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Abstract Composite indicators are becoming increasingly influential tools of environ-

mental assessment and advocacy. Nonetheless, their use is controversial as they often rely

on ad-hoc and theoretically problematic assumptions regarding normalization, aggregation,

and weighting. Nonparametric data envelopment analysis (DEA) methods, originating in

the production-economics literature, have been proposed as a means of addressing these

concerns. These methods dispense with contentious normalization and weighting tech-

niques by focusing on a measure of best-case relative performance. Recently, the standard

DEA model for composite indicators was extended to account for worst-case analysis by

Zhou et al. (Ecol Econ 62(2):291–297, 2007) [hereafter, ZAP]. In this note we argue that,

while valid and interesting in its own right, the measure adopted by ZAP may not capture,

in a mathematical as well as practical sense, the notion of worst-case relative performance.

By contrast, we focus on the strict worst-case analogue of standard DEA for composite

indicators and show how it leads to tractable optimization problems. Finally, we compare

the two methodologies using data from ZAP’s Sustainable Energy Index case study,

demonstrating that they occasionally lead to divergent results.

Keywords Composite indicator � Sustainability index � DEA � Worst-case � Convex
optimization

1 Introduction

Composite indicators are becoming increasingly influential tools of public policy. Usually

taking the form of a weighted arithmetic average of normalized indicators, these indices

condense complex multidimensional information into a single number. As such, they are
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easy to compute and to interpret. Furthermore, they allow for the computation of rankings

to assess the comparative standing of different entities (countries, regions, governmental

policies under consideration). This conceptual simplicity facilitates communication with

the press and public, and thus aids in generating awareness regarding the issue that the

composite indicator is meant to address.

Despite their increasing popularity, composite indicators are often strongly criticized by

official statisticians and economists, including those interested in the measurement of

sustainability (Bohringer and Jochem 2007; Ravallion 2012b). These critiques come in

different varieties, both conceptual and methodological. On the conceptual side, it is

argued that the underlying issues that composite indicators address are often ill-defined and

open to excessive interpretation. Ravallion (2012b) cites Newsweek magazine’s ‘‘best

country rankings’’ as an intuitive example of this kind of definitional haziness. Statisticians

further complain that the process of constructing a composite index discards useful sta-

tistical information by reducing multidimensional data to an aggregate measure. While we

agree that these are important issues, we do not dwell on them as the focus of this paper is

primarily methodological. Here, critics argue that integral modeling assumptions behind

the construction of composite indices such as the choice of normalization procedure,

aggregation function, and weighting scheme, fail to be grounded in economic theory or a

coherent analytic framework (Ravallion 2012b). What is more, the ad-hoc nature of these

choices may lead to unintended theoretical consequences such as unacceptable tradeoffs

(Ravallion 2012a) and problematic measurement-theoretic implications (Ebert and Welsch

2004). Finally, the indices themselves may be very sensitive to changes in these subjective

choices so that any insights or rankings that are generated can be highly non-robust.

One way of addressing the dependence of composite indices on arbitrary assumptions

on normalization and weighting (while maintaining the linearity of the aggregation

function) is via the nonparametric framework of data envelopment analysis (DEA).1 First

developed by Charnes et al. (1978) in the field of production economics, DEA was pri-

marily conceived as a methodology for measuring the relative efficiency of different

decision-making units. Since then, DEA has been the subject of extensive research in both

economics and operations research (Cooper et al. 2007). Its application in composite index

construction, known as the ‘‘benefit of the doubt’’ (BOD) method, was proposed by

Cherchye et al. (2007b). For each entity (country, region, policy) to be assessed, the BOD

method searches for its ‘‘most favorable’’ set of weights, defined as the maximizers of the

ratio of its score to that of the highest-performing member of the group. Thus, weights are

determined endogenously and may differ between entities. Furthermore, it is important to

note that DEA takes as input non-normalized data and its scores and rankings are invariant

to ratio-scale transformations (i.e., multiplicative changes in units). DEA-like methods are

being increasingly used to build composite indices for a variety of applications ranging

from market structure and technology (Cherchye et al. 2007a, 2008), to gender issues

(Dominguez-Serrano and Blancas 2011), to development and environmental policy and

assessment (Fare et al. 2004; Zaim 2004; Zhou et al. 2007, 2010; Zhang et al. 2013; Jin

et al. 2014).

