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Abstract From a formal point of view, a composite indicator is an aggregate of all

dimensions, objectives, individual indicators and variables used for its construction. This

implies that what defines a composite indicator is the set of properties underlying its

mathematical aggregation convention. In this article, I try to revise the theoretical debate

on aggregation rules by looking at contributions from both voting theory and multi-

criteria decision analysis. This cross-fertilization helps in clarifying many ambiguous

issues still present in the literature and allows discussing the key assumptions that may

change the evaluation of an aggregation rule easily, when a composite indicator has to be

constructed.
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1 Introduction

Composite indicators are more and more popular; many international organizations pro-

pose their use in search of evidence based policy (Saltelli 2007; Nardo et al. 2008). From a

formal point of view, a composite indicator is an aggregate of all dimensions, objectives,

individual indicators and variables used for its construction. This implies that what defines

a composite indicator is the set of properties underlying its aggregation convention.

Although various functional forms for the underlying aggregation rules of a composite

indicator have been developed in the literature, in the standard practice, a composite
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indicator is very often constructed by using a weighted linear aggregation rule applied to a

set of variables. However, Munda and Nardo (2009) analyse the case of aggregation rules

in the framework of composite indicators and conclude that the use of non-linear/non-

compensatory aggregation rules to construct composite indicators is compulsory for rea-

sons of theoretical consistency when weights with the meaning of importance coefficients
are used or when the assumption of preferential independence1 does not hold. Moreover, in

standard linear composite indicators, compensability among the different individual indi-

cators is always assumed; this implies complete substitutability among the various com-

ponents considered. For example, in a hypothetical sustainability index, economic growth

can always substitute any environmental destruction or inside e.g., the environmental

dimension, clean air can compensate for a loss of potable water. From a normative point of

view, such a complete compensability is often not desirable. A search for alternative

mathematical aggregation rules is then needed. In this article, I try to revise the theoretical

debate on aggregation rules by looking at contributions from both voting theory and multi-

criteria decision analysis. This cross-fertilization helps in clarifying many ambiguous

issues still present in the literature and allows discussing the key assumptions that may

change the evaluation of an aggregation rule, when a composite indicator has to be

constructed.

Borda and Condorcet consistent rules were originally developed for preference aggre-

gation in the theory of social choice. Nowadays these rules are applied in a variety of fields

such as discrete multi-criteria analysis, composite indicators, artificial intelligence, queries

in databases or Internet multiple search engines. The debate on the relative merits of Borda

and Condorcet consistent voting rules is a very old one. Indeed according to McLean

(1990), these rules were already known in the medieval age, when Ramon Lull

(1235–1315) proposed a Condorcet method and Nicolaus Cusanus (1401–1464) proposed a

Borda method.

In this article I will compare Borda consistent scoring methods with two precise

Condorcet consistent rules, i.e., the so-called Kemeny’s method (Kemeny 1959) and the

Arrow and Raynaud (1986) ranking procedure. This because the former if the most general

rule for dealing with the cycle issue and the latter is the only algorithm respecting the

axiom of independence of irrelevant alternatives fully. I will discuss the basic properties

and assumptions of these decision rules inside the framework of composite indicators. One

has to note that although the construction of a composite indicator presents the same

characteristics of a voting problem (Arrow and Raynaud 1986), it is more general in nature,

since indicator scores can be measured on interval or ratio scales too and not only on

ordinal scale as in the case of voting theory.

Section 2 illustrates the basic characteristics of the composite indicator framework, in

particular the concepts of compensability, indicator weights and preference modelling are

considered. Section 3 summarizes the main properties of Borda and Condorcet consistent

1 Given the set of individual indicators G, a subset of indicators Y is preferentially independent of
YC = Q (the complement of Y) only if any conditional preference among elements of Y, holding all elements
of Q fixed, remain the same, regardless of the levels at which Q are held. The indicators g1, g2,…, gm are
mutually preferentially independent if every subset Y of these indicators is preferentially independent of its
complementary set of indicators. From an operational point of view, this means that an additive aggregation
function permits the assessment of the marginal contribution of each indicator separately (as a consequence
of the preferential independence condition). The marginal contribution of each indicator can then be added
together to yield a total value, no phenomena of synergy or conflict can be taken into account.
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rules. Section 4 deals with the cycle issue in Condorcet consistent rules; in particular, the

so-called Kemeny’s method is illustrated in depth and historically reconstructed. Section 5

describes briefly a peculiar Condorcet consistent rule, i.e., the so-called Arrow and

Raynaud ranking algorithm. Section 6 compares systematically scoring methods with

Condorcet consistent voting rules according to their properties and some conclusions about

their possible use in different frameworks are drawn.

2 On the Equivalence between the Discrete Multi-Criterion Problem,
Voting Theory and the Composite Indicator Framework

The discrete multi-criterion problem can be described in the following way: A is a finite set

of N feasible actions (or alternatives); M is the number of different points of view or

evaluation criteria gm m = 1, 2,…, M considered relevant in a policy problem, where the

action a is evaluated to be better than action b (both belonging to the set A) according to the

m-th point of view if gm(a) [ gm(b), W is a set of criterion weights W = {wm}, m = 1, 2,…,

M, with
PM

m¼1 wm ¼ 1, which can be importance coefficients or trade-offs. It is evident that

the discrete multicriterion problem and the aggregation of individual indicators to build a

composite are completely equivalent problems.

