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Abstract The Water Poverty Index (WPI) expands the analysis of China’s water crises

from hydrology to a broader focus on integrated water resources management including

economic and social factors. This index was revised by principal component analysis

(PCA) to avoid arbitrariness of weights and collinearity between variables. However, the

traditional PCA is primarily oriented for static data, and it fails to reveal the evolutionary

trend of data over time. Moreover, the conventional normalization methods are not ade-

quate when the dimension of time is added to the data. In this study, the transformation of

centralized logarithm of initial variable and holistic and dynamic principal component

analysis are firstly proposed, then the improved methods are applied to assess water

poverty in China using panel data from 2004 to 2012. The estimated WPI shows the

growing scale and the clustering trend of regional water poverty. The analysis of influential

factors reveals that aquatic environmental pollution is a vital driver of water poverty.

Water resource endowment is the second important factor concerning regional water

poverty. Inability to adapt to water scarcity, which leads to weak physical water access and

low efficiency of water use, is still a critical driver of regional water poverty. Finally, the

regional disparities and alleviation strategies of water poverty are discussed.
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1 Introduction

Water is an indispensable and fundamental natural resource for human welfare and social

development (Gleick 1996), especially in China, which has more than twenty percent of

the world’s population but less than seven percent of its freshwater resources (Todd 2010).

Water scarcity is a question of means rather than resource availability (Sullivan 2002;

Rijsberman 2006), and so the social environmental and economic factors need be inte-

grated into the water resource management model (Jemmali and Matoussi 2013). The

theory of water poverty expands the analysis of water scarcity from the field of hydrology

to integrated water resources management (Feitelson and Chenoweth 2002; Rijsberman

2006). However, the calculation method of WPI has some shortcomings when it was

applied in the Chinese case. Thus the aims of this paper are to revise the method of the

calculation of Water Poverty Index (WPI) and then use it to analyze the underlying

complexities of water issues in China.

Water poverty is defined as not having sufficient water to cover basic needs. Water

poverty might be caused by water unavailability, income poverty or other reasons for

inadequate access (Lawrence et al. 2002; Komnenic et al. 2009). The measurement of

water poverty enables water resource policymakers and managers to track progress and

evaluate the effectiveness of actions. The Water Poverty Index (WPI) was created by

Sullivan (2002) to reconcile measures of water availability with measures of people’s

capacity to access water. There are four methods for the calculation of WPI: conven-

tional composite index approach, gap approach, matrix approach and the simple time-

analysis approach (Sullivan 2002). The first one is the focus of this paper because it is

based on identifying the multi-dimensional nature of water poverty. The underlying

framework was developed by Lawrence et al. (2002) covering five key components:

water availability, access to water service, capacity for sustaining access, use of water,

and the environmental factors influencing water quality and the ecology. Each of the

components is made up of a number of sub-components identified to capture a wide

range of water problems. They are firstly calculated by min–max normalization of initial

variables and a weighted arithmetic average method. Then the components are combined

using the same weighted average method in order to obtain the final value of WPI

(Sullivan 2002; Lawrence et al. 2002).

The composite WPI method has been successfully applied through its final value or in

the form of its components as a monitoring tool to express the water situation at national

scale (Lawrence et al. 2002; Komnenic et al. 2009), regional scale (Heidecke 2006), local

scale (Sullivan et al. 2003; Sullivan et al. 2007; Giné Garriga and Pérez Foguet 2011) and

basin scale (Pérez Foguet and Giné Garriga 2011). However, the index has been criticized

on several weaknesses involving the quality of data, arbitrariness of weights, high corre-

lations between dimensions and variables, and loss of information in the aggregation.

Sullivan et al. (2003, 2007) encouraged the use of existing data to reduce costs and

promote the calculation of the index. Molle and Mollinga (2003) criticized the index for

conflating disparate and correlated pieces of information with arbitrary weights. Nardo

et al. (2005) argued that the subject weights assigned to WPI components affect the

statistical proprieties and interpretabilities of the final values of the index, and that the

additive aggregation implies the possibility of offsetting poor performance in some indi-

cators by sufficiently high values of other indicators. Heidecke (2006) recommended

further investigation of the equal weighting scheme due to its inadequate explanation.
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On the basis of previous criticism, principal component analysis (PCA) was developed

by Cho et al. (2010), Gine Garriga and Perez Foguet (2010), 2011), Jemmali and Matoussi

(2013) and Jemmali and Sullivan (2014) to revise the method of calculation of composite

WPI. Cho et al. (2010) used PCA to simplify WPI from five components comprised of

Resources, Access, Capacity, Use and Environment to three components comprised of

Access, Capacity and Environment. Gine Garriga and Perez Foguet (2010) and Jemmali

and Sullivan (2014) adopted PCA to calculate each component of WPI, and then aggre-

gated the components to obtain the final value of WPI. Jemmali and Matoussi (2013) use

PCA to give more weight to components with large variance and to discard components

with smaller ones. Their results revealed that PCA can determine the weights objectively

and avoid the problem of ambiguity among components. However, in the previous studies,

PCA is used only in the calculation of each component, not oriented to all indicators.

Therefore ambiguity may still exist in the holistic indicators. Moreover, water is highly

variable both on a spatial and temporal scale (Sullivan et al. 2007), which adds two

dimensions into the analysis of water poverty so that the variable matrix tends to be very

large and the results of dimension reduction by the traditional PCA is not very good. To

strengthen the interpretability of PCA and overcome the limitations of the traditional PCA,

the transformation of centralized logarithm of initial variable and the methodology of

holistic and dynamic PCA are proposed in Sect. 2. In Sect. 3, a step-by-step procedure for

developing the composite WPI for Chinese case is provided. In Sect. 4, the improved

holistic and dynamic PCA is applied to analyze regional water poverty trends and influ-

ential factors in China. A discussion about the derived policy implications of the obtained

results and a conclusion constitute the final section.