1 It is worth noting that there exist other nonparametric frameworks that impose less restrictive assumptions
on aggregation. This increased generality usually introduces ambiguity to the index results. For instance, in
the context of multidimensional welfare measurement, Anderson et al. (2011) mpose solely monotonicity
and quasiconcavity on the aggregation function and derive upper and lower bounds on index scores, not
precise values and rankings.
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In a recent paper Zhou et al. (2007) [hereafter, ZAP] extended the DEA framework of

Cherchye et al. (2007b) to account for worst-case analysis. In particular, they propose a

model with which to compute an entity’s ‘‘least favorable weights’’ and corresponding

worst-case relative performance. The yardstick of performance becomes the ratio of an

entity’s score to that of the worst member in the group. They then go on to propose a

hybrid DEA methodology in which convex combinations of their normalized best- and

worst-case DEA scores are considered.

Using ZAP’s work as a springboard we argue that, while interesting in its own right, the

worst-case measure that they adopt may not capture, in a theoretical as well as practical

sense, the notion of worst-case relative performance. We propose an alternative measure

that is, in a strict mathematical sense, the worst-case analogue of the BOD model of

Cherchye et al. (2007b). While the mathematical structure of this measure differs signif-

icantly to that of the BOD method, we show how it can nonetheless be tractably computed,

even under general convex restrictions on the weights.2 We then compare the two

methodologies using data from ZAP’s Sustainable Energy Index case study, demonstrating

that they occasionally lead to notably different results.

1.1 Paper Outline

The structure of the paper is as follows. Section 2 sets up the formal model and relevant

DEA framework. It goes on to discuss ZAP’s approach to modeling worst-case relative

performance and to suggest, by means of a stylized example, how it may result in unde-

sirable conclusions. Section 3 introduces and analyzes an alternative optimization problem

that is the strict worst-case analogue of traditional DEA for composite indices. Section 4

applies the proposed procedure to the case study of the original ZAP paper, showing how

the two methodologies can lead to divergent results. Section 7 provides conclusions. All

mathematical proofs, tables, and figures are collected in the ‘‘Appendix’’.

2 Model Description

Suppose we are given a set A ¼ fa1; a2; . . .; aAg of A agents and a set I ¼ fi1; i2; . . .; iIg of
I indicators. Moreover let xai denote agent a’s value for indicator i. All indicator values xai
for a 2 A and i 2 I are assumed to be positive. Indicators are weighted with a non-

negative column vector of weights w 2 RI
þ, where wi denotes the weight assigned to

indicator i. Consistent to classical DEA, an agent a’s score under weights w is given by the

corresponding weighted sum of the non-normalized indicators:
PI

i¼1 wixai.

Now, let us introduce the main concept behind the use of DEA-like methods in com-

posite indicators. Consider an individual agent aj 2 A and suppose that weights w are

chosen. The relative standing of this agent among her peers, given the chosen weights w, is

captured via the ratio of her performance to that of the highest-performing agent of group

A. Denoting it by a function faðwÞ, it equals:

2 An additional advantage of the proposed approach is that it results in worst-case DEA scores that share a
similar 0–1 scale to that of best-case DEA scores. Thus, there is no need for potentially contentious
normalization procedures when taking the aforementioned convex combinations of best- and worst-case
DEA scores.
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fajðwÞ �
PI

i¼1 wixaji

maxa2A
PI

i¼1 wixai
: ð1Þ

Equation (1) ranges between 0 and 1; the higher it is, the closer agent aj is to the top

performer. If it equals 1, then for this choice of w, agent aj has the top score. The DEA

approach to the construction of composite indicators uses exactly this measure of relative

standing as its measuring stick of performance. In particular, it searches for the set of

weights that maximize the function faðwÞ, for each agent a 2 A. Applied to agent aj, it

solves the following optimization problem:

f �aj � max
w� 0

fajðwÞ ¼ max
w� 0

PI
i¼1 wixaji

maxa2A
PI

i¼1 wixai
ð2Þ

Optimization problem (2) determines the weights, subject to a non-negativity con-

straint, resulting in the best-case relative performance of agent aj. These are known as the

‘‘most favorable weights’’ for agent aj.

