
et al. 2006). The pseudo code for the eSS can be found in Egea et al. (2009).

Although SS is similar to GAs, there are crucial differences which should be empha-
sized. Namely, GA approaches are based on the idea of choosing parents randomly and 
further on applying random crossover and mutation to create a new generation (Gen and 
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Cheng 2000). Contrarily, SS does not emphasize randomization. It does not use crosso-
ver and mutation but applies a solution combination method that operates among popula-
tion members. The approach is designed to apply strategic responses, both deterministic 
and probabilistic, that take account of evaluations and history (Rodriguez-Fernandez et al. 
2006). New solutions are generated using a systematic (partial random) combination rather 
than a fully random solution (Remli et al. 2017).

The eSS algorithm which we propose to implement in our study aims to find the balance 
between intensification (local search) and diversification (global search) using a small pop-
ulation size, more search directions, and an intensification mechanism in the global phase, 
which exploits the promising directions defined by a pair of solutions in the reference set 
(Egea et al. 2009). Therefore, eSS stands out for its good balance between robustness and 
efficiency in the global phase, and couples with a local search procedure to accelerate the 
convergence to optimal solutions (Penas et al. 2017). The eSS has proved to be an efficient 
metaheuristic in solving complex-process optimization problems from different fields, 
providing a good compromise between diversification (exploration by global search) and 
intensification (local search) (Otero-Muras and Banga 2014).

4  Proposed Approach: Hybrid Enhanced Scatter Search—Composite 
I‑Distance Indicator (eSS‑CIDI) Optimization Approach

This study aims to find a set of data-driven weights which creates the most stable com-
posite indicator. The stability of a composite indicator, observed through the prism of its 
weighting scheme, is measured through the standard deviation of relative contributions of 
indicators. Therefore, we aim to minimize the sum of standard deviations of relative con-
tributions of indicators which constitute the composite indicator. The goal is to adjust the 
weights assigned to composite indicator so as to achieve high overall composite indicator 
stability. However, if no constraints to each weight are imposed, the model would assign 
weight to just one indicator, the indicator with the minimum standard deviation. Accord-
ingly, we impose weight restrictions using the previously introduced m out of n bootstrap 
CIDI without replacement with p replications. To solve the proposed optimization model, 
we propose the eSS.

The three-step algorithm which searches for the weights that create the most stable com-
posite indicator via constrained optimization is as follows:

1. Conduct the m out of n bootstrap CIDI without replacement with p replications. The 
suggested value of the parameter m is 0.632 ⋅ n , where n is the number of the entities 
ranked by the composite indicator. The suggested number of replications (p) is 1000.

2. Define the weight constraints. Obtain the min and max CIDI weights of each indicator 
following the bootstrap CIDI procedure.

3. Solve the optimization model. Use the min and max CIDI weights as constraints of the 
optimization model. To solve the model, we propose the eSS metaheuristic.

The issue which arises when applying optimization models relates to model constraints. 
Namely, as previously explained, if no constraints are assigned, the optimization model 
would assign weight to just one indicator (in case of BoD) or all entities would be efficient 
or close to efficient (in case of DEA). To conduct the eSS (Step 3), bound constraints for 
the decision variables must be defined.
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Among various approaches for determining such bounds, the CIDI approach stood out 
as is was employed with success to constraint BoD and DEA models. Namely, Maricic 
et al. (2016) created weight constraints for the BoD model around CIDI weights. On the 
other side, Radojicic et al. (2018) used bootstrap CIDI to create constraints for the DEA 
model. Following the example of good practice, herein we use the m out of n bootstrap 
CIDI without replacement with p replications to create weight bounds for the optimization 
model (Step 1). These bounds are defined as the minimum and maximum weight assigned 
using the bootstrap CIDI (Step 2). Such an approach allows us to create a wide enough 
interval which will cover all bootstrap CIDI weights.

The proposed optimization approach is presented in Fig. 1.
The objective function of the optimization problem is given as follows:

Subject to

(4)min
wi

k∑
i=1

�vi

(5)wmini ≤ wi ≤ wmaxi

(6)
k∑

i=1

wi = 1

Fig. 1  An overview of the proposed eSS-CIDI weight optimization approach
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where �vi is the standard deviation of the relative contribution of indicator i, i ∈ I , in the 
composite indicator of entities e, e ∈ E , computed as:

Next, vie is the relative contribution of indicator i to the entity e, wmaxi and wmini are 
the maximum and minimum weight of indicator i obtained after bootstrap CIDI. Alongside 
the upper and lower constraints (Eq. 5), we added the constraint that the sum of assigned 
weights must be one (Eq. 6). Finally, the weights must be greater or equal to 0 (Eq. 7).