2 Improved Holistic and Dynamic PCA

2.1 Limitations of Traditional PCA

Principal components analysis (PCA) is used to transform a large set of correlated vari-

ables into a smaller set of uncorrelated components, called principal components, which

account for most of the variation in the original set of variables (Dunteman 1989). Thus,

the complex relationship of initial variables can be simplified due to the uncorrelated

principal components. The traditional PCA is primarily oriented to static data, which

consists of indicators and samples, and it fails to reveal the evolutionary trend of data over

time.

The traditional PCA is a linear dimensional reduction technique because the principal

component is the linear combination of the initial variables with characteristic vectors of

the correlation or covariance (Jolliffe 1986; Johnson and Wichern 2007). In the process of

PCA, the initial data needs to be normalized in order to eliminate the influence of various

units of measure and scale of parameters, especially for the multidimensional indicators of

WPI in this study. There are some limitations of the conventional normalization methods.

For examples, the mean–variance normalization method fails to retain the information of

variance among the initial data due to the normalization, and the min- max normalization,

minimum normalization, maximum normalization, and mean normalization hinder com-

parability of the results because the maximum, minimum and mean values are highly

dependent on the sample. Moreover, these methods are based on the coefficient matrix of

the correlation or covariance subject to the two-dimensional uniform distribution (0,1), and
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not adequate when the dimension of time is added to the data as the relationship between

indicators and sample data is nonlinear over time (Ye 2001; Liu et al. 2012).

Regarding a set of p-dimensional component data,
Pp

i¼1 xi ¼ 1, then for the component

of xi,

Xp

l¼1

Covðxi; xlÞ ¼ 0;
X

i6¼l

Covðxi; xlÞ ¼ �VarðxiÞ ð1Þ

Because VarðxiÞ � 0;(VarðxiÞ ¼ 0 when xi is constant), there is at least a negative

covariance in ðp� 1ÞCovðxi; xlÞ; i 6¼ l. In other words, there are at least p negative covari-

ances in the theoretical matrix of covariance V ¼ ðCovðxi; xlÞÞ; ði 6¼ lÞ. Their correlation

coefficients don’t comply with the uniform distribution of (0, 1). For the case of p-dimen-

sional (x1, x2),Covðx1; x2Þ ¼ �Varðx1Þ ¼ �Varðx2Þ, the correlation coefficient between x1

and x2 will be

q ¼ Covðx1; x2Þ Varðx1ÞVarðx2Þf g�
1
2¼ �1 ð2Þ

This indicates the correlation coefficient of p-dimensional component data is certain to

be -1, rather than fitting the uniform distribution of (0, 1). The negative skewness of the

coefficient matrix of the correlation or covariance is so significant in the component data

that it is difficult to explain the p-dimensional component data by using the traditional

normalized PCA, such as min–max normalized PCA, which is based on the coefficient

matrix of correlation or covariance in the hypothesis of the two-dimensional uniform

distribution of (0, 1).

2.2 The p-dimensional component data transformation of centralized
logarithm

According to Zhang and Chen (1996), Ye (2001) and Liu et al. (2012), assuming there is a

p-dimensional component data vector X = (x1, x2,…, xp), the method of centralized log-

arithm can be adopted to transform the vector into

yi ¼ lnðxi=gðxÞÞ; gðxÞ ¼ ðx1x2. . .xpÞ�
1
p ð3Þ

The random vector Y = (y1, y2,…, yp) is in the p-dimensional real space Rp, because the

space ðx1; x2; . . .; xpÞ
Pp

i¼1 xi ¼ 1; xi � 0
� �

corresponds with Rp by the transformation of

the centralized logarithm. The negative skewness of the covariance matrix of the com-

ponent data is eliminated by entering the real space of Rp. The principal component

analysis of X = (x1, x2,…, xp) is transformed into analysis of Y = (y1, y2,…, yp).

The principal component analysis of Y = (y1, y2,…, yp) focuses on finding the maxi-

mum value of the variance Varða0YÞ in the condition of a0a ¼ 1 and a = (a1, a2,…, ap). It

is easy to obtain the equation that

Varða0YÞ ¼ Varða0 lnðx=gðxÞÞÞ ¼ a0sa ð4Þ

Then the variance matrix of the centralized logarithm is

s ¼ Covðlnðxi=gðxÞÞ; lnðxj=gðxÞÞ
� �

ð5Þ
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Assuming that p characteristic roots of s are k1 � k2 � � � � kp, the corresponding char-

acteristic vectors are a1, a2,…, ap, and ðs� kiIÞai ¼ 0; i ¼ 1; 2; . . .p, then the ith prin-

cipal component is a0i lnðx=gðxÞÞ which is a nonlinear combination of x.

2.3 Holistic and Dynamic Principal Component Analysis

In the traditional PCA, the static data Rn�p consists of samples (e1, e2,…, en) and indicators

(x1, x2,…, xp). When time is taken into consideration, Xt is the array of time-series data of

Rn9p, which can be denoted as K = {Xt 2 Rn9p, t = 1, 2,…, T}. Assuming that in the

time-series data Xt, Nt are the values of indicators ðx1; x2; . . .; xpÞ of samples (e1, e2,…, en)

at time t, then N ¼ U
T

t¼1
Nt is the cluster of the values of indicators (x1, x2,…, xp) of samples

(e1, e2,…, en) in period T . The cluster N is the objective of the holistic and dynamic

principal component analysis.

Based on what we have discussed in Sect. 2.2, assuming that the p-dimensional com-

ponent vector X = (x1, x2,…, xp) has the initial variable (xijt)p9n9T which can be simplified

as (xik)p9nT, the holistic and dynamic PCA involves four key steps:

Firstly, transform the initial variable into the centralized logarithm

yik ¼ ln xik �
1

nT

XnT

k¼1

ln xik ð6Þ

Secondly, compute the covariance matrix of the centralized logarithm sample

S ¼ ðSef Þp�p ð7Þ

where Sef ¼ 1
nT�1

PnT

k¼1

ðyek � yeÞðyfk � yf Þ , ye ¼ 1
nT

PnT

k¼1

yek; yf ¼ 1
nT

PnT

k¼1

yfk.