From a mathematical standpoint, the tractability of problem (2) is crucially dependent

on the fact that it may be reduced to the following, equivalent linear-fractional program:

f �aj ¼ max
w� 0;z

PI
i¼1 wixaji

z

s:t:
XI

i¼1

wixai � z; a 2 A;

ð3Þ

which, in turn, can be shown to be equivalent (see section 4.5.2 in Boyd and Vandenberghe

(2004) to the linear program

f �aj ¼max
w� 0

XI

i¼1

wixaji

s:t:
XI

i¼1

wixai � 1; for all a 2 A:

ð4Þ

Linear program (4) is the familiar ‘‘benefit of the doubt’’ method for composite indicators

discussed in Cherchye et al. (2007b) and applied in many contexts since (Zhou et al. 2007;

Cherchye et al. 2007a, 2008; Hatefi and Torabi 2010; Dominguez-Serrano and Blancas

2011; Rogge 2012).

Importantly, additional linear constraints may be imposed to the weights in optimization

problem (2) at no conceptual or computational cost. Particularly compelling weight restric-

tions come in the form of so-called ‘‘pie shares’’ (see Cherchye et al. 2007a, b), which set

lower and upper bounds on the contribution of any single indicator to the agent’s total score.

To wit, given a set of numbers Li;Ui for all i 2 I the corresponding pie-share constraints to

be appended to problem (2), and ultimately also to its linear equivalent (4), are given by

Li �
wixaji

PI
k¼1 wkxajk

�Ui; for all i 2 I : ð5Þ

The above constraints hold theoretical as well as practical appeal. Theoretically, their

imposition does not compromise the very desirable property of ratio-scale invariance of
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DEA, also known as ‘‘units invariance’’ (Cherchye et al. 2007b; Cooper et al. 2007). That

is, DEA scores and their resulting rankings remain unchanged under incomparable (i.e.,

non-identical across indicators) ratio-scale transformations of the original indicators. For

example, if an index is composed of three indicators i1; i2; i3 and we multiple indicator i1
by 2, i2 by 8 and i3 by 0.1, this will have no effect on the corresponding DEA scores and

rankings. This property is particularly compelling in the case of environmental indices

(Ebert and Welsch 2004).3 Meanwhile, on a practical level pie shares are pure numbers

whose meaning is easy to grasp and on whose values experts can usually come to an

agreement (Cherchye et al. 2007a, b).

2.1 The Worst-Case Model of ZAP

ZAP take as a starting point the above standard DEA model and extend it to account for

worst-case relative performance. Considering again an agent aj 2 A, they draw on pre-

vious work by Zhu (2004) and Takamura and Tone (2003) and (implicitly) define this

agent’s ‘‘least favorable weights’’ as the solution of the following optimization problem:

gZAPaj
� min

w� 0

PI
i¼1 wixaji

mina2A
PI

i¼1 wixai
: ð6Þ

That is, they define the worst-case DEA weights to be such that they minimize the ratio

of an agent’s performance to that of the worst-case performer in the group. Optimization

problem (6) retains the nice properties of problem (2) in that it too can be reduced to a

linear-fractional program, and ultimately to the following linear program (which, in turn, is

the formulation that appears in ZAP’s work):

gZAPaj
¼min

w� 0

XI

i¼1

wixaji

s:t:
XI

i¼1

wixai � 1; a 2 A:

ð7Þ

In a formal sense, problem (6), and thus also its linear equivalent (7), does not correspond

to worst-case DEA for composite indicators. This is because it abandons the measure of

relative performance fajðwÞ of Eq. (1), which constitutes the objective function of prob-

lem (2), in favor of an alternative measure, namely

gajðwÞ �
PI

i¼1 wixaji

mina2A
PI

i¼1 wixai
: ð8Þ

The ratio gajðwÞ is no smaller than 1 and unbounded above; the smaller it is, the closer

agent aj is to the bottom performer. If it equals 1, then for this choice of w, agent aj has the

worst score. Thus, worst-case DEA as defined by ZAP searches for the set of weights w

that minimize the ratio gajðwÞ.
While problem (6) is interesting in its own right, and the underlying optimization

problem has identical structure to the standard DEA context (and is thus readily solvable

using similar techniques), it is not the worst-case analogue of standard DEA. Moreover, it

3 The reader may refer to Example 1 in Ebert and Welsch (2004) for a concrete demonstration of this fact in
the context of an index measuring eutrophication.
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may sometimes fail to capture the essence of worst-case relative performance. The fol-

lowing, highly stylized, example illustrates this fact.