4.1  Discussion on the Proposed Optimization Approach

A key ‘managerial insight’ of the eSS-CIDI approach is that it allows the composite indi-
cator creators to be certain they have created a stable and robust composite indicator con-
sidering the chosen weight constraints. Namely, when choosing the weighting scheme, 
researchers are given a wide range of weighting approaches to choose from. Nevertheless, 
there is no guarantee that they will choose the most stable one. Furthermore, our approach 
provides an opportunity to improve the stability of a devised composite indicator. Besides 
suggesting new weights, the eSS-CIDI approach could be used to assess and inspect the 
official weighting scheme. The deviations in weights, as well as overall composite indicator 
values and ranks, could have valuable policy implications as composite indicators are often 
used to define strategies and policies and act as guiding lights (Dialga and Thi Hang Giang 
2017). Therefore, the eSS-CIDI approach could be of use to policymakers, especially as 
the optimized weights are rounded to three decimal places which makes them easier to 
interpret and present to the wider public (Cole 2015a, b).

One of the prominent contributions of our method is that it is a data-driven weight opti-
mization approach which builds upon methods that were verified in various applications 
(Dobrota et al. 2016; Egea et al. 2009; Nevitt and Hancock 2001). Furthermore, the algo-
rithm provides a single solution, so the researcher does not need to choose between several 
solutions. Finally, it enables the index creators to be sure that, given the constraints, their 
metric will have the highest stability.

The question which arises is how we measure stability in the eSS-CIDI approach. To 
measure the stability of the composite indicator we used the standard deviation of rela-
tive contributions ( �vi ). Namely, as shown in Sect. 3.1, relative contributions indicate the 
prevalence of an indicator in the overall composite indicator. If the values of relative con-
tribution of indicator i for all observed entities e, e ∈ E , vary, therefore, the values of com-
posite indicator of all observed entities are sensitive to the weight assigned to indicator i. 
To measure the stability of the impact of an indicator i we used the standard deviation of its 
relative contribution. The smaller �vi of indicator i indicates that the overall composite indi-
cator values are stable when it comes to the impact of indicator i. Therefore, our idea is to 
minimize the sum of standard deviations of relative contributions through weights and thus 
minimize the overall indicator volatility. The proposed approach leads to maximization of 
rank stability and robustness, all observed through the prism of weight uncertainty.

(7)wi ≥ 0 ∀i

(8)�vi
=

�����
⎛⎜⎜⎝
1

n

n�
e=1

�
vie −

1

n

n�
e=1

vie

�2⎞⎟⎟⎠
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Next, we provide comparison of the eSS-CIDI approach with related weighting 
approaches (Table 2). The eSS-CIDI approach like CIDI and PCA does not assign entity-
specific weights. Namely, BoD and DEA assign a specific weighting scheme to each 
observed entity (Amado et al. 2016; Cherchye et al. 2007). The criteria for which the pro-
posed approach stands out is because it takes into account the stability of the created com-
posite indicator while assigning weights. For all other observed weighting approaches, the 
uncertainty analysis for the weighting scheme can be conducted, but after the weights have 
been assigned. The eSS-CIDI approach is an approach based on optimization, so it is, as 
BoD and DEA, based on an objective function.

Additionally, we compare the proposed eSS-CIDI to similar approaches which aim to 
improve or measure the stability of the composite indicator. Compared to the approach 
of Foster et al. (2013), the eSS-CIDI provides the decision maker with a vector of most 
stabile weights, while their approach provides a measure of the stability of an initial vector 
of weights. Their approach gives a measure of robustness of an initial or official weighting 
scheme, while it does not suggest a vector of weights which will be more stable. The same 
accounts for the approach of Permanyer (2011), whereas his approach to measuring the 
robustness of an initial vector of weights differs as it observes the distance from equality. 
The approach of Cherchye et al. (2008b) is based on the rank robustness measured through 
Lorenz dominance. Therefore, their results do not produce an overall composite composite 
indicator value, whereas they provide pairwise dominance results. The eSS-CIDI, on the 
other hand, provides an overall composite indicator, but it does not take into account pair-
wise comparisons. Paruolo et al. (2013) proposed an approach based on the actual effect 
of the weights to the overall metric, measured through the ‘main effect’. The eSS-CIDI 
is in a way similar as it measures the proportional impact of the weighted indicator in the 
overall composite indicator value through relative contributions. The theoretical approach 
of the weighting approach of Becker et al. (2017) resembles the eSS-CIDI. They aimed to 
optimize weights so as the impact of weights measured through the ‘main effect’ fits the 
pre-specified importance. In the eSS-CIDI also an optimization approach is used, but the 
weights are to fit the bootstrap-CIDI constraints. The provided comparison shows that the 
eSS-CIDI provides a continuation of the resent research in this area.