Thirdly, assuming that k1 � k2 � � � � kp are p characteristic roots of S, and a1, a2, …, ap
are the corresponding characteristic vectors, then the value of the ith principal component

is

Fi ¼
Xp

j¼1

aij ln xij ð8Þ

Finally, the principal components are weighted with the corresponding proportion of

variance in the original set of variables explained by that particular principal component,

and the comprehensive index is computed using the following formula:

Z ¼
Xm

i¼1

ðxiFiÞ
,

Xm

i¼1

xi ð9Þ

where Z is the value of the complex index, and xi is the proportion of variance explained

by the ith principal component. The bigger the value of Z, the poorer the regional water

situation, and vice versa.
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3 Developing the Water Poverty Index for the Chinese Case

3.1 Study Area

With rapid economic growth, the gap between water resource availability and water

demand for ecological protection is gradually widening in China. The Chinese government

has been aware of the water scarcity problem and began to reform its water resource

management system in the late 1990s. China’s Water Law has been modified several times,

and related water management regulations number in the hundreds or thousands. Yet the

problems of water shortages and degraded water quality remain severe. The annual per

capita freshwater resource is 2156 m3, which is less than a quarter of the global average

(Jiang 2009). The direct impact of water pollution is costing China about 1 percentage of

its GDP each year (OECD 2007). Water resource management is a top priority in the

government’s policy agenda to promote natural resource conservation (SC 2006).

China has 22 provinces, four municipalities directly under the control of the central

government (Beijing, Tianjin, Shanghai and Chongqing) and five autonomous regions

(Guangxi, Xinjiang, Qinghai, Ningxia, and Tibet). In the national statistical process, the

provinces, autonomous regions and municipalities directly under the control of the central

government are investigated as observations at the same level because they own the equal

administrative status in China. This study area covers all provinces, municipalities directly

under the control of the central government and autonomous regions except Tibet, which is

Table 1 Eight regions in China

Region Province/autonomous
region/municipalities directly
under the control of the
central government

Features

Northeast Liaoning, Jilin, Heilongjiang Songhuajiang river, specialized
agriculture, heavy industry, energy
industry

North Coast Beijing, Tianjin, Hebei,
Shandong

Haihe river, convenient
transportation, high-tech R&D and
production

East Coast Shanghai, Jiangsu, Zhejiang Yangtze river, open-economy, the
most competitive region, multi-
function manufacturing

South Coast Fujian, Guangdong, Hainan Southeastern rivers, highly open-
economy, foreign technology
assimilation, high-tech production

Central Yellow River Delta Shaanxi, Shanxi, Henan,
Inner Mongolia

Huaihe river, coal mining and
refining, natural gas, water energy,
steel, metal, cereal, dairy products

Central Yangtze River Delta Hubei, Hunan, Jiangxi, Anhui Yangtze river, rice and cotton
cultivation, steel and metal, various
industries

Great Southwest Yunnan, Guizhou, Sichuan,
Chongqing, Guangxi

Southwestern rivers, tourism, heavy
industry and light industry

Great Northwest Gansu, Qinghai, Ningxia,
Xinjiang

Northwestern rivers, cotton, fruit,
and rice cultivation, livestock,
energy industry, trade, tourism
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not considered due to its insufficient data from 2004 to 2012. The endowment of natural

resources and economic characteristics of study areas are presented based on the eight

regions proposed by the State Council in 2006 (SC 2006), which are Northeast, North

Coast, East Coast, South Coast, Central Yellow River Delta, Central Yangtze River Delta,

Great Southwest and Great Northwest (shown in Table 1).

3.2 Selection of the indicators

In order to minimize the potential for ad hoc selection of indicators (Cho et al. 2010), a

comprehensive review of indicators used in regional water poverty studies was firstly

developed, which provides relevant indicators to represent the five components of WPI

adopted in the study (Table 2). Secondly, the China Statistical Yearbook and the China

Environmental Yearbook were inspected to select appropriate indicators for the measurement

of each dimension of WPI to confirm the availability, reliability, understandability, regular

updatability (Feitelson and Chenoweth 2002, Zhou et al. 2006, Nardo et al. 2005) of the panel

data from the year of 2004–2012. As shown in Table 3, 26 indicators were obtained.

The third step is to classify appropriate indicators based on the WPI framework from

Lawrence et al. (2002) because these five components are considered to integrate the

complexity of water sector. The indicators of Resources include the amount of ground-

water and surface water resources in order to assess total water availability. The indicators

of Access cover access to drinking water and to sewage disposal. The indicators of

Capacity focus on water institutional capacity by combining a set of regional development

indicators. The indicators of Use combine the stress of water use and efficiency of water

use in agricultural and industrial production, discarding domestic water use per capita and

industrial water use per capita because increasing water use is good up to a certain point

but it becomes bad if inefficiency results from waste water (Lawrence et al. 2002). The

indicators of Environment cover aquatic environmental pollution and aquatic environ-

mental protection. 26 indicators were classified, as shown in Table 3.

The fourth step is to pretreat the initial data by the min–max normalization method

which is widely used in many WPI studies (adapted from Lawrence et al. 2002, Sullivan

2005, Komnenic et al. 2009). In the case that the higher the value of the variable, the less

the regional water poverty, the variables are transformed into indicators using the fol-

lowing formula:

x�i ¼
xmax � xi

xmax � xmin

ð10Þ

Table 2 Basic steps in composite index design

1st: selection of indicators 1.a. Compile of the relevant indicators
1.b. Select the appropriate indicators
1.c. Classify appropriate indicator
1.d. Pretreat the initial data
1.e. Filter the indicators

2nd: construction of composite
index.

2.a. Compute the covariance matrix of the centralized logarithm
sample

2.b. Calculate the value of each principal component
2.c. Calculate the final value of the comprehensive index
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In the case that the higher the value of the variable, the poorer the regional water

situation, the variables are transformed using the following equation:

x�i ¼
xi � xmin

xmax � xmin

ð11Þ

The descriptive statistical analysis of 26 indicators, covering 22 provinces, four

municipalities directly under the control of the central government and four autonomous

regions from 2004–2012, indicated the negatively skewed distribution of most data, which

justify the conclusion in the section of 2.2 that the correlation coefficient of p-dimensional

component data is negative, rather than fitting the uniform distribution of (0, 1).