Example 1 [counter-intuitive implications of ZAP’s model]. Consider the setting

described in Table 1 summarizing an instance of the problem for A ¼ fa1; a2g and

I ¼ fi1; i2g.
The standard best-case DEA model of Eq. (2) results in identical scores for a1 and a2,

since f �a1 ¼ f �a2 ¼ 1. Let us now consider worst-case performance. According to ZAP’s

model of Eq. (6), agents a1 and a2 are equal as they both get the absolute minimum score

of 1. This is because there exist weight vectors that equalize their performance (e.g.,

w ¼ ð1=2; 1=2Þ0), thus implying that they are simultaneously the worst performers of the

two-member group A. By definition of problem (6), this means that they both get the worst

possible score, i.e., gZAPa1
¼ gZAPa2

¼ 1, and so ZAP’s methodology cannot discriminate

between them. This result does not, arguably, accord with intuition. Indeed, we would

expect agent a2’s balanced performance across indicators, in combination with a1’s

extremely unbalanced one, to be recognized and rewarded. Furthermore, note that the exact

numbers here are not important. Similar results would obtain if we make xa1i1 � 0 as large

and xa1i2 � 0 as small as we like, and set xa1i1 þ xa1i2 ¼ xa2i1 þ xa2i2 and xa2i1 ¼ xa2i2 . h

Finally, in order to construct a DEA measure combining best- and worst-case perfor-

mance, ZAP normalize the results of (2) and (6) via max-min rescaling. This is necessary

because the scales of the two measures clearly differ; one ranges from 0 to 1, the other

from 1 to þ1. This normalization introduces an undesirable source of subjectivity, which

arguably goes against the normalization-free essence of DEA. In any event, given an agent

aj and k 2 ½0; 1�, ZAP propose to consider the following family of convex combinations of

normalized best- and worst-case DEA scores:

CIZAPaj
ðkÞ ¼ k

f �aj �mina2A f �a

maxa2A f �a �mina2A f �a
þ ð1� kÞ

gZAPaj
�mina2A gZAPa

maxa2A gZAPa �mina2A gZAPa

: ð9Þ

We close this section by noting that, while relatively recent, ZAP’s model has already

been quite influential in the literature. Indeed, a number of studies have adopted ZAP’s

approach to worst-case DEA for the construction of composite indices (see Hatefi and

Torabi 2010; Dominguez-Serrano and Blancas 2011; Rogge 2012, among others).

3 An Alternative Approach to Worst-Case DEA

An alternative way of modeling worst-case relative performance is to maintain the

structure of optimization problem (2) (i.e., its objective function and constraints) but make

it a minimization as opposed to a maximization. This would involve solving the following

optimization problem:

Table 1 xai values for
Example 1

i1 i2

a1 9999 1

a2 5000 5000
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g�aj � min
w� 0

PI
i¼1 wixaji

maxa2A
PI

i¼1 wixai
: ð10Þ

Problem (10) is the strict worst-case analogue of problem (2). Not surprisingly, when

applied to the data of Example 1 it clearly points to a2’s far superior worst-case relative

performance since we have g�a2 ¼ 5000=9999 vs. g�a1 ¼ 1=5000).

Analytically, problem (10) is not as straightforward as (2) or (6). This is because we

cannot do the same trick of Eq. (3) to reduce it to an equivalent linear-fractional program.

Nonetheless, it is possible to argue from first principles that it too admits a simple and

tractable solution.

For expository reasons, before going into the statement and proofs of the following

results, we generalize Eq. (10) to incorporate arbitrary constraints on the weights. Letting

Wj 	 RI
þ denote an arbitrary subset of the non-negative orthant, define the optimization

problem:

g�ajðWjÞ � min
w2Wj

PI
i¼1 wixaji

maxa2A
PI

i¼1 wixai
: ð11Þ

The pie-share bounds of Eq. (5) correspond to sets Wj that are polyhedra, i.e., they can be

expressed as systems of linear inequalities [see Chapter 2 in Bertsimas and Tsitsiklis

(1997)]. This is because Eq. (5) are equivalent to the system of linear inequalities

wixaji � Li
XI

k¼1

wkxajk � 0; wixaji � Ui

XI

k¼1

wkxajk � 0

( )

; for all i 2 I :

We are now ready to state the paper’s first theorem.