Lastly, the objective of the proposed eSS-CIDI weighting approach should be observed 
through the prism of policymakers. Although the objective of the eSS-CIDI is understand-
able to an analyst, the question rises will its objective be understood by policymakers or 
government representatives or field experts who are working on the process of creating a 
composite indicator. Namely, will they choose the eSS-CIDI weighting scheme over equal 
weighting or a simpler data-driven weighting approach? In an attempt to answer the ques-
tion the pros and cons of this approach to the process of policymaking should be analysed. 
One of the first benefits of the proposed approach is that the uncertainty analysis is auto-
matically performed. Namely, Freudenberg (2003) states that this step is usually skipped in 

Table 2  Comparative analysis of the weighting approaches

Criteria eSS-CIDI CIDI PCA BoD DEA

Entity-specific weighting scheme No No No Yes Yes
Incorporates stability of the created 

composite indicator
Yes No No No No

Based on an objective function Yes No No Yes Yes
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the process of composite indicator creation. By applying the eSS-CIDI the policymakers 
can be sure that this step will be conducted. Another benefit is that the eSS-CIDI proposes 
a weighting scheme which creates a most stable indicator considering predefined weight 
constraints. This also reduces the possibility of critique of the composite indicator method-
ology which the policymakers wish to evade. Namely, the weighting scheme is often criti-
cized step in the process of composite indicator creation (e.g. Amado et al. 2016; Despotis 
2005; Dobrota et al. 2016; Jeremic et al. 2011). On the other side, there are potential draw-
backs of the proposed approach. First is that the approach is not so easy understandable 
for ones who have no basic knowledge of statistics and operational research, which might 
make it difficult to adopt by wider public. Second is that the obtained weights of indica-
tors might significantly differ from the socially acceptable weights or weights proposed by 
experts. Nevertheless, according to Saltelli (2007) no matter how good the statistical and 
theoretical background of a composite indicator is, its acceptance relies on peer accept-
ance. The same can be said for the weighting methodology. We believe that this discussion 
might persuade the policymakers to put confidence in our approach.

5  Case Studies

This section shows the application of the hybrid eSS-CIDI approach to two existing com-
posite indicators. Herein we chose the Academic Ranking of World Universities (ARWU) 
and the Networked Readiness Index (NRI). We chose two composite indicators on which to 
implement the suggested weighting scheme because they belong to two different fields of 
study; one is in the field of higher education, and the other in the field of information and 
communication technology (ICT). Another, more important reason, is the official weight-
ing scheme. In case of ARWU , the weighting scheme is based on expert opinion and the 
assigned weights are not equal, while in case of NRI, the weights are equal. Finally, the 
chosen indicators have different structures. Namely, NRI has a three-level structure, while 
ARWU  is based solely on indicators.

5.1  Academic Ranking of World Universities (ARWU) 2017

Higher education is just one of the spheres of life that has seen the introduction of quantita-
tive metrics into its assessment through university rankings (Daraio and Bonaccorsi 2017). 
University rankings came into the spotlight after US News and World Report began pro-
viding rankings of US universities in 1983, while they proliferated after 2003 when the 
Academic Ranking of World Universities (ARWU) has been published (Moed 2017). There-
fore, the general opinion is that the university rankings are here to stay (Hazelkorn 2007). 
The university ranking that attracted our attention was the ARWU  ranking published by 
the Institute of Higher Education of the Jiao Tong University in Shanghai which ranks the 
world’s top 1000 universities (ShanghaiRanking 2018).

The ranking itself is based on six indicators which aim to rank institutions according 
to academic and research performance (Liu and Cheng 2005). The first two indicators, 
Alumni and Award, are related to the number of alumni/staff who won the Nobel Prize 
and/or Fields Medal. The following three indicators are bibliometric. The indicator HiCi, 
aims to measure the number of staff who are classified as highly cited researchers by Clari-
vate Analytics. The next two indicators measure the research output. The N&S, on one 
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hand, indicates the number of papers published in Nature and Science in the last 5 years, 
while the PUB indicates the total number of papers indexed by the Science Citation Index-
Expanded (SCIe) and the Social Science Citation Index (Social SCI) in the previous year. 
Both indicators take into account only publications of ‘Article’ type (ShanghaiRanking 
2018). Finally, the PCP attempts to measure the academic performance of an institution by 
taking into account the number of full-time equivalent academic staff.