In synthesis, the information contained in the impact matrix needed for the construction

of a composite indicator is:

• Intensity of preference (when quantitative indicator scores are present).

• Number of individual indicators in favour of a given object (country, region, city, etc.)

to be ranked.

• Weight attached to each single individual indicator.

• Relationship (i.e., relative ordering) of each single object with all the other objects to be

ranked.

Combinations of this information generate different aggregation conventions, i.e.,

manipulation rules of the available information to arrive at a preference structure gen-

erating the composite indicator. The aggregation of several individual indicators implies

taking a position on the fundamental issue of compensability. Compensability refers to the

existence of trade-offs, i.e., the possibility of offsetting a disadvantage on some indicators

by a sufficiently large advantage on another indicator, whereas smaller advantages would

not do the same. Thus a preference relation is non-compensatory if no trade-off occurs and

is compensatory otherwise. The use of weights with intensity of preference originates

compensatory aggregation methods and gives the meaning of trade-offs to the weights. On

the contrary, the use of weights with ordinal indicator scores originates non-compensatory

aggregation procedures and gives the weights the meaning of importance coefficients

(Bouyssou and Vansnick 1986; Keeney and Raiffa 1976; Podinovskii 1994; Roberts

1979).

Trade-offs can be evaluated only if one knows the quantitative scores of the indicators

involved without any uncertainty. On the contrary, the concept of importance is connected

to the criterion itself and NOT with its quantification. If protected species are considered

more, equal or less important than GDP, this is a quality of the indicators which is

independent from any measurement scale one may use. As clearly shown by Anderson and

Zalinski (1988), when weights depend on the range of variable scores, such as in the

context of a linear aggregation rule, the interpretation of weights as a measurement of the
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psychological concept of importance is always completely inappropriate. The concept of

importance I am using along this paper can be classified as symmetrical importance, that is

‘‘if we have two non-equal numbers to construct a vector in R2, then it is preferable to
place the greatest number in the position corresponding to the most important criterion’’
(Podinovskii 1994, p. 241).

More formally, to use the compensatory approach in practice, such as the linear

aggregation rule, one has to determine for each single indicator, a mapping /i : xi ! R
which provides at least an interval scale of measurement and to assess scaling constants

(i.e., weights) in order to specify how the compensability should be accomplished, given

the scales /i between the different indicators (Roberts 1979). Note that the scaling con-

stants which appear in the compensatory approach depend on the scales /i, thus they do not

characterize the intrinsic relative importance of individual indicators.

Vansnick (1990) showed that the two main approaches in multi-criteria decision theory

i.e., the compensatory and non-compensatory ones can be directly derived from the

seminal work of Borda (1784) and Condorcet (1785).

In 1986 Kenneth Arrow and Hervé Raynaud published a very influential book titled

‘‘Social choice and multicriterion decision-making’’, where the formal analogies between

the discrete multi-criterion problem and the social choice one are deeply analyzed. This

book is based on the assumption that, in the case where all criteria have ordinal impact

scores, if one considers the evaluation criteria as voters, a multi-criteria impact matrix and

a voting matrix are identical. As a consequence all results of social choice also apply to

multi-criteria decision theory fully (when no intensity of preference is used) and then to the

construction of composite indicators too.

When an interval or ratio scale of measurement is used, preference modelling becomes

a richer mathematical structure than the usual one. Given a set of indicators G = {gm},
m = 1, 2,…, M, and a finite set A = {an}, n = 1, 2,…, N of objects, let’s start with the

simple assumption that the performance (i.e., the indicator score) of an object an with

respect to an indicator gm is based on an interval or ratio scale of measurement. For

simplicity of exposition, here the assumption is made that a higher value of an indicator

is preferred to a lower one (the higher, the better). The famous bald paradox in Greek

philosophy (how many hairs one has to cut off to transform a person with hairs to a bald

one?), later on Poincaré (1935, p. 69) and finally Luce (1956) made the point that the

transitivity of indifference relation is incompatible with the existence of a sensibility
threshold below which an agent either does not sense the difference between two objects,

or refuses to declare a preference for one or the other. Luce was the first one to discuss

this issue formally in the framework of preference modelling. Mathematical character-

izations of preference modelling with thresholds can be found in Roubens and Vincke

(1985).

By introducing a positive constant indifference threshold q the resulting preference

model is the threshold model:

aj P ak , gmðajÞ[ gmðakÞ þ q
aj I ak , gmðajÞ � gmðakÞ

�
�

�
�� q

� �

ð1Þ

where aj and ak belong to the set A of objects and gm to the set G of indicators.

Real life experiments show that often there is an intermediary zone inside which an

agent hesitates between indifference and preference. This observation led to the so-called

double threshold model where variable indifference and preference thresholds are intro-

duced, that is

340 G. Munda

123



aj P ak , gmðajÞ[ gmðakÞ þ p gmðakÞð Þ
aj Q ak , gmðakÞ þ p gmðakÞð Þ� gmðajÞ[ gmðakÞ þ q gmðakÞð Þ

aj I ak ,
gmðakÞ þ q gmðakÞð Þ� gmðajÞ
gmðajÞ þ q gmðajÞ

� �
� gmðakÞ

(

8
>>>><

>>>>:

9
>>>>=

>>>>;
ð2Þ

For any m = 1, 2,…, M, being p a positive preference threshold. Relation Q has been

called ‘‘weak preference’’ by Roy (1985, 1996). It translates the decision-maker’s hesi-

tation between indifference and preference and not ‘‘less strong’’ preference as its name

might lead to believe. An indicator with both preference and indifference thresholds can be

called a pseudo-indicator. A pseudo-order structure is a double threshold model upon

which the following consistency condition is imposed

gmðajÞ[ gmðakÞ ,
gmðajÞ þ q gmðakÞð Þ[ gmðakÞ þ q gmðakÞð Þ
gmðajÞ þ p gmðakÞð Þ[ gmðakÞ þ p gmðakÞð Þ

�

ð3Þ

More sophisticated versions of the double threshold model also include the treatment of

uncertainty and risk (Fishburn 1970, 1973a; Kacprzyk and Roubens 1988; Ozturk et al.