Theorem 1 Consider optimization problem (11) with m linear constraints on the weights

given by Wj ¼ fw 2 RI : w� 0; Gj � w� hjg, where Gj 2 Rm
I and hj 2 Rm. We have

g�ajðWjÞ ¼ min
a2A

min
w� 0; y� 0

Gjw� hjy� 0
PI

i¼1 wixai ¼ 1

XI

i¼1

wixaji

8
>>>>>>>>><

>>>>>>>>>:

9
>>>>>>>>>=

>>>>>>>>>;

: ð12Þ

Proof See ‘‘Appendix’’. h

Theorem 1 establishes that problem (11) is highly tractable for arbitrary polyhedral

restrictions on weights. Indeed, its solution simply amounts to solving A linear programs,

the inner minimizations of Eq. (12) for each a 2 A, and picking the optimal solution which

is the smallest. Specifically, this means that the pie-share weight restrictions of Eq. (5) can

be easily accommodated in problem (10).

Corollary 1 establishes an easy consequence of Theorem 1. In particular, when there are

no constraints on the weights, problem (11) can be trivially solved by simply enumerating

the ratios
xaj i

xai
for all i 2 I and a 2 A and picking the minimum value.
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Corollary 1 Consider the setting of Theorem 1 with no constraints on the weights except

for non-negativity (i.e., Wj ¼ RI
þ). In this case Eq. (12) can be simplified to:

g�ajðR
I
þÞ � g�aj ¼ min

a2A; i2I

xaji

xai
: ð13Þ

Let I� denote the set of indicators that attain the minimum in Expression (13). Any vector

w�
aj
� 0 such that

P
i2I� w�

aji�
[ 0 for i� 2 I� and w�

aji
¼ 0 otherwise, is an optimal solution

of problem (10).

Finally, it is worth noting that the positive result of Theorem 1 extends to the case of

arbitrary convex constraints, which has not been previously mentioned in the DEA literature.

Theorem 2 Consider optimization problem (11) for an arbitrary set Wj. We have

g�ajðWjÞ ¼ min
a2A

min
w2Wj

PI
i¼1 wixaji

PI
i¼1 wixai

( )

: ð14Þ

If Wj can be written as Wj ¼ fw 2 RI
þ ckðwÞ� ; k ¼ ; ; . . .;Kg, where ckð�Þ for k ¼

1; 2; . . .;K are convex functions, then the inner minimizations of Eq. (14) are concave

fractional programs that can be efficiently solved with standard methods.

Proof See ‘‘Appendix’’. h

In conclusion, the analytic results of this section establish that problem (11), in addition

to being the (generalized) worst-case equivalent of (2), is highly tractable.

4 Numerical Case Study

In this section, we apply the framework developed in Sect. 3 to the original case study of ZAP.

In their paper, Zhou and his co-authors applied their DEA methodology to the construction of

a sustainable energy index (SEI) for the eighteen Asia Pacific Economic Development

(APEC) economies in 2002. In what follows, we offer a bare-bones description of ZAP’s SEI,

omitting details on how the index was developed. This is because our primary objective is to

briefly compare the results obtained under the two different DEA methodologies.

The three building blocks of ZAP’s SEI are an energy efficiency indicator (EEI), a

renewable energy indicator (REI), and a climate change indicator (CCI). The EEI is the

reciprocal of the energy-to-GDP ratio, the REI is the percentage of renewable energy in

total final energy consumption, and the CCI is the reciprocal of the CO2 emissions-to-GDP

ratio. More information on the rationale and data sources of the SEI can be found in Sect. 4

of ZAP. Table 2 summarizes data on the EEIs, REIs, and CCIs of the 18 APEC countries.