Taking a closer look at the ARWU  methodology, to calculate the score of the ARWU  
ranking first raw indicator values are normalized. The normalization method used is the 
distance to a referent entity (Nardo et al. 2005), which is in this case the university with 
the highest indicator value. The best performing university is given a score of 100 and 
becomes the benchmark against which the scores of other universities are measured. In the 
next step, the normalized scores are weighted accordingly and aggregated using the linear 
sum (Dehon et al. 2010). The list of the ARWU  indicators and their respective weights are 
given in Table 3.

Since it first appeared in 2003, the ARWU  ranking has attracted both positive feedback 
and rigorous critique. Academics specialized in data analysis, bibliometrics, and composite 
indicators have tried to attract the attention of the ranking creators and the broader public 
to some of the methodological flaws the ARWU  ranking faces. The methodological issue 
which is particularly significant for this research is the weighting scheme of the ARWU  
indicators. Namely, Dehon et al. (2010) scrutinized the ARWU  and showed that its results 
are sensitive to the relative weight attributed to each of the indicators. Their research is also 
notable because it provided insight that the university rankings, as well as ARWU , are sen-
sitive to weighting scheme alterations.

In the presented case study, we initially chose to observe the top 100 universities for 
the year 2017. The data was publicly available on the official site of the ARWU  ranking 
(ShanghaiRanking 2017). As the indicators Award and Alumni are related to Nobel Prize 
and Fields medals winners, which not many universities can boast, many universities have 
zero values for these indicators. The high percentage of zero values of these indicators 
is seen an issue of the ARWU ranking (Docampo and Cram 2015; Maricic et al. 2017). 
In general, high per cent of zero values in the data can greatly complicate any statistical 
analysis or interpretation of results (Zuur et al. 2010). In some cases, the high percentage 
of zero values is inherent (e.g. murder rate), but otherwise it indicates poor data quality 
(Yang et al. 2015). Therefore, to improve the quality of the observed ranking, all universi-
ties within the top 100 which had zero value for any indicator were removed. In our analy-
sis, we included 74 world-class universities within the top 100 for which all six indicator 
values are above 0.

According to the suggested algorithm, the first step was to perform the bootstrap CIDI 
and determine the allowed weight intervals needed for the eSS optimization. We performed 

Table 3  Official ARWU  weights, 
min and max bootstrap CIDI 
weights and optimal weights 
suggested by the hybrid eSS-
CIDI approach

Indicator Official 
weight (%)

wmini (%) wmaxi (%) w
i
 (%)

Alumni 10 15.2 19.1 15.2
Award 20 15.2 21.5 15.2
HiCi 20 14.8 18.3 14.8
N&S 20 18.0 21.9 21.9
PUB 20 7.5 15.4 13.3
PCP 10 15.0 19.6 19.6
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1000 iterations with a sample size of 47 ( 0.632 ⋅ 74 = 46.768 ≈ 47 ). The obtained intervals 
are also presented in Table 3. The original weights of indicators Award and N&S are cov-
ered by the interval, while the suggested weight intervals for HiCi and PUB are below the 
officially assigned weight. For example, PUB was assigned 20% while the bootstrap CIDI 
suggested weights from 7.5 to 15.4%. On the other hand, the latter two weight intervals 
were above the original weight. For example, the weight of the indicator Alumni, officially 
assigned a weight of 10%, has a suggested weight from the interval ranging from 15.2 
to 19.1%. The obtained intervals give more significance to prestigious awards of alumni 
(Alumni) and per capita performance (PCP), while relegating the number of highly cited 
researchers (HiCi) and the level of publications (PUB). Bootstrap CIDI intervals are more 
oriented towards excellence measured through Nobel Prizes and Fields Medals.

In the following step, the eSS was performed and the results are given in Table 3. As it 
can be observed, for the first three indicators, the suggested weights are the lower limits of 
the bootstrap CIDI intervals. The weights of N&S and PCP are set as the upper limit of the 
bootstrap CIDI intervals. Interestingly, only one weight did not achieve the upper or lower 
bound of the constraint interval, the weight of PUB.

To evaluate the obtained weighting scheme, we compared the sum of standard devi-
ations of relative contributions of the optimized, official, equal, and the CIDI weighting 
scheme1 (Table 4). The sum of standard deviations of relative contributions of the official 
weighting scheme is 0.253385, while the sum of standard deviation of relative contribu-
tions of the eSS-CIDI weighting scheme is 0.252578. Compared with the equal weight-
ing scheme and with the CIDI weighting scheme, the optimized weighting scheme again 
showed more stable results. Also, it is of interest to analyse the standard deviation of rela-
tive contributions. Comparing the official and the optimized weighting schemes, the indi-
cators which were assigned more weight than the official have a greater standard deviation 
of relative contributions. Bearing in mind that university rankings, both international and 
national, should be stable and not subject to sharp fluctuations in the overall scores (Shat-
tock 2017), the new eSS-CIDI weighting scheme might be very useful.