Thus the initial variables were rescaled using the centralized logarithm as presented in

Eq. (6) if the higher the value of the variable, the poorer the regional water situation. The

bottom of the initial variable was applied to the centralized logarithm if the higher the

value of the variable, the less the regional water poverty.

The fifth step is to filter the indicators for least eclipsing through comparison of the

correlation coefficients between any two indicators and significance levels. Based on the

comparison of the correlation coefficients (above 0.7) between any two indicators and

significance levels (\0.01), seven redundant indicators were removed: water resource per

capita, proportion of environmental protection investment, GDP per capita, income ratio

between the urban and the rural households, water consumption per 10,000 yuan of GDP,

water consumption per 10,000 yuan of industrial value added, and proportion of wetland in

total area of territory. For instance, two variables, GDP per capita and proportion of tertiary

industry in GDP, are used to measure the economic capacity, but GDP per capita is highly

correlated with the number of college students per 10,000 people, Engel’s coefficient of

households, rural tap water access rate, urban water access rate, and percentage of urban

sewage disposed (the correlation coefficient is above 0.70 and the significance level is

\0.01). The variable GDP per capita was then discarded and proportion of tertiary industry

in GDP was retained in the sub-component of economic capacity.

Bartlett’s spherical test on the retained indicators is significant at the 0.01 level

(v2 = 171; P value = 0.000), indicating significant correlations. The Kaiser–Meyer–Olkin

Measure of Sampling Adequacy is 0.685, which falls in the acceptable range. These test

results support that the remaining 19 indicators are suitable for PCA. Thus, the indicators

were finally selected such that they were measurable, reliable, valid and comparable,

stayed independent with each other, and could be associated with the practices and policies

of water resources management in China. The specification of parameters and indicators

used in the WPI framework are presented in Table 3.

3.3 Construction of the Composite Index

As mentioned in the Sect. 2.3, compute the covariance matrix S of the centralized loga-

rithm sample according to the Eq. (7). Then assuming that k1 � k2 � � � � kp are p char-

acteristic roots of S, and a1, a2,…, ap are the corresponding characteristic vectors, then the

value of the ith principal component is calculated according to the Eq. (8). Finally the

principal components are weighted with the corresponding proportion of variance in the

original set of variables explained by that particular principal component, and the com-

prehensive index is computed using the Eq. (9). The basic steps of composite index design

is presented in Table 2.
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3.4 Comparison of CLHDPCA and MMHDPCA

Factors contributing to the Water Poverty Index based on the min–max normalized holistic

and dynamic PCA (MMHDPCA) and the central-logarithm normalized holistic and

dynamic PCA (CLHDPCA), are constructed using SPSS17.0 for Windows (Table 4).

The cumulative variance explained by four components in CLHDPCA is 76.90 %,

compared to 57.72 % in MMHDPCA. Four components in CLHDPCA are enough to

account for more than 75 % of the variation while seven components are required in

MMHDPCA, demonstrating the greater dimensional reduction in CLHDPCA compared to

MMHDPCA. Therefore in the following discussion, four components are extracted, and

based on CLHDPCA the comprehensive index (Z) is computed using Eq. (9) where m = 4.

4 Empirical Results

4.1 Water Poverty Trends in China

The WPI results based on the central-logarithm normalized holistic and dynamic PCA for

China’s provinces, autonomous regions, and municipalities directly under the control of the

central government are exhibited in Table 5 and Fig. 1. In Table 5, Z2012 and Z2004

respectively represent the WPI values in 2012 and in 2004, while Z2004–2012 represents the

Table 4 Total variance explained by centralized logarithm (CL) holistic and dynamic PCA and min–max
normalized (MM) holistic and dynamic PCA

Component Initial Eigenvalues (by CLHDPCA) Initial Eigenvalues (by MMHDPCA)

Total % of Variance Cumulative % Total % of Variance Cumulative %

1 4.104855 43.69193 43.69193 4.75699 25.03679 25.03678896

2 1.343936 14.30481 57.99674 2.974846 15.65709 40.69387515

3 1.110739 11.82266 69.8194 1.805647 9.503403 50.1972782

4 0.665357 7.08204 76.90144 1.429118 7.521673 57.71895135

5 0.456494 4.858903 81.76035 1.32965 6.998157 64.7171085

6 0.416912 4.437601 86.19795 1.024333 5.391229 70.10833712

7 0.287389 3.058962 89.25691 0.962414 5.065337 75.17367401

8 0.249184 2.652307 91.90922 0.885409 4.66005 79.83372399

9 0.211779 2.254171 94.16339 0.605874 3.188808 83.02253218

10 0.13321 1.417877 95.58126 0.572852 3.015012 86.03754442

11 0.120232 1.279745 96.86101 0.536837 2.825458 88.86300276

12 0.094885 1.00995 97.87096 0.454067 2.389826 91.25282857

13 0.067547 0.718967 98.58993 0.428975 2.257761 93.51059003

14 0.054656 0.581759 99.17169 0.371497 1.955246 95.46583609

15 0.036994 0.393765 99.56545 0.323429 1.702256 97.16809219

16 0.024663 0.262507 99.82796 0.23387 1.230893 98.39898492

17 0.008003 0.085184 99.91314 0.150165 0.790342 99.18932711

18 0.004698 0.05 99.96314 0.095736 0.503874 99.69320095

19 0.003463 0.036858 100 0.058292 0.306799 100
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median value between 2004 and 2012. R2012 and R2004, respectively, represent the rank of

the WPI in 2012 and 2004, while R2004–2012 represents the rank of the median value

between 2004 and 2012. Taking the region of Shanghai as an example, the 19 initial

variables are normalized using centralized logarithm, 4 principal components are extracted,

and the final values of the WPI from 2004 to 2012 are calculated according to Eq. (9). The

results are Z2004 = -0.11, Z2004–2012 = -0.86 and Z2012 = 0.03. Shanghai’s rank (R) of

the final values (closer to the top rank means more water poverty) of the complex index of

water poverty yearly from 2004 to 2012 can be obtained after all other regions’ final values

of the complex index of water poverty are computed. The ranks of the final values of the

complex index of water poverty in Shanghai are R2004 = 17, R2004–2012 = 28 and

R2012 = 30. Comparing the value in 2004 with that in 2012 (shown in Table 5), the value