2005; Roubens and Vincke 1985).

A first topic to start with is Arrow’s impossibility theorem (Arrow 1963). A legitimate

question arises: does this paradoxical result apply to the general discrete aggregation

problem too? Arrow and Raynaud (1986, pp. 17–23) answer this question. Let’s assume

that a mathematical aggregation convention to arrive at a total ranking of all objects needs

at least to satisfy three axioms2:

Axiom 1: Unrestricted Domain The values that can be taken by the indicators are

unrestricted and the mathematical aggregation convention must respect unanimity.

Axiom 2: Independence of irrelevant alternatives The ranking of the objects (alterna-

tives) in A depends only on the objects (alternatives) belonging to A. ‘‘This means that it is
of no importance for the decision if you have forgotten in the application of the method
some (poorly ranked) alternatives: …. The complete set of alternatives is always very large
and only a relatively small subset can be identified. It is thus essential that the result of the
method on a small set of alternatives not vary if forgotten alternatives are taken into
consideration’’ (Arrow and Raynaud 1986, p. 19).

Axiom 3: Positive Responsiveness The degree of preference between two objects a and

b is a strictly increasing function of the number of indicators (or weights) that rank

a before b.

The following paradoxical result then applies: the only ranking respecting all these

axioms must coincide with the ranking supplied by one of the indicators taken into con-

sideration (in Arrow’s words, dictatorship is the only democratic solution!). A consequence

2 The original Arrow’s impossibility theorem (Arrow 1963) is slightly different, above all with respect to
the independence of irrelevant alternatives axiom. In the social choice literature formulation, it is called the
axiom of binary independence, i.e., the social ranking of each pair of alternatives depends only on the
preferences of each voter on that specific pair of alternatives. The ranking of any other alternative is
irrelevant for this social ranking. Indeed in the version proposed by Arrow and Raynaud (1986) the axiom of
independence of irrelevant alternatives is closer to the definition given by Chernoff (1954), which is derived
from Nash’s bargaining theory. For a deep discussion on the independence of irrelevant alternatives axiom
and its various definitions see e.g., Ray (1973) and Bordes and Tideman (1991).
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of this theorem is that no perfect mathematical aggregation convention can exist. ‘‘Rea-

sonable’’ ranking procedures must then be found. In the framework of composite indica-

tors, this consequence implies two questions: Is it possible to find a ranking algorithm

consistent with a set of desirable properties3? And on the reverse, is it possible to assure

that no essential property is lost? At this point, the question arises: in the framework of

composite indicators, can we choose between Borda and Condorcet aggregation rules on

some theoretical and/or practical grounds? A first partial answer to this question will be

given in the next Section.

3 Borda Versus Condorcet in the Context of Composite Indicators

First of all, there is a need to generalize the Borda approach such that we can compare any

Borda consistent rule with any Condorcet consistent rule. The Borda approach can be

generalized by means of the concept of scoring voting rules, meaning that the Borda

winner can always be found for any non-decreasing sequence of real numbers

s0� s1� � � � � sp�1; with s0\sp�1. Where of course s0 points are given to the alternative

ranked last and so on, till the first one in the ranking which receives sp - 1 points.4

Fishburn (1973b) proves the following theorem: there are profiles where the Condorcet
winner exists and it is never selected by any scoring method. Moulin (1988, p. 249) proves

that ‘‘a Condorcet winner (loser) cannot be a Borda loser (winner)’’. In other words,

Condorcet consistent rules and scoring voting rules are deeply different in nature. Their

disagreement in practice is the normal situation. We have then necessarily to examine both

approaches carefully and choose one of them considered more adequate in a composite

indicator framework.

Let’s consider a numerical example with 60 indicators and 3 objects; this example

showed in Table 1, is due to Condorcet himself.

The corresponding frequency matrix is showed in Table 2 (where any element indicates

the number of times each object is ranked first, second or third by any single indicator).

By applying Borda’s scoring rule, the following results are obtained: a = 58, b = 69,

c = 53, thus object b is univocally selected.

Let’s now apply the Condorcet rule. The corresponding outranking matrix5 is the one

showed in Table 3 (any element in the matrix is obtained by pair-wise comparison of

objects and by counting the number of indicators in favour of each single object).

In this case, the concordance (i.e., the majority) threshold is 31. It is: aPb, bPc and cPa,

thus due to the transitive property a cycle exists and no object can be selected. Let’s then

try the application of Condorcet consistent rules.