Table 4  Standard deviation of relative contribution per ARWU  indicator for eSS-CIDI, official, CIDI, and 
equal weighting scheme

Indicator Sum

Alumni Award HiCi N&S PUB PCP

eSS-CIDI weighting 
scheme

0.038803 0.045714 0.039835 0.037612 0.048795 0.041819 0.252578

Official weighting 
scheme

0.025635 0.060233 0.047017 0.032840 0.064685 0.022975 0.253385

CIDI weighting 
scheme

0.044214 0.049619 0.045404 0.034081 0.050273 0.035956 0.259547

Equal weighting 
scheme

0.041631 0.049941 0.043262 0.029554 0.058052 0.036127 0.258567

1 The obtained CIDI weighting scheme is: Alumni 17.6%, Award 16.7%, HiCi 16.9%, N&S 19.4%, PUB 
13.4%, and PCP 16.0%.
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Finally, we apply the novel weighting scheme. The changes in the ARWU  ranks as the 
result of the application of optimal weights for a selected number of universities are given 
in Fig. 2. We can observe that the rank difference ranges from + 9 places (University of 
Basel) to − 9 places (Rutgers, The State University of New Jersey—New Brunswick). Most 
commonly universities dropped one ranking position (23.0% of universities), while the 
second most common case was no rank change (17.6% of universities). For example, the 
Karolinska Institute and University of Munich improved their rank by 5 places. One of the 
reasons for such rank advancement is their high values for the indicator PCP, 53.3 and 
51.7, respectively, whose importance for the ranking procedure rose. On the other side of 
Fig. 2 we can see that King’s College London and University of British Columbia dropped 
by 5 ranking places. Their overall score did not change dramatically, but other universities 
benefited more from the new weighting scheme and increased their overall score.

Looking at the top 10 universities according to the official ranking and comparing their 
ranks with the eSS-CIDI ranks we see that the universities within the top 10 did not change, 
but that there was a change in their ranks (Table 5). The biggest rank change was for the 
California Institute of Technology which advanced from 9th to 6th place. On the other 

Fig. 2  Rank change between official ARWU  and optimized ARWU  for a chosen number of universities
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hand, there was a notable shift in the bottom 10 universities. The biggest rank changes 
occurred for the universities which were in the bottom 10 according to the official ranking. 
The higher sensitivity in the lower part of the ranks can be explained by the fact that those 
entities have neither good nor bad indicator values and therefore, they are highly dependent 
on the chosen weighting scheme (Saisana et al. 2011).

5.2  Networked Readiness Index 2016

The Networked Readiness Index (NRI) is a composite indicator which aims to measure the 
level up to which countries leverage ICT to increase their competitiveness. It was devel-
oped by the World Economic Forum and ranks and compares 151 countries using 53 indi-
cators divided into 10 sub-categories and later into four sub-indexes: Environment of ICTs, 
Readiness of a society to use ICTs, the actual Usage of ICTs by all primary stakeholders, 
and Impacts that ICTs generate in the economy and society (Bilbao-Osorio et al. 2014). 
Such a complex framework provides broad and systematic comparison of the ICT develop-
ment of countries around the globe (Kirkman et al. 2002).

The NRI is computed successively. Indicators are aggregated into sub-categories, which 
are later aggregated into sub-indexes, which are finally combined to obtain the overall com-
posite indicator value. Prior to aggregation, scores of each indicator are normalized onto a 
common scale ranging from 1 to 7 (World Economic Forum 2016b). At each step of the 
aggregation equal weights are applied (Table 6). Such an approach to weighting remains a 
stumbling block in the process of constructing a composite indicator (Saisana and Taran-
tola 2002). Namely, the NRI weighting scheme was scrutinized using the Composite I-dis-
tance Indicator approach (CIDI) which showed that the current weighting scheme could 
be altered (Jovanovic-Milenkovic et al. 2016). Herein, we will place our attention on the 
weighting scheme on the level of sub-indexes, whereas we presumed that the weighting 
schemes on the level of indicators and sub-categories should not be changed.

In our case study, we observed 138 countries which had no missing data for the sub-
indexes of the newest version of the NRI for the year 2016. The data on which the analysis 
was performed is publicly available (World Economic Forum 2016a). The bounds obtained 
using the bootstrap CIDI after 1000 replications with a subsample size of 87 are presented 
in Table 6. It can be observed that the bootstrap CIDI suggests a lower weight to the sub-
index Readiness, in the range 21.7–23.1%, while the indicator Usage was given more 
importance, in the range 26.0–26.9%. The only indicator whose official weight is covered 
in the obtained interval is Environment, while the proposed weight interval for Impacts is 
slightly above the official 25%.