5 Application of DEA Methodologies

We begin by considering the simplest possible DEA setting in which there are no weight

restrictions. Table 3 summarizes the results of the various DEA models for this case.4

4 All computations in this section were performed in MATLAB. Details and programs available upon
request.
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Table 2 SEI data (see Zhou
et al. 2007 for data sources)

Countries EEI (103 US$/toe) REI (%) CCI (103 US$/tons)

Peru 13.825 53.6 4.51

Philippines 17.758 44.6 4.136

Papua 12.381 23.5 5.039

New Zealand 5.473 56.9 2.281

Vietnam 10.79 30 2.478

Canada 4.286 46.8 1.608

Chile 6.95 32.2 2.542

Japan 8.647 8.2 2.522

Mexico 8.424 9.5 2.059

Indonesia 8.516 7.8 1.784

Thailand 8.204 4.8 1.891

China 8.178 11.1 1.372

USA 5.901 6 1.614

Australia 6.208 5.6 1.425

Malaysia 5.767 4 1.442

Taiwan 5.539 2.6 1.391

Korea 4.683 0.6 1.437

Russia 2.453 11.5 0.652

Table 3 Best- and worst-case DEA scores for SEI case study (unconstrained weights)

Country Best-case
DEA score

Worst-case
DEA score
(Zhou et al.)

Worst-case
DEA score
(this paper)

Normalized best-
and worst-case
DEA score average
(Zhou et al.)

Normalized best-
and worst-case
DEA score average
(this paper)

Peru 1.000 1 5.159 1 0.779 2 1.000 1 0.997 2

Philippines 1.000 1 4.964 2 0.784 1 0.977 2 1.000 1

Papua 1.000 1 3.577 3 0.413 4 0.810 3 0.760 3

New Zealand 1.000 1 2.231 6 0.308 6 0.648 4 0.692 4

Vietnam 0.642 6 3.134 4 0.492 3 0.529 5 0.584 5

Canada 0.823 5 1.747 9 0.241 7 0.477 6 0.537 6

Chile 0.597 7 2.817 5 0.391 5 0.463 7 0.491 7

Japan 0.558 8 2.103 7 0.144 10 0.353 8 0.306 8

Mexico 0.488 9 1.853 8 0.167 9 0.278 9 0.277 10

Indonesia 0.480 10 1.585 10 0.137 11 0.241 10 0.252 11

Thailand 0.462 11 1.511 11 0.084 15 0.220 11 0.207 12

China 0.461 12 1.467 12 0.195 8 0.214 12 0.277 9

USA 0.366 13 1.382 13 0.105 13 0.144 13 0.160 13

Australia 0.350 14 1.235 14 0.098 14 0.116 14 0.145 14

Malaysia 0.339 15 1.169 15 0.070 16 0.101 15 0.119 15

Taiwan 0.326 16 1.066 16 0.046 17 0.081 16 0.096 16

Korea 0.312 17 1.000 17 0.011 18 0.064 17 0.064 18

Russia 0.211 18 1.000 17 0.129 12 0.000 18 0.077 17

No pie-share bounds

The presence of italics indicates differences in the two ranks
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The second column of Table 3 collects the results of best-case DEA scores as defined by

Eq. (2) (which are of course identical to those cited in ZAP) along with the ranks they

imply. The third column collects the results of ZAP’s worst-case DEA scores as per

Eq. (6), while the fourth column summarizes the worst-case DEA scores proposed in this

paper as per Eq. (10). The fifth column lists the average of the normalized values of

Columns 2 and 3, i.e., the values of Eq. (9) for k ¼ 1=2; the sixth column does the same for

Columns 2 and 4, i.e using the worst-case DEA scores of this paper.5

Examining Table 3 we see that the choice of model (6) versus model (10) results in

numerous rank changes (indicated in red). Some of them can be quite dramatic, like for

instance those involving Russia, which is last according to model (6) and 12th according to

model (10). Indeed, to elucidate the differences between the two methodologies it is

instructive to focus on Russia and contrast its performance to that of Korea. Under

model (6) Russia and Korea are considered equal as there exist weight vectors that result in

their having the minimum score in group A of APEC countries. Denoting by wZAP
a17

and

wZAP
a18

the optimal solutions of (6) for Korea and Russia respectively, we have

wZAP
a17

¼ ð0:01; 1:52; 0:03Þ0; wZAP
a18

¼ ð0:22; 0:01; 0:49Þ0:

Conversely, under model (10) we see that Korea has a far inferior worst-case performance

to Russia. The optimal weights provide insight as to why. Denoting by w�
a17

and w�
a18

the

optimal solutions of (10) for Korea and Russia respectively, we have

w�
a17

¼ ð0;K1; 0Þ; wZAP
a18

¼ ð0; 0;K2Þ; for any K1;K2 [ 0:

Hence, we see that for Korea (Russia), worst-case weights correspond to those assigning

positive weight exclusively to indicator EEI (CCI). The result now follows since Korea’s

performance of 0.6 in EEI (where New Zealand has the maximum value of 56.9) is, in

relative terms, worse than that of Russia which has a CCI value of 0.652 (where Papua has

the maximum value of 5.039).