3 Often this search for clear properties characterizing an algorithm is indicated as the axiomatic approach.
However, one should note that properties or assumptions are NOT axioms. As perfectly synthesized by Saari
(2006, p. 110) ‘‘Many, if not most, results in this area are merely properties that happen to uniquely identify
a particular procedure. But unless these properties can be used to construct, or be identified with all
properties of the procedure (such as in the development of utility functions in the individual choice liter-
ature), they are not building blocks and they most surely are not axioms: they are properties that just happen
to identify but not characterize, a procedure. As an example, the two properties (1) Finnish-American
heritage (2) a particular DNA structure, uniquely identify me, but they most surely do not characterize me’’.
4 It is to be noted that an important key implicit assumption underlying a Borda rule has to be accepted, i.e.
the arbitrary transition from an ordinal scale of measurement to an interval or ratio scale one (according to
the scoring rule adopted).
5 The term ‘‘outranking matrix’’ was invented by B. Roy in the so-called ELECTRE methods.
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From this example we might conclude that the Borda rule (or any scoring rule) is more

effective since an alternative is always selected while the Condorcet one sometimes leads

to an irreducible indecisiveness. It seems appropriate then to know more about the prop-

erties hold by the Borda rule.

Let’s examine again the outranking matrix presented in Table 3. From this matrix we

can realize that 33 indicators are in favour of object a, while only 27 are in favour of object

b. So a legitimate question is: why the Borda rule ranks b before a? This is mainly due to

the fact that the Borda rule is based on the concept of intensity of preference while the

Condorcet rule only uses the number of indicators.

In the framework of Borda rule, and all scoring methods in general, the intensity of

preference is measured by the scores given according to the rank positions. This implies

that compensability is allowed. Moreover, the rank position of a given object depends on

the number of objects considered. This implies that the mutual preference relation of a

given pair of objects may change according to the objects considered. As a consequence,

preference reversal phenomena may easily occur and of course the axiom of independence

of irrelevant alternatives is not respected. This problem has been extensively studied by

Fishburn (1984).

Let’s examine the numerical example presented in Table 4.

By applying Borda’s scoring rule, the following results are obtained: a = 13, b = 12,

c = 11, d = 6, thus object a is chosen. Let’s now suppose that object d is removed from

the analysis. Since d was at the bottom of the ranking, nobody should have any reasonable

doubt that object a is still the best alternative. By applying Borda’s scoring rule, the

following results are obtained: a = 6, b = 7, c = 8, thus object c is now chosen!

Unfortunately, Borda rule is fully dependent on irrelevant alternatives (objects) and

preference reversals can happen with an extreme high frequency.

Table 1 An original Condor-
cet’s numerical example (Source:
Condorcet 1785)

Number of
indicators

23 17 2 10 8

a b b c c

b c a a b

c a c b a

Table 2 A frequency matrix
derived from Table 1

Ranking Objects a b c Points

1-st 23 19 18 2

2-nd 12 31 17 1

3-rd 25 10 25 0

Table 3 Outranking matrix
derived from Table 1

a b c
a 0 33 25

b 27 0 42

c 35 18 0

2

6
6
4

3

7
7
5
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It is also interesting to remember that Borda rule can sometimes lose a fundamental

property for a ranking procedure, i.e., monotonicity. This happens in the framework of

scoring rules based on successive elimination; that is, ascending procedures which first find

the worst alternative, then eliminate it and start again in search for the second worst and so

on. Fishburn (1982) proves that any rule based on successive elimination by scoring
methods must violate monotonicity at some profiles.

At this point, we need to tackle the issue of when, in a composite indicator framework,

it is better to use a Condorcet consistent rule or a scoring method. Given that there is a

consensus in the literature that the Condorcet’ theory of voting is non-compensatory while

Borda’s one is fully compensatory, a first conclusion is that when one wishes to have

weights as importance coefficients, there is a need for a Condorcet approach6 while a

Borda’s one is desirable when weights are meaningful in the form of trade-offs. Moreover,

a Condorcet approach is useful for generating a ranking of the available objects while

Borda’s one is more useful for isolating one object, considered the best) (Moulin 1988;

Truchon 1995; Young 1988, 1995).

However, as we have seen, a basic problem inherent in the Condorcet’s approach is the

presence of cycles. This problem has been studied by various scientists (e.g., Fishburn

1973a, b; Kemeny 1959; Moulin 1985; Truchon 1995; Young and Levenglick 1978, Vidu

2002; Weber 2002). The probability p(N, M) of obtain a cycle with N objects and

M indicators increases with N as well as the number of indicators. Estimations of proba-

bilities of getting cycles according to N objects and M voters (indicators) can be found in

Fishburn (1973b, p. 95). One should note that these probabilities are estimated under the

so-called ‘‘impartial culture assumption’’, i.e., voters’ opinions do not influence each other.

While this assumption is unrealistic in a mass election, it is fully respected in a composite

indicator context since indicators are supposed to be non-redundant. In Fishburn et al.