Table 5 Water poverty index (Z) and its rank (R) based on centralized logarithm holistic and dynamic PCA

Region Z2012 R2012 Z2004–2012 R2004–2012 Z2004 R2004

Inner Mongolia 1.64 1 1.08 1 1.08 3

Xinjiang 1.53 2 0.55 5 -4.65 30

Gansu 1.48 3 0.65 4 -1.72 27

Heilongjiang 1.44 4 0.09 14 -0.51 23

Qinghai 1.22 5 1.03 2 1.11 2

Ningxia 1.2 6 0.76 3 0.95 5

Shaanxi 1.16 7 0.39 8 0.39 9

Shanxi 1.16 8 0.51 6 0.51 6

Hainan 1.15 9 0.36 9 1.05 4

Jilin 1.13 10 0.13 12 0.13 12

Hunan 1.06 11 0.12 13 -0.14 18

Liaoning 1.03 12 0.02 16 -0.35 21

Hebei 0.99 13 0.18 11 0.08 13

Guizhou 0.92 14 -0.43 23 -0.09 16

Shandong 0.9 15 0.23 10 0.27 10

Henan 0.83 16 -0.02 17 -0.04 15

Sichuan 0.77 17 -0.27 20 -1.48 26

Anhui 0.73 18 -0.28 21 -0.33 20

Hubei 0.72 19 -0.07 18 0.04 14

Yunnan 0.71 20 -0.32 22 -3.18 29

Jiangxi 0.58 21 -0.45 24 0.49 8

Guangxi 0.54 22 -0.22 19 -2.18 28

Tianjin 0.53 23 0.5 7 1.24 1

Chongqing 0.5 24 0.05 15 0.49 7

Jiangsu 0.38 25 -0.53 26 -0.26 19

Guangdong 0.35 26 -0.47 25 0.13 11

Fujian 0.33 27 -0.87 29 -0.73 25

Beijing 0.13 28 -1 30 -0.49 22

Zhejiang 0.11 29 -0.54 27 -0.57 24

Shanghai 0.03 30 -0.86 28 -0.11 17
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of the complex index (Z) of water poverty in nearly each region (except Tianjin) increased,

which revealed that the general situation of water poverty was worsening.

Although the general trend of regional water poverty is similar, we find differing

trajectories of the value of the complex index (Z) in different regions. Some provinces or

autonomous regions located in Central Yellow River Delta, Great Northwest and South

Coast, including Inner Mongolia, Qinghai, Ningxia, Gansu, Xinjiang, Shaanxi, Shanxi, and

Hainan remain in the worst water poverty for recent years, whereas the level of water

poverty in Xinjiang was the lowest in 2004. Four provinces and two municipalities directly

under the control of the central government, located in East Coast, South Coast and North

Coast, including Beijing, Shanghai, Fujian, Zhejiang, Jiangsu, and Guangdong, had the

lowest water poverty in 2012. The level of water poverty in Tianjin, Chongqing, Hubei,

Shandong, and Hebei has undergone the process of first declining and then rising. In

Heilongjiang, Jilin, Liaoning, Hunan, Guizhou, Henan, Sichuan, Anhui, Yunnan, Guangxi,

and Jiangxi the level of water poverty has increased steadily for recent years.

The results are presented further according to the ranks of comprehensive scores of WPI

in different regions between 2004 and 2012 as shown in Table 4. In 2004, the regions of

the worst water poverty (ranking from 1 to 8) were scattered across the Great Northwest

(such as Qinghai and Ningxia), Central Yellow River Delta (as Inner Mongolia, and

Shanxi), South Coast (as Hainan), and Southwest (as Chongqing). After several years, the

municipalities directly under the control of the central government including Beijing,

Tianjin, Chongqing, and Shanghai, and some developed provinces of southeastern coast,

such as Guangdong, Fujian, Zhejiang, and Jiangsu, have dropped in the ranks of WPI. In

2012, the worst water poverty areas (ranking from 1 to 8) were clustered in the whole Great

Northwest covering Qinghai, Ningxia, Xinjiang and Gansu, and Central Yellow River

Delta such as Inner Mongolia, and Shanxi. The changing trajectories of the worst water

poverty regions (ranking from 1 to 8) are exhibited as the darkest areas in Fig. 2, which

indicates that regional water poverty has become more spatially clustered in the Great

Northwest for recent years.

4.2 Influential Factors Associated with Water Poverty

Which factors drive the WPI for China? The principal components whose eigenvalues are

more than one, which explain the majority of the variance in the original data, are the

primary influential factors producing the final results. There are three principal components
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(whose eigenvalues are more than one) to be analyzed as shown in Table 4 and 6. Among

them, component 1 (Table 4, CLHDPCA) was characterized by a high positive loading for

rate of ammonia nitrogen discharged (loading of 0.965, Table 6) and rate of chemical

Fig. 2 The comprehensive ranks of WPI in different regions between 2004 and 2012

Table 6 Factor loading pattern

P (water
pollution
factor)

R (water resource
availability factor)

C(capacity-access-
use efficiency
factor)

Number of college students per 10,000 people
(R321)

-0.25988 0.011221 0.688864

Urban drainage pipe access rate (R213) -0.11793 0.011428 0.676526

Rural tap water access rate (R211) 0.011101 0.142988 0.610954

Percentage of urban sewage disposed (R212) -0.09809 0.042005 0.581906

Water-saving irrigation rate (R421) 0.032597 -0.37252 0.747167

Proportion of industrial waste water meeting
discharge standards in total volume (R222)