The next step was to perform the eSS and find the optimal set of weights. The results are 
also given in Table 6. Analysis of the optimized weights provides some interesting insights. 
Namely, while the weight of Readiness decreased to 21.7% from 25%, the importance of 

Table 6  Official NRI weights, 
min and max bootstrap CIDI 
weights and optimal weights 
suggested by the hybrid eSS-
CIDI approach

Sub-index Official 
weight (%)

wmini (%) wmaxi (%) w
i
 (%)

Environment 25 24.2 25.4 24.5
Readiness 25 21.7 23.1 21.7
Usage 25 26.0 26.9 26.9
Impacts 25 25.9 26.9 26.9
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Usage and Impacts increased to 26.9%. We must also note that the weight of Environment 
exhibited almost no change. The weights of Usage and Impacts are set as the upper bounds 
of the bootstrap CIDI interval, while the weight of Readiness is set as the lower bound of 
the determined interval. Interestingly, as in the ARWU  case study, only one weight did not 
achieve the upper or lower bound of the constraint interval, the weight of Environment.

The value of the objective function using the optimized weights is 0.082491, while the 
value of the objective function using the original weights is 0.086261 (Table 7). Interest-
ingly, in this case CIDI2 produced better results than the official weighting scheme, but 
not better than the eSS-CIDI. Again, the same pattern occurs: the indicators which were 
assigned lower weight than the official, have a smaller sum of standard deviations of rela-
tive contributions.

The changes in the NRI ranks as the result of the application of optimal weights for a 
selected number of countries are given in Fig. 3. We can observe that the rank difference 
ranges from + 3 places (for example China) to − 3 places (for example Ukraine). Most 
commonly countries did not change ranks (48.6% of countries), while the second most fre-
quent shift was − 1 place (20.3% of countries).

5.3  Discussion on the Obtained Results

When it comes to the comparison of the obtained weighting schemes for the ARWU  and 
NRI there are differences which should be emphasized. Both proposed weighting schemes 
are unequal. In the case of ARWU  that goes in line with the official weighting scheme 
which is unequal, but the same does not account for NRI as its weighting scheme on the 
level of sub-index is equal. The eSS-CIDI weighting scheme of ARWU  significantly differs 
from the official. The greatest difference is for the indicator PCP which gained 9.6 weight 
points compared to the official weight. On the other hand, the indicator PUB lost the most 
importance, from official 20 to 13.3%. The proposed weighitng scheme of NRI is unequal, 
but the proposed weights slightly deviate from equal. The biggest difference is in the case 
of sub-indexes Usage and Impacts, just 1.9 weight points.

The next point which should be more closely observed is the difference in the sums 
of standard deviations of relative contributions of indicators between the official and the 
eSS-CIDI weighting scheme. In the first case study for the ARWU  ranking, the difference 
is 0.000807, while in the second case study, the difference is 0.003770. It can be observed 
that the difference does not implicate the rank differences. For ARWU , the differences in 

Table 7  Standard deviation of relative contribution per NRI sub-index for eSS-CIDI, official and CIDI 
weighting scheme

Sub-index Sum

Environment Readiness Usage Impacts

eSS-CIDI weighting scheme 0.025104 0.030313 0.013074 0.014000 0.082491
Official weighting scheme 0.026168 0.033376 0.012757 0.013960 0.086261
CIDI weighting scheme 0.025491 0.031094 0.013047 0.013896 0.083528

2 The CIDI weighting scheme is: Environment 24.8%, Readiness 22.5%, Usage 26.5%, and Impacts 26.2%.
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the sums are smaller while the rank differences varied from + 9 to − 9 places. For NRI the 
rank differences varied from + 3 to − 3 places.

In both case studies, the stability of ranks of entities has been improved if the sole 
observed source of uncertainty was the weighting scheme. Our results showed that, in the 
two conducted case studies, the proposed eSS-CIDI weighting approach provided more sta-
ble ranks. However, this should be taken with caution. Namely, weighting schemes in both 
case studies are based on expert opinion, while the proposed eSS-CIDI weighting scheme 
is entirely data-driven. Therefore, the viewpoint of the interpretation of the results should 
be “what would happen if the weights were devised using a data-driven approach”, rather 
than “the official weighting scheme is improper and should be corrected”. Namely, there is 
no correct weighting scheme and no ambiguous solution. The proposed approach adds to 
the growing body of papers addressing the issue of establishing weighting schemes.