(1979), the issue of cycles was tackled specifically for the discrete mathematical aggre-

gation problem and indeed it has been proved that the cycle issue is a serious problem for

the use of Condorcet’s voting theory, since with many objects and indicators, cycles occur

with an extremely high frequency. For this reason, mathematical aggregation conventions

based on Condorcet ideas need rules of thumb to solve cycles. Unfortunately these rules of

Table 4 Fishburn numerical
example on Borda rule

Number of
indicators

3 2 2

c b a

b a d

a d c

d c b

6 Arrow and Raynaud (1986, pp. 77–78) arrive at the conclusion that a Condorcet aggregation algorithm has
always to be preferred in a multi-criterion framework. On the complete opposite side one can find Saari
(1989, 2000, 2006). His main criticism against Condorcet based approaches are based on two arguments: (1)
if one wants to preserve relationships among pairs (e.g., to impose a side constraint to protect some
relationship-balanced gender for candidates in a public concourse) then it is impossible to use pair-wise
voting rules, a Borda count should be used necessarily. It is important to note that, although desirable in
some cases, to preserve a relationship among pairs implies the loss of neutrality; this is not desirable on
general grounds. (2) The individual rationality property (i.e., transitivity) has necessarily to be weakened if
one wishes to adopt a Condorcet based voting rule.
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thumb normally imply the loss of neutrality (among tied objects choose the first in

alphabetic order) or anonymity (among tied objects choose the one most preferred by

indicator 1). One of the original suggestions of Condorcet was to delete successively all

weakest pair-wise majorities till the point that all cycles are eliminated. However, Young

(1986) proved that this rule is not valid when the number of objects is bigger or equal to

four.

Now the question is: Is it possible to tackle the cycle issue in a more general way? The

answer to this question will be given in the next Section.

4 The Cycle Issue in Condorcet Consistent Rules:
The So-Called Kemeny’s Method

Condorcet himself was aware of the problem of cycles in his approach; he built examples

to explain it (as the one shown in Table 1) and he was even close to find a consistent rule

able to rank any number of alternatives when cycles are present. However, attempts to fully

understand this part of Condorcet’s voting theory have arrived at conclusions like ‘‘… the
general rules for the case of any number of candidates as given by Condorcet are stated so
briefly as to be hardly intelligible … and as no examples are given it is quite hopeless to
find out what Condorcet meant’’ (E.J. Nanson as quoted in Black 1958, p. 175). Or ‘‘The
obscurity and self-contradiction are without any parallel, so far as our experience of
mathematical works extends … no amount of examples can convey an adequate impression
of the evils’’ (Todhunter, 1949, p. 352 as cited by Young 1988, p. 1234). Attempts of

clarifying, fully understanding and axiomatizing Condorcet’s approach for solving cycles

have been mainly done by Kemeny (1959), who made the first intelligible description of

the Condorcet approach, and by Young and Levenglick (1978) who made its clearest

exposition and complete axiomatization. For this reason I call this approach the Condorcet-

Kemeny-Young-Levenglick ranking procedure, in short the C-K-Y-L ranking procedure.7

Its main methodological foundation is the maximum likelihood concept. In fact, the

C-K-Y-L ranking procedure may be considered one of its earliest applications. ‘‘Con-
dorcet’s argument proceeds along the following lines. People differ in their opinions
because they are imperfect judges of which decision really is best. If on balance each voter
is more often right than wrong, however, then the majority view is very likely to identify the
decision that is objectively best.’’ (Young 1988, p. 1232). The maximum likelihood

principle selects as a final ranking the one with the maximum pair-wise support. This

selected ranking is the one which involves the minimum number of pair-wise preference

inversions. Since Kemeny (1959) proposes the number of pair-wise preference inversions

as a distance to be minimized between the selected ranking and the other individual

profiles, the two approaches are perfectly equivalent. Formal proofs of this equivalence can

be found in Truchon (1998, pp. 6–10) and Saari and Merlin (2000). The selected ranking is

also a median ranking for those composing the profile (in multi-criteria terminology it is

the ‘‘compromise ranking’’ among the various conflicting points of view), for this reason

the corresponding ranking procedure is often known as the Kemeny median order.

The maximum likelihood ranking of alternatives, in a composite indicator framework, is

the ranking supported by the maximum number of indicators for each pair-wise compar-

ison, summed over all pairs of objects. By applying the C-K-Y-L ranking procedure to the

7 However, one should note that this voting rule is normally referred in the literature as the Kemeny’s
method or Kemeny’s rule.
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numerical example of Table 1, the following 6 possible rankings with the corresponding

total values are obtained (where e.g., the value 104 is obtained by summing the elements of

the outranking matrix showed in Table 3, bc = 42, ba = 27, ca = 35).

The ranking b ? c ? a is the final result. The original Condorcet problem has been

solved in a satisfactory way.

Condorcet made 3 basic assumptions:

(1) Voters’ opinions do not influence each other.

(2) The voters all have the same competence, i.e., each voter chooses his/her best

candidate with a fixed probability p, where 1=2 \ p \ 1 and p is the same for all

voters.

(3) Each voter’s judgement on any pair of candidates is independent on his/her

judgement on any other pair.

Assumption 1 always applies in a composite indicator framework, since indicators are

supposed to be non-redundant. Assumption 2 might be a serious limitation in our case,

since it is assumed that indicator weights are different, while assumption 2 would imply

equal indicator weighting. In social choice terms then the anonymity property (i.e., equal

treatment of all voters) is broken. Indeed, given that full decisiveness yields to dictatorship,

Arrow’s impossibility theorem forces us to make a trade-off between decisiveness (an

object (alternative) has to be chosen or a ranking has to be made) and e.g., anonymity. As a

consequence, the loss of anonymity in favour of decisiveness in our case is even a positive

property.8 In general, it is essential that no indicator weight is more than 50% of the total

weights; otherwise the aggregation procedure would become lexicographic in nature,

where this indicator would become a dictator in Arrow’s term.

The third assumption refers to the axiom of independence of irrelevant alternatives. Of

course the C-K-Y-L ranking procedure does not respect this axiom. However, two con-

siderations have to be made on this subject.