Qualitatively similar implications persist even when we impose the uniform pie-share

bounds ðLi;UiÞ ¼ ðL;UÞ ¼ ð0:1; 0:5Þ for all i 2 f1; 2; 3g, albeit to a weaker degree.

Table 4 summarizes the corresponding results.

6 Combining Best- and Worst-Case DEA Scores

Examining the fifth and sixth columns of Tables 3 and 4, we see that the rankings implied

by the two methodologies converge significantly when we consider the averages of the

respective normalized DEA scores, as per Eqs. (9) and (15). Taking this analysis further,

Figure 1 follows the example of ZAP’s Figures 2 and 3 and presents box plots of country

ranks when k is allowed to assume all values in f0; 0:1:; 0:2:; . . .; 0:9; 1g, for both cases of

unconstrained and constrained weights. As expected, we observe greater variability in

5 That is, it lists the values of CI�a ð1=2Þ for all a 2 A, where

CI�aj ðkÞ � k
f �aj �mina2A f �a

maxa2A f �a �mina2A f �a
þ ð1� kÞ

g�aj �mina2A g�a

maxa2A g�a �mina2A g�a
: ð15Þ

Note that, unlike ZAP, the above normalization is not necessary because the g�aj measures defined in Eq. (10)

are already scaled to range between 0 and 1. Nonetheless, we still adopt it to maximize comparability of the
two sets of results.
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country ranks for the worst-case DEA model of Eq. (15) compared to that of (9). The

effect is stronger when weights are unrestricted, but persists even upon setting the afore-

mentioned pie shares.

Table 4 Best- and worst-case DEA scores for SEI case study (constrained weights)

Country Best-case
DEA score

Worst-case
DEA score
(Zhou et al.)

Worst-case
DEA score
(thispaper)

Normalized best-
and worst-case
DEA score average
(Zhou et al.)

Normalized best-
and worst-case
DEA score average
(this paper)

Peru 1.000 1 5.244 1 0.916 1 1.000 1 1.000 1

Philippines 1.000 1 5.050 2 0.897 2 0.977 2 0.990 2

Papua 0.852 3 3.827 3 0.597 3 0.752 3 0.741 3

New Zealand 0.660 4 2.788 6 0.412 6 0.525 5 0.533 5

Vietnam 0.636 5 3.189 4 0.571 4 0.559 4 0.608 4

Canada 0.496 7 2.115 8 0.313 7 0.356 7 0.388 7

Chile 0.574 6 2.896 5 0.484 5 0.491 6 0.526 6

Japan 0.457 8 2.120 7 0.241 10 0.335 8 0.326 8

Mexico 0.432 9 1.945 9 0.259 8 0.300 9 0.322 9

Indonesia 0.393 10 1.731 10 0.217 11 0.254 10 0.278 11

Thailand 0.343 12 1.653 11 0.149 15 0.218 12 0.213 12

China 0.371 11 1.574 12 0.257 9 0.224 11 0.288 10

USA 0.310 13 1.418 13 0.172 12 0.172 13 0.207 13

Australia 0.295 14 1.327 14 0.159 13 0.153 14 0.192 14

Malaysia 0.263 15 1.242 15 0.122 16 0.126 15 0.154 15

Taiwan 0.217 16 1.143 16 0.084 17 0.089 16 0.107 17

Korea 0.086 18 1.000 17 0.021 18 0.000 18 0.000 18

Russia 0.186 17 1.000 17 0.153 14 0.055 17 0.128 16

Uniform pie-share bounds: U = 0.5, L = 0.1

The presence of italics indicates differences in the two ranks

Fig. 1 Box-plots of SEI ranks when k 2 f0; 0:1:; . . .; 0:9; 1g. Red lines indicate median values, while gray
boxes (black lines) denote 25th–75th (5th–95th) percentile intervals. Left (right) panels refer to the
unconstrained (constrained) weights case. Upper (lower) panels plot the results corresponding to Eq. (9)
[resp., Eq. (15)]. (Color figure online)
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In conclusion, this brief empirical exercise suggests that indices combining best- and

worst-case DEA scores are quite sensitive to how one chooses to model worst-case relative

performance.