-0.02762 0.334746 0.505324

Urban water access rate (R212) -0.08795 0.016213 0.511511

Proportion of tertiary industry in GDP (R351) -0.3263 0.091077 0.403536

WR production coefficient (R112) 0.257235 0.760056 0.02462

WR per unit area(R111) 0.170142 0.929508 0.001397

Fertilizer and pesticide amount per unit
cultivated land (R523)

-0.16985 -0.43559 -0.6321

Water use intensity (R412) 0.103005 0.533345 0.157082

Engel’s coefficient (R341) -0.13987 -0.47073 0.222411

Percentage of total water used by agriculture
(R411)

0.115661 0.542303 0.39544

Rate of ammonia nitrogen discharged (R522) 0.964831 -0.10247 -0.10658

Rate of chemical oxygen demand discharged
(R521)

0.913704 0.003212 0.215403

Rate of recycling use for industrial water
(R422)

-0.14103 -0.20589 0.445497

Execution level of environmental projects
(R311)

-0.04563 -0.17463 -0.1804

Public green areas per capita (R521) -0.08016 0.136157 0.161472

P, R, and C correspond to components 1, 2, and 3, respectively, in Table 3, based on the CL PCA
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oxygen demand discharged (loading of 0.914, Table 6). This component was interpreted as

‘‘pollution factor (P)’’, and explained 43.69 % of the variance in the data (Table 4).

Obviously, water pollution is the current dominant factor contributing to regional water

poverty in China. Together with the regional scores of principal components in Table 7, we

can find that the score range of water pollution dimension is varying from [-11.19, 2.99] in

2004 to [0.72, 3.09] in 2012 with [-1.87, 1.48] as the range for the median. The lower

limit in each range keeps rising, which indicates that the general level of regional water

pollution is increasing. As water pollution is the heaviest loading component in all prin-

cipal components, these results illustrate that aquatic environmental pollution is the main

cause of China’s water poverty and it has been worsening in the past 9 years. And fur-

thermore, as exhibited as the darkest areas in Fig. 3, the changing trajectories of the

heaviest water pollution regions (ranking from 1 to 8) indicate that regional water pollution

has become more spatially clustered in recent years.

Component 2 was characterized by high positive loading for water resource per unit

area, and water resource production coefficient. This component was interpreted as ‘‘re-

source availability factor (R)’’. This factor explained 14.30 % of the variance in the data

(Table 4). This result reveals that water resource endowment is still an important

endogenous factor concerning regional water poverty in China. In Table 7, the score range

of water resource availability dimension is narrowing from [-2.67, 2.85] in 2004 to [-2,

1.92] in 2012 with [-2.65, 2.05] as the median of these 9 years, which indicates that the

regionally imbalanced distribution of water resources is decreasing through the reform of

the water resource distribution system covering South-to-North Water Diversion Project,

interregional water rights transfer, and integrated watershed management. Beijing, Tianjin,

Hebei, Shaanxi, Liaoning, and many other northern areas directly benefited from the

South-to-North Water Diversion Project. The interregional water rights transfer and inte-

grated watershed management strategy are gradually moving forward especially in the East

Coast and Great Northwest. And yet for all that, the trajectories of the poorest water

resource availability regions (ranking from 1 to 8) indicate that the scarcest area of water

resources has still concentrated in the northern China, as exhibited as the darkest areas in

Fig. 4.

Component 3 was characterized by high positive loading for the number of college

students per 10,000 people, rural tap water access rate, urban drainage pipe access rate,

water-saving irrigation rate, percentage of urban sewage disposed, rate of recycling use for

industrial water, and proportion of tertiary industry in GDP. This component was inter-

preted as ‘‘capacity-access-use efficiency factor (C)’’, which explained 11.82 % of the

variance in the data (Table 6). Some information is presented from the indicators of higher

negative loading in each principal component. There is high negative loading for pro-

portion of tertiary industry in GDP, and the number of college students per 10,000 people

in Component 1, suggesting a negative relation between pollution and a more educated,

service-oriented workforce. There is a high negative loading for Engel’s coefficient, fer-

tilizer and pesticide amount per unit cultivated land, and water-saving irrigation rate on

component 2, suggesting water resource endowment is negatively related with poverty,

agricultural chemical input use, and water-saving technology. There is a high negative

loading for fertilizer and pesticide amount per unit cultivated land in Component 3, sug-

gesting capacity-access is negatively related with agricultural chemical input use. Fur-

thermore, as shown as the darkest areas in Fig. 5, the trajectories of the poorest capacity-

access-use efficiency regions (ranking from 1 to 8) indicate that these areas have changed

from the eastern coast to southwestern coast in recent years.
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4.3 Categories of Water Poverty

Based on the performance of three principal components, the study areas are sorted and

analyzed in order to understand the factors driving the results for each region (Table 8).

The categories of the level of components’ performance were defined: best (ranking 21th

through 30th), second best (ranking 11th through 20rd), and worst (ranking 1st through

10th). If one or more component(s) category (categories) was (were) in the worst category,

the component(s) was (were) included in its overall description. If three components were

all in the second best category, the component(s) which ranked the lowest would be

included in the overall description. If a component was in the best category, that com-

ponent was left out. In cases where a region was in the best category for each component,

that region was not included.

Fig. 3 The ranks of the water pollution factor in different regions between 2004 and 2012

Fig. 4 The ranks of the water resource availability factor in different regions between 2004 and 2012

Fig. 5 The ranks of the capacity-access-use efficiency factor in different regions between 2004 and 2012
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For example, in 2012, Gansu’s ranks of three principal components are respectively the

3rd, 4th and 7th, placing it in the worst category for each individual component, and thus

its primary causes of water poverty are water pollution (P), water resource availability

(R) and capacity-access-use efficiency (C). Hainan’s ranks for three principal components

in 2012 are respectively the 5th (worst) for P, 14th (second best) for R and 23th (best) for

C, therefore the component P was included in the overall description as its primary causes

of water poverty. Liaoning’s ranks of three principal components in 2004 are respectively

the 16th for P, 11th for R and 13th for C, placing in the second best category for each

individual component. The component R ranked the lowest, and is labeled as its primary

cause of water poverty. Fujian’s ranks of three principal components in 2012 are respec-

tively the 25th, 27th and 25th, placing in the best category for each individual component.