(1) A Condorcet consistent rule always presents smaller probabilities of the occurrence of

a rank reversal in comparison with any Borda consistent rule (Moulin 1988; Young

1995). This is again a strong argument in favour of a Condorcet’s approach in a

composite indicator framework.

(2) Young (1988, p. 1241) claims that the C-K-Y-L ranking procedure is the ‘‘only
plausible ranking procedure that is locally stable’’. Where local stability means that

the ranking of objects does not change if only an interval of the full ranking is

a b c 100

b c a 104

c a b 86

b a c 94

c b a 80

a c b 76

8 One should note that in general the opportunity cost for decisiveness is the loss of one of the basic
requirements of a social choice rule, i.e. anonymity, neutrality or monotonicity. Saari (2006) defence of the
Borda rule is based on the fact that it is less dangerous, or even sometimes desirable, to eliminate neutrality
and if one eliminates neutrality, then only a Borda rule can be adopted. But, if one wishes to keep neutrality
and eliminate anonymity, then a Condorcet voting rule is appropriate.
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considered. It is interesting to note that this property was also studied by Jacquet-

Lagrèze (1969), one of the first researchers in multi-criteria analysis, who called it the

median procedure.

Personally, I think that if the final ranking is dependent on the objects considered, this is

a desirable property; given of course that the ranking procedure is neutral.
Saari and Merlin (2000) explicitly state that the C-K-Y-L ranking procedure (cited by

them as the Kemeny’s rule) enjoys ‘‘remarkable properties’’; one of these being ‘‘con-
sistency in societal rankings when candidates are dropped …. To underscore this kemeny’s
rule property, recall how dropping candidates can cause the Borda count societal ranking
to radically change … The unexpected, troubling fact is that Kemeny’s rule achieves its
consistency by weakening the crucial assumption about the individual rationality of the
voters’’ (Saari and Merlin 2000, p. 404). Thus they conclude that ‘‘The Kemeny’s rule
structure and the consistency of the Kemeny’s rule words are impressive; the reasons why
they occur are worrisome’’ (Saari and Merlin 2000, p. 431).

Indeed the argument given by Saari and Merlin against the C-K-Y-L ranking procedure

is a serious one. Let’s then investigate it more deeply.

First of all, let’s understand what is meant by individual rationality. In Saari’s words

(Saari, 2000, p. 35) ‘‘Transitivity is a sequencing condition which requires the pair-wise
rankings to mimic the ordering properties of points on the line. For instance, if a voter
prefers X to Y and Y to Z, then the voter must prefer X to Z. A voter with transitive
preferences is called rational; a voter with non-transitive preferences is called irrational’’.

The underlying assumption of this definition is the identification of human rationality

with consistency, and this can be criticized from many points of view.9 In particular, in

Sect. 2 we noted that a down-to-earth preference modelling should imply the use of

indifference and preference thresholds; this implies exactly the loss of the transitivity

property of at least the indifference relation. Surprisingly enough, we can conclude that an

appropriate preference modelling should be based on the ‘‘weakening the crucial
assumption about the individual rationality’’ and this is highly desirable! Moreover, one

has to have clear why a C-K-Y-L ranking procedure is needed; it answers to a precise

problem of the original Condorcet proposal, i.e., the issue of cycles. It is then clear that we

have to evaluate this procedure in the framework of the cycle issue. As we know, cycles are

originated exactly by the transitivity of the preference relations thus it is clear that any

attempt to solve cycles has to weaken this property. The point is to do this by the less

arbitrariness as possible, and this is exactly what the C-K-Y-L ranking procedure does.

Concluding, we can state that if

(1) one accepts high probabilities of the occurrence of a rank reversal,

(2) transitivity of preference and indifference relations is considered essential, and

(3) neutrality can be abandoned,

9 Simon (1983) notes that humans have at their disposal neither the facts nor the consistent structure of
values nor the reasoning power needed to apply the principles of utility theory. In microeconomics, where
the assumption that an economic agent is always a utility maximize is a fundamental one, it is generally
admitted that this behavioural assumption has a predictive meaning and not a descriptive one (see Friedman
1953 for the most forceful defence of this non-descriptive meaning of the axioms of ordinal utility theory). A
corroboration of this criticism in the framework of social choice can be found in Kelsey (1986), where it is
stated that because of social choice problems, an individual with multiple objectives may find it impossible
to construct a transitive ordering. Recent analyses of the concept of rational agent can also be found in
Bykvist (2010) and Sugden (2010).
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then to use a Borda rule is simply the only option left. Otherwise, if one wishes to adopt a

Condorcet based approach (and then to keep neutrality and to have much less rank reversal

phenomena), the only acceptable rule to break cycles is the C-K-Y-L ranking procedure.

The price to pay is of course the loss of the ‘‘rationality assumption’’. Whether this is an

acceptable price or not, it depends on the framework of application. Maybe in voting

theory, it is a high price, but in the framework of composite indicators and multi-criteria

decision analysis, it is definitely an acceptable price or even, under certain conditions, a

desirable property.

Other properties of the C-K-Y-L ranking procedure are the following (Young and

Levenglick 1978).

• Neutrality: it does not depend on the name of any object, all objects are equally treated.

• Unanimity (sometimes called Pareto Optimality): if all indicators prefer object a to

objecte b than b should not be chosen.

• Monotonicity: if object a is chosen in any pair-wise comparison and only the indicator

scores of a are improved, then a should be still the winning object. Monotonicity is an

essential property when dominated objects are not advised to be deleted from the

analysis.