Fig. 3  Rank change between official NRI and optimized NRI for a chosen number of countries
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6  Prospects for Future Research

Assigning weights to composite indicators is one of the vital steps in the process of com-
posite indicator creation (Nardo et al. 2005; Saisana et al. 2005) therefore novel approaches 
and insights are needed. Herein, we aimed to propose a novel approach which envelops two 
steps in the composite indicator creation: weighting and robustness analysis of the weight-
ing scheme. The results presented in this study provide some interesting findings regarding 
the possibility to creating a data-driven weighting scheme which will propose the most 
stable composite indicator considering the given weight constraints.

Although the eSS-CIDI is easily adaptable to a wide range of composite indicator 
frameworks, there is place for further improvements of the approach. During our research, 
we identified several future directions of study. First modification of the proposed approach 
could be related to the application of another metaheuristics. Herein we used a variant 
of Scatter Search as it has demonstrated promising results (Egea et al. 2009; Remli et al. 
2017; Rodriguez-Fernandez et al. 2006). This is especially true in the case of highly non-
linear and multimodal problems as is the case presented in this study. However, not many 
studies have conducted Scatter Search and its variants and the algorithm is not very popular 
and widespread among researchers compared to other metaheuristics. Therefore, it would 
be of interest to compare the results of various metaheuristics with the results obtained 
using eSS. For example, genetic algorithms and naturally inspired metaheuristics showed 
promising results in the field (Grupp and Schubert 2010; Jain et al. 2015). Another plausi-
ble drawback of the approach related to the applied metaheuristics is that it uses a global 
optimization method whose performance deteriorates when it is used to solve high dimen-
sion problems (Remli et al. 2017). This indicates that the process of assigning hundreds of 
weights in a large-scale composite indicator cannot be handled efficiently by eSS.

The second future research could tackle the issue of the type of aggregation. The pro-
posed eSS-CIDI approach is based on the weighted sum type of aggregation. However, this 
type of aggregation has been criticised as it allows trade-off and does not penalize under-
performance (Zhou et  al. 2006). Also, as there is usually collinearity among indicators, 
the linear aggregation might generate biased metrics (Fusco 2015). Therefore, multiplica-
tive aggregation, especially weighted geometric average, is being more and more used in 
the process of creation of composite indicators (Blancas et al. 2013; Giambona and Vas-
sallo 2013; Rogge 2018a; Van Puyenbroeck and Rogge 2017; Verbunt and Rogge 2018). 
Namely, geometric average does not imply perfect substitutability and constant trade-offs 
between indicators/dimensions compared to arithmetic mean whereas it penalizes inequal-
ity among indicators/dimensions (Rogge 2018b). Thus, the possible direction of the study 
could be the modification of the approach to weighted geometric average.

In the presented case studies, the eSS-CIDI approach was used to assess an official 
weighting scheme or the weighting scheme suggested by the experts. However, the eSS-
CIDI approach could be used for other purposes. It could be used to propose a weighting 
scheme of a novel composite indicator. Also, it could be employed to reduce the number of 
indicators which make the composite indicator framework. Namely, as the number of indi-
cators rises, the significance of some indicators for the ranking process can decrease due 
to fact that other indicators cover the same and/or more variability of the observed multi-
dimensional phenomenon (Maricic and Kostic-Stankovic 2016). Therefore, the correlation 
of these indicators with the final I-distance value can be 0 or close to zero. Consequently, 
the bootstrap CIDI weights can be close to zero. In future studies, the eSS-CIDI could see 
its application beyond weighting scheme assessment.
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Finally, different weight constraints could be employed. Namely, other approaches could 
have easily been implemented. For example, an interesting approach to assigning weight 
constraints was employed by Saisana and Saltelli (2014). They used a wide enough interval 
around the official indicator weight in the sensitivity analysis of the Rule of Law Index. 
Herein, such an interval could be determined around the mean bootstrap CIDI weights. 
The ± n� constraint has been used with success in robust optimization, where n denotes the 
desired sigma level (Koch et al. 2004). Radojicic et al. (2015) used ± 3� and ± 6� intervals 
around CIDI weights as constraints for DEA weights. Antony et al. (2006) conducted a Six 
Sigma constrained optimization using GA.