7 Conclusion

This note has revisited the concept of worst-case performance in a nonparametric DEA

framework, first introduced in the composite-indicator literature by Zhou et al. (2007)

[ZAP]. We argue that, while interesting and valid in its own right, the worst-case measure

adopted by ZAP does not capture, in a formal sense, the notion of worst-case DEA

performance. By means of a stylized example, we showed that this theoretical inconsis-

tency may at times lead to undesirable implications. We analyze the strict worst-case

analogue of standard DEA and show how it can be tractably computed, even under general

convex restrictions on the weights. Furthermore, the resulting worst-case DEA scores can

be combined with their best-case analogues without requiring prior normalization. The two

methodologies are compared using ZAP’s Sustainable Energy Index case study, demon-

strating that they occasionally lead to divergent results. Future work could incorporate the

model presented herein in uncertainty and sensitivity analyses of composite indicators

(Cherchye et al. 2008).

Appendix

Proofs

Theorem 1. Consider optimization problem (11). Let w� be its optimal solution and a� be
the agent attaining the maximum in the denominator. By definition, we have

min
w2Wj

PI
i¼1 wixaji

maxa2A
PI

i¼1 wixai
¼
PI

i¼1 w
�
i xaji

PI
i¼1 w

�
i xa�i

� min
w2Wj

PI
i¼1 wixaji

PI
i¼1 wixa�i

� min
a2A

min
w2Wj

PI
i¼1 wixaji

PI
i¼1 wixai

( )

:

ð16Þ

On the other hand,

min
a2A

min
w2Wj

PI
i¼1 wixaji

PI
i¼1 wixai

( )

� min
a2A

min
w2Wj

PI
i¼1 wixaji

maxa2A
PI

i¼1 wixai

( )

¼ min
w2Wj

PI
i¼1 wixaji

maxa2A
PI

i¼1 wixai
:

ð17Þ

Putting inequalities (16)–(17) together we obtain the equality

min
w2Wj

PI
i¼1 wixaji

maxa2A
PI

i¼1 wixai
¼ min

a2A
min
w2Wj

PI
i¼1 wixaji

PI
i¼1 wixai

( )

: ð18Þ
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Now since Wj is a polyhedral set with Wj ¼ fw 2 RI w� 0; Gjw�hjg, for a given

a 2 A the minimization problem inside the brackets of Eq. (18) is a linear-fractional

problem that can be transformed into the following equivalent linear program (see Sec-

tion 4.3.2 in Boyd and Vandenberghe 2004):

min
w� 0; y� 0

Gjw� hjy� 0
PI

i¼1 wixai ¼ 1

XI

i¼1

wixaji:

ð19Þ

h

Corollary 1 Recall Eq. (19) and suppose Gj ¼ 0 and hj ¼ 0. By standard LP theory

(Bertsimas and Tsitsiklis 1997), the optimal solution of (19) will be attained (perhaps non-

uniquely) at one of the extreme points of polytope fw 2 RI w� 0;
PI

i¼ wixai ¼ g. The
extreme points of this polytope are given by the set of I vectors

fw� 2 RI w�
i ¼ xai

; w�
k ¼ for all k 6¼ ig. Thus, finding the optimal solution of (19) is

equivalent to enumerating the terms
xaj i

xai
for i ¼ 1; 2; . . .I, and picking the smallest. Hence,

when Wj ¼ RI
þ, problem (11) is equivalent to

min
a2A

min
i2I

xiaj

xia
:

h

Theorem 2 Eq. (14) is obtained by simply repeating Steps (16)–(17)–(18) in the proof

of Theorem 1 (note that they are not in any way dependent on the structure of setsWj). The

second part of the Theorem follows from well-known results on concave fractional pro-

gramming (Schaible and Shi 2004).6

Tables and Figures in Main Text

See Fig. 1 and Tables 2, 3 and 4.
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