• Reinforcement: if the set A of objects is ranked by 2 subsets G1 and G2 of the indicator

set G, such that the ranking is the same for both G1 and G2, then G1 [G2 ¼ G should

still supply the same ranking. This general consistency requirement is very important in

a composite indicator framework where one may wish to apply the indicators belonging

to each single dimension first and then pool them in the general model.

As a conclusion, let’s examine the example of Table 5, with three objects and three

indicators (this is the classical example of Condorcet paradox shown in many textbooks).

By applying the Borda rule, all objects receive a score equal to 3, no selection is

possible. By applying the Condorcet rule, being majority equal to 2/3, the cycle aPb,
bPc and cPa is obtained. By applying the C-K-Y-L ranking procedure, three rankings have

the biggest support. These are: a! b! c; b! c! a; c! a! b the cycle remains

unsolved.

This example is a perfect materialization of Arrow’s theorem; no decisiveness is pos-

sible! To eliminate ties, there is a need for a larger number of indicators or for some

indicator weights. This is the reason why I defend, when it is meaningful, the use of

indicator weights. Anonymity is lost but decisiveness improves enormously.

5 Arrow-Raynaud’s Ranking Procedure

Arrow and Raynaud (1986) developed an original procedure explicitly designed to solve

the discrete mathematical aggregation problem. Such a procedure is based on a set of

Table 5 Example of an unsolv-
able ranking problem

Number of
indicators

1 1 1

a c b

b a c

c b a
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axioms mainly built on previous research done by Köhler (1978). These axioms can be

synthesized as follows:

(1) Objects are ranked through a step-by-step process.

(2) At each step the information used refers only to objects (alternatives) not yet ranked.

(3) The axiom of independence of irrelevant alternatives must apply. No preference

reversal is possible. In this framework, it is called ‘‘prudence’’ axiom by Arrow and

Raynaud (1986, p. 95).

Clearly the prudence axiom discards both scoring methods and Condorcet consistent

rules, thus Arrow and Raynaud proposed a new ranking algorithm. If no cycles exist, the

ranking algorithm is the following. Given an outranking matrix, ‘‘Step r: Identify the
maximum aij along each row of the current matrix. One at least from among these maxima
is smaller than the others. If there are ties, one from among them is chosen arbitrarily. The
row of this minimum corresponds to an alternative that will be ranked at the (n - r ? 1)th
rank in the multicriterion ranking. If r \ n, delete the corresponding row and column of
the outranking matrix, in order to obtain the current outranking matrix for the (r ? 1)th
step. The algorithm stops when the outranking matrix becomes void.’’ (Arrow and Raynaud

1986, p. 105).

To make the exposition clearer, let’s develop a numerical example starting with the

outranking matrix presented in Table 6.

For each row (starting from the first to the fifth) the maxima are: 2.5, 4, 2.5, 4, 4. Since

there is a tie, the first row can be chosen arbitrarily and object a is put in the last position of

the ranking. The next one is obviously object c. At this stage the new outranking matrix is

the one showed in Table 7.

Now the corresponding maxima are 1.5, 3.5 and 3.5. The object to be chosen is

b unambiguously. After having eliminated b, the only remaining comparison to be made is

between d and e. Obviously d is in the first position and e in the second one. In conclusion,

by applying Arrow and Raynaud algorithm two rankings are possible: d ! e! b!
c! a and d ! e! b! a! c.

If the Arrow-Raynaud’s algorithm is applied to the original Condorcet numerical

example, one may easily realize that the ranking obtained is b! c! a which is the same

obtained through the application of the C-K-Y-L procedure but the computation time is

much less. Now a question arises why not to use the Arrow-Raynaud’s procedure if even

cycles sometimes can be solved so efficiently? To answer this question let’s look at another

numerical example.

Table 8 presents a numerical example of an outranking matrix with 4 objects and three

indicators.

By considering the 4! Possible rankings, the C-K-Y-L procedure gives a clear cut

solution: the final ranking is a ? c ? b ? d. One has to note, however, that this clear cut

Table 6 Outranking matrix for
the Arrow-Raynaud algorithm

a b c d e
a 0 1:5 2:5 1 1

b 3:5 0 4 1:5 1:5
c 2:5 1 0 1 1

d 4 3:5 4 0 3

e 4 3:5 4 2 0

2

6
6
6
6
6
6
4

3

7
7
7
7
7
7
5
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solution presents an analytical cost, i.e., the loss of a feasible ranking. In fact as noted by

Arrow and Raynaud (1986, p. 110): ‘‘Rows 1 and 3 on one hand and 2 and 4 on the other
hand are identical up to a permutation of their coefficients. Hence, in both cases, there
should be a tie in the choice of a first element, and kemeny’s method should have given at
least two solutions’’.

On the other side, Arrow and Raynaud do not mention that, in this case, their procedure

cannot supply any robust ranking at all given the presence of so many ties. Unfortunately,

ties are very common when cycles are present. This, in my opinion, diminishes the

applicability of Arrow-Raynaud’s algorithm significantly.

6 Conclusion

The following conclusions can be drawn. Scoring methods present the advantage of always

selecting one final solution thus their degree of decisiveness is very high. However, one has

to accept that a scoring method always implies to transform (arbitrarily) an original ordinal

scale of measurement into a quantitative one, and this implies to always have a com-

pensatory aggregation rule. Compensability, which is based on the concept of intensity of

preference, causes a high probability of preference reversal phenomena. Weights should

always be in the form of trade-offs. Monotonicity sometimes is lost and neutrality can be

relaxed. A strong argument in favour of a Borda scoring rule is that transitivity of the

preference relation is never weakened, thus the assumption of individual rationality always

applies.