Some limitations of the given study could be stressed out which could be solved in 
some of the future studies. One of the characteristics of our approach is that it does not 
include expert opinion and thus constructs rigid metrics. However, this can easily be over-
come, depending on the composite indicator creators’ attitude towards the inclusion of 
expert opinion. Namely, if composite indicator creators want to create a strictly data-driven 
weighting scheme, they can use the model as proposed in this study. On the other hand, if 
they want to include expert opinion, they could use a hybrid eSS-CIDI weighting approach 
where weights at one indicator level could be expert-driven or equal, while on the other 
they could be obtained using the eSS-CIDI algorithm. The rationale for such an approach 
is that expert opinion can be quite useful in the process of weighting as it can improve 
the acceptability of the final composite indicator (Cherchye et al. 2007). Completely data-
driven weighting approaches can propose weights which significantly deviate from pub-
lic opinion on the importance of particular indicator, thus making it socially unacceptable 
(Banerjee 2018). Sometimes, expert opinion on indicator importance is available (Cher-
chye et al. 2008a) and should be included in the process of composite indicator creation 
process. Therefore, a hybrid expert opinion data-driven model could be a solution which 
would encompass the pros of both approaches (Edirisinghe and Zhang 2010; Joro and Vii-
tala 2004; Reggi et al. 2014) and find a balance between the rigid data-driven approaches 
and the subjective expert-driven ones (Wang et al. 2009).

The next potential issue is that our model does not guarantee a more stable solution 
compared to the official composite index. Namely, it can occur that considering the boot-
strap CIDI constraints, the approach suggests a weighting scheme which creates a less sta-
ble composite indicator. In that case, the official weighting scheme is proven to be more 
stable and according to our proposed approach it should not be altered. In such occurrence, 
the results of our proposed method can be interpreted as a mean of verification of the offi-
cial weighting scheme. However, if one aims to find another weighting scheme other than 
the official, and the proposed bootstrap CIDI procedure with 1000 replications suggests 
rigid weight constraints, the number of replications can be reduced or increased. Also, 
other approaches to defining m can easily be implemented. For some suggestions on the 
size of m see Arcones and Gine (1989) or Bickel and Sakov (2008).

7  Conclusion

Composite indicators are used in various types of public debate such as those surround-
ing sustainable development policy, tourism policy, or higher education. Also, they have 
various policy applications such as aiding benchmark, performance assessment and 
resource allocation (Sevigny and Saisana 2016). This is exactly why it is crucial to create 
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statistically sound and robust composite indicators and unravel their construction methods 
to a wider audience (Dialga and Thi Hang Giang 2017). We have attempted here to open 
the black box in the segment of the weighting procedures by proposing a novel data-driven, 
optimization approach.

In this paper we introduced the enhanced Scatter Search—Composite I-distance Indica-
tor (eSS-CIDI) optimization approach for determining weights within composite indica-
tors. The weights obtained using our approach aim to increase the stability of the composite 
indicator. The goal function of the model is based on relative contributions of indicators to 
the overall indicator value (Sect. 3.1). The upper and lower weight constraints are defined 
using the here proposed m out of n bootstrap CIDI without replacement with p replications. 
To solve the optimization model the eSS metaheuristic was used (Sect. 3.2).

The proposed approach has two main contributions which should be pointed out. First 
is the proposed bootstrap CIDI as an approach for devising weight bounds. Namely, the 
suggested optimization could be carried out without bounding the weights via bootstrap 
CIDI. However, the bootstrap CIDI provides reliable bounds for the constraints which 
facilitate the optimization process by reducing the search space. This could be particularly 
crucial in high dimensional problems with large search space in which the performance 
of metaheuristics can deteriorate (Remli et al. 2017). Second is that it facilitates the usu-
ally cited stumbling block in the creation process of composite indicators: the weighting 
process. It provides completely data-driven weights which do not depend on the experts’ 
opinions. Also, it helps the composite indicator creators as it guarantees that, taking into 
account the constraints, they will create a metric whose values are least susceptible to 
change due to weighting. On the other hand, the novel weighting scheme is rounded to 
three decimal places and the sum of weights is one, what makes it easier for stakeholders to 
understand and interpret.

To test our approach, we conducted two case studies on composite indicators from two 
spheres of life and with completely different frameworks. Namely, ARWU  has six indica-
tors and unequal weights (Sect. 5.1), while the NRI has four indicators and equal weights 
(Sect. 5.2). The optimization model had a unique solution for both cases which satisfied 
all the imposed constraints. The results show that the application of weights suggested by 
the eSS-CIDI approach leads to a smaller sum of standard deviations of relative contribu-
tions of the observed indicators compared to other tested weighting schemes. Namely, the 
proposed approach outperforms the existing tested approaches. The stability of the overall 
metrics could be improved using the proposed weights and weighting approach.

The current study contributes to the research by providing a comprehensive frame-
work for determining data-driven weighting schemes. We believe that the proposed eSS-
CIDI approach could serve as a catalyst for further research on the topic of the weighting 
approaches, especially on the topic of optimization through weights.
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