In this case, the region was not included in Table 8.

The first category is P, water poverty, characterized by high pollution emissions to water

bodies. Hainan is typical of this type, having been in high water pollution for recent years.

Hainan (latitude 3�30
0
N–20�7

0
N and longitude 108�15

0
E–120�5

0
E) is one of five Special

Economic Zones which have had the priorities to attract foreign capital by exempting such

capital investments from taxes and regulations since the early 1980s. From 1980 to 2012,

Hainan’s GDP increased ten-fold with an annual growth rate of 7.45 %. As a tropical

island province, Hainan’s marine fishery and marine aquaculture industries contribute

greatly to local economic development but also pollution leading to severe stresses on the

aquatic environment. Due to lack of environmental protection and wastewater treatment

facilities, the annual rate of ammonia nitrogen discharged, rate of chemical oxygen demand

discharged, and fertilizer and pesticide amount per unit cultivated land are 0.64, 2.16 and

0.09 respectively, much higher than the national average 0.26, 1.75 and 0.04 respectively.

There is an urgent need for water pollution control and natural ecosystem restoration in

Hainan.

The second category is R water poverty, featured by poor water resource availability,

mainly covering the water-scarce North Coast, Central Yellow River Delta and Great

Northwest. However, this category also includes some water-abundant developed regions

Table 8 Categories of regional water poverty

In 2012 Median for 9 years In 2004

P Hainan, Sichuan Hainan, Shandong, Henan,
Hubei, Zhejiang

Shandong, Henan, Hubei,
Jiangxi, Tianjin, Zhejiang,
Shanghai

R Shanghai, Beijing, Tianjin,
Jiangsu, Shandong, Shanxi,
Hebei, Henan

Liaoning, Hebei, Beijing, Xinjiang, Shaanxi, Liaoning,
Hebei, Jiangsu, Fujian,
Beijing

C Guizhou, Anhui, Hubei,
Hunan, Yunnan, Jiangxi,
Guangxi, Chongqing,
Guangdong

Heilongjiang, Jilin, Yunnan,
Guangxi, Chongqing,
Guangdong, Guizhou,
Sichuan, Hunan, Anhui

Jilin, Hunan, Guizhou,
Sichuan, Anhui, Yunnan,
Guangxi, Guangdong

P–R Inner Mongolia, Shaanxi,
Ningxia, Xinjiang

Gansu, Ningxia, Tianjin,
Shanxi, Shaanxi

Hainan, Shanxi

P–C Jilin, Liaoning Jiangxi Chongqing

R–C Xinjiang Heilongjiang, Gansu

P–R–C Gansu, Qinghai,
Heilongjiang,

Qinghai, Inner Mongolia Qinghai, Ningxia, Inner
Mongolia
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located in East Coast and South Coast including Shanghai, Jiangsu and Fujian, where rapid

economic growth has given rise to increasing demand for water and stressed water resource

availability. Shanghai is located in the downstream of Yangtze River and the Lake Tai

basin, and has the polluted water from the upstream and local area. Jiangsu and Fujian face

the similar problems. Water poverty in these areas not only derives from limited water

resource availability relative to increasing requirements, but also the poor quality renders

water unusable.

The third category is C water poverty embracing some water-abundant regions in Great

Southwest, Central Yangtze River Delta, and Northeast. The low capacity-access-use

efficiency reflects the fact that these regions do not use available water resources effi-

ciently. For example, in Guangdong (latitude 23�02
0
N–23�38

0
N and longitude 116�14

0
E–

117�19
0
E) the average water-saving irrigation rate and the average rate of recycling use for

industrial water are 6.1 and 37 % respectively, compared to the national average of 24.61

and 60 %, respectively. Improvements in water-saving are urgently needed to forestall

future scarcities as water needs rise.

The fourth category, P-R water poverty, characterized by high pollution and poor

availability of water resources includes Xinjiang (latitude 42�45
0
N–44�08

0
N and longitude

86�37
0
E–88�58

0
E) located in northwestern China. In 2000, Xinjiang was involved in the

West China Development Program (WCDP) which was launched to stimulate economic

growth in western areas. The region’s GDP grew at an annual rate of 14.6 % from 2000 to

2012. Meanwhile, Xinjiang has suffered seriously environmental degradation owing to its

natural-resource focused industries. The underground water has been polluted by oil and

natural gas overexploitation and poor waste disposal. The R water poverty of Xinjiang in

2004 converted into P–R in 2012 as a consequence of the increasing contamination of

underground water.

The fifth category is P–C water poverty, characterized by high pollution and low

capacity-access-use efficiency. Chongqing (latitude 28�10
0
N–32�13

0
N and longitude

105�11
0
E–110�11

0
E), is located upstream of the Three Gorges Reservoir Area. It is criti-

cally significant for the safety of Three Gorges Reservoir Area and the middle and lower

Yangtze River to treat water pollution in Chongqing. In 2001, Water Pollution Prevention

and Control Planning of the Three Gorges Reservoir Area was enacted, and more than 21

billion yuan from the central government was invested in water pollution treatment over

10 years including construction of urban sewage disposal plants, refuse landfill, and

sewage pipe networks. As a result, Chongqing has moved from the P–C to the C category

since 2011.

The sixth category, R–C water poverty, is characterized by poor water resources and

weak capacity-access-use efficiency. For example, Gansu (latitude 35�5
0
N–38�N and

longitude 102�30
0
E–104�30

0
E) located in the upper reach of Yellow River, the inland arid

area of northwestern China, has water resource per capita less than one-third of the national

average, and less than one-eighth of the world’s average. Underground water in Gansu has

been overexploited in recent years due to the scarcity of surface water. In 2000, Gansu was

involved in WCDP for development of its abundant reserves of minerals and coal. Gansu’s

underground water and ecological environment was further damaged as a result of heavy

industry development. As a result, water poverty in Gansu deteriorated from R–C in 2004

to P–R–C in 2012.