Condorcet consistent rules are adequate for finding rankings of objects. They present a

lower probability of rank reversal than any scoring method. They are not compensatory

thus weights can be treated as importance coefficients. A weak point is the high probability

of presence of cycles; their solution normally implies ad hoc rules of thumb. By means of

the C-K-Y-L approach cycles can be tackled in a general way with no arbitrariness.

Reinforcement is always respected by this ranking procedure. The independence of

irrelevant alternatives axiom is not fulfilled but the C-K-Y-L rule. This rule is anyway

much more stable than any Borda count; however, the cost of this stability is the weak-

ening of the individual rationality assumption (this loss of the transitivity assumption might

seem a wild approach if considered by a purely social choice theoretical point of view,

Table 7 Outranking matrix after
deleting objects a and c

b d e
b 0 1:5 1:5
d 3:5 0 3

e 3:5 2 0

2

6
6
4

3

7
7
5

Table 8 Outranking matrix for a
3 indicators and 4 objects
problem

a b c d
a 0 2 2 1

b 1 0 1 2

c 1 2 0 2

d 2 1 1 0

2

6
6
6
6
4

3

7
7
7
7
5
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however, it can be justified on the light of empirical grounds, as shown for example by

Luce and Simon). Moreover sometimes feasible rankings are lost. Neutrality cannot be

relaxed, but anonymity can; this increases decisiveness a lot.

Arrow-Raynaud’s method is the only ranking procedure respecting the independence of

irrelevant alternatives axiom fully; no preference reversal can exist. It is useful for gen-

erating ranking. It is not compensatory. However, it does not respect reinforcement that as

noted by Arrow and Raynaud themselves, it is a very important characteristic when social

decisions have to be made.10 As a consequence Arrow-Raynaud method can be considered

more useful in the framework of private business decisions while the C-K-Y-L ranking

procedure is more adequate in a social context (Munda 2004, 2008). When cycles are

present, by using the Arrow-Raynaud approach, often no clear cut solution can be found.

In the framework of composite indicators, sometimes compensability should be limited

and rankings should be supplied; furthermore, transitivity relation can be weakened and

neutrality should in principle always be kept. Scoring methods are then, sometimes less

adequate than Condorcet based approaches to rank feasible objects. Since reinforcement is

very important in a social context and since cycles are very likely to occur, Arrow-

Raynaud’s method looks slightly worse than the C-K-Y-L ranking procedure.

Table 9 Properties identifying various aggregation rules

Scoring methods Original
condorcet

Arrow-
raynaud

C-K-Y-L

Decisiveness High Low Medium High

Neutrality Can be relaxed Present Present Present

Anonymity Can be relaxed Can be
relaxed

Can be
relaxed

Can be
relaxed

Monotonicity Absent in the case
of successive
elimination
algorithms.
Present
otherwise

Present Present Present

Reinforcement Absent Absent Absent Present

Transitivity of preference
relation

Present Present Present Absent

Probability of preference
reversal

High Low Zero Low

Probability of generating cycles Zero High Medium Zero

Independence of irrelevant
alternatives

Absent Absent Present Absent

Compensability High Low Low Low

Meaning of weights Trade-offs Importance Importance Importance

Computation complexity Low Medium Low High

10 Arrow and Raynaud (1986, pp. 95–96) took into consideration the paper by Young and Levenglick
(1978), but they arrive at the conclusion that reinforcement ‘‘… has definite ethical content and is therefore
relevant to welfare economics and political science. But here our aim is operations research, of use to
businessmen. We are unable to see why the ‘‘consistency’’ criterion has any compelling justification when
efficiency is the prime consideration.’’ (Arrow and Raynaud 1986, p. 96).
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However, an important problem to be solved is the computation of the C-K-Y-L ranking

scores when many objects are present. One should note that the number of permutations

can easily become unmanageable; for example when 10 objects are present, it is

10! = 3,628,800. Moulin (1988, p. 312) clearly states that the Kemeny method (that I call

the C-K-Y-L approach) is ‘‘the correct method’’ for ranking objects, and that the ‘‘only
drawback of this aggregation method is the difficulty in computing it when the number of
candidates grows’’. Indeed this computational drawback is very serious since the Kemeny

median order is NP-hard to compute.11 This NP-hardness has discouraged the development

of algorithms searching for exact solutions; thus the majority of algorithms useful in the

framework of composite indicators are heuristics based on artificial intelligence, branch

and bound approaches and multi-stage techniques (see e.g., Barthelemy et al. 1989; Charon

et al. 1997; Cohen et al. 1999; Davenport and Kalagnanam 2004; Dwork et al. 2001;

Truchon 1998).

The discussion on the relative pros and cons of the various aggregation rules, described

in this article, is summarised in Table 9, where such aggregation rules are evaluated

according to the formal properties identifying them.
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Poincaré, H. (1935). La valeur de la science. Paris: Flammarion.
Ray, P. (1973). Independence of irrelevant alternatives. Econometrica, 41(5), 987–991.
Roberts, F. S. (1979). Measurement theory with applications to decision making, utility and the social

sciences. London: Addison-Wesley.
Roubens, M., & Vincke, Ph. (1985). Preference modelling. Heidelberg: Springer.
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