Finally, P–R–C water poverty features heavy pollution, poor water resource availability

and low capacity-access-use efficiency. P–R–C water poverty is largely found in water-

scarce and undeveloped northern China. For an instance, Qinghai (latitude 31�9
0
N–39�19

0
N

and longitude 89�35
0
E–103�04

0
E) has been in this category for all of 2004–2012. Fragile
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ecological environment, heavy water pollution, poor availability of water resources, weak

access to water supply and sanitation facilities, and relatively low capacity to manage

water resources and use efficiency are mainly responsible for the high water poverty of

Qinghai.

5 Discussion and Conclusion

WPI results have some implications for water resource planning and management. China

has experienced an unprecedented economic boom with real GDP rising at an annual

average rate of nearly ten percentage in the past three decades. The improved holistic and

dynamic principal component analysis results of WPI in this study show the economic

development has improved water resource availability, physical access to water, water-

saving facilities, sewage treatment utilities, and the regional distribution of water resour-

ces, but it does not automatically translate into less water poverty due to the rising con-

sumption of water and increasing serious pollution discharge. The comprehensive scores

and ranks of WPI from the use of panel data demonstrate that the general situation of water

poverty is worsening in China, and the water poverty areas have become more spatially

clustered in the Great Northwest for recent years. We highlight that it is a top priority for

the policy-maker to consider the impact on the aquatic environment when setting any

strategy of booming economy because water scarcity and poor water quality will directly

threaten Chinese food security, economic development and the quality of life. It is believed

that government policies play a critical role to drive sustainable water resource develop-

ment in China, and the problem-specific policy interventions and planning would help

improve the regional water poverty situation.

Environmental pollution is the most important driver of water poverty (P water pov-

erty). Increased agricultural fertilizer and pesticide application, livestock waste, domestic

sewage and industrial wastewater discharge contribute to the accelerated eutrophication of

main rivers and lakes in China. Meanwhile, water scarcity and poor water quality interact

with each other. The contaminated water is threatening the water availability even in some

water-abundant areas, which results in the water unusable. The similarity of the trajectories

of the poorest water resource availability regions and the heaviest water pollution areas in

current years (shown as the darkest areas in Figs. 3, 4) might be a case in point. The social

economic development is also under threat because the households, industries and agri-

culture are force to cut back their water use with a lack of clean water. And the cancer

mortality rates related to poor water quality in China has been well above the world

average (WB 2007). Each year, an estimate 190 million people fall ill and about 60,000 die

from water pollution (Qiu 2011). Thus there is an urgent need to improve the public

environmental protection awareness, devise sufficient incentives to the investment in the

water environment protection and sewage treatment facilities, and formulate effective

regulations to control the wastewater discharge and diverse pollution sources.

R water poverty characterized by lack of water resource endowment has spread from

northern China to the South Coast and the Eastern Coast indicating that limited water

resource availability cannot satisfy rising demand, even in the regions where ever rich in

water resources. New approaches and strategies will be required to use and manage water

resources more effectively. These strategies should include ways to slow the growth in

water consumption, popularize the water-saving technologies, and promote the trade of
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virtual water to relieve the pressure on water resource through importing water-intensive

products and export water-extensive products and services.

Southwestern China has the best endowment of water resources in all study areas, but

the region is suffering from water poverty characterized as C through the lack of socio-

economic capacity, the weakness of water use efficiency and heavy water pollution. The

policies are stressed to stimulate public and private investment in developing the water-

saving, socially inclusive innovations and technologies to drive sustainable development in

the regions.

It would be beneficial if further management interventions are prioritized as indicated

by the study results. For instance, in the regions characterized as P–R, more sewage

networks should be constructed, more effective regulations and/or incentives aimed at

reducing pollution, and further improvement of the efficiency of water use should be the

main priorities. Regions with P–C water poverty should focus on aquatic environmental

pollution control, adoption of water-saving technologies, and economic and technological

development aimed at improving water access. Regions characterized as R–C need to

strengthen socio-economic capacity, improve the access to water and the efficiency of

water use. The provision of safe water and hygienic facilities of sewage disposal, people’s

ability and capacity for sustaining access to clean water are all needed to diminish the

water poverty of those regions featured by P–R–C.

To analyze the underlying complexities of water issues in China, the calculation method of

WPI is revised through the transformation of centralized logarithm of initial variable and

holistic and dynamic PCA. The comparison based on the traditional PCA and improved PCA

shows that the proposed method achieves drastic dimension reduction. Although we use the

improved holistic and dynamic PCA to assess the water poverty status in China, this study is

based on the constructed WPI for Chinese case and available reliable data from the year of

2004–2012, which may impose certain limitations on the analysis of our results. For an

example, other important indicators of water poverty were not captured in the study due to

lack of reliable data and multi-collinearity among the variables. For instance, the variable of

biodiversity is replaced by public green areas per capita, the Gini coefficient of income

distribution is replaced by household’s income ratio between the urban and the rural, and

three variables including precipitation variance, mortality rate of children under five, and rate

of soil erosion by area are left out of the analysis, due to incomplete and insufficient data.

Seven variables including water resource per capita, proportion of environmental protection

investment, GDP per capita, water use per 10,000 yuan GDP, water consumption per 10,000

yuan of industrial value added, percentage of investment in anti-pollution projects, and

households income ratio between the urban and the rural are discarded owing to multi-

collinearity among the variables. Notwithstanding the limitations, this study has produced

some important findings, which might help improve the calculation method of Water Poverty

Index, raise the awareness of the public and government about the aquatic environmental

protection and sustainable water resource development in China, and devise better policies to

alleviate the regional water poverty. It would be advantageous if future studies can identify

the impacts of those omitted variables and examine the interrelationship amongst water

poverty, urbanization, industrialization and human welfare. Such analysis would further help

policy makers and planners to capture the possible impacts of alternative planning and

development interventions in China.
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