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The paper presents a numerical analytic solution for the calculation of settlement and long-term bearing 
capacity of a circular foundation on an elastic–viscoplastic base. The work is a development of the previously 
obtained solution [1] in the elastic–plastic formulation. The Kelvin–Voigt model was used to calculate the volume 
component of deformation. For the deviatoric component the А. Z. Ter-Martirosyan model was used.

Introduction
The current Russian standards do not provide clear guidelines, based on appropriate formula for taking 

into account the rheological properties that are inherent in most types of dispersed soil. In design practice, 
rheological properties often remain outside the main research program. Nevertheless, consideration of rhe-
ological behavior is important, otherwise it could be necessary to carry out additional special tests, calcu-
lations, and modifications in the subsequent stages of the foundation design procedure. 

The development and improvement of the existing methods of foundations calculation taking into ac-
count the rheological behavior of soils, as well as new model solutions for soil deformation under a long-
term load, are in the mainstream of modern soil mechanics.

This paper deals with the numerical analytic solution for calculation of settlement and long-term bear-
ing capacity of a circular foundation on an elastic–viscoplastic base. The work is a development of the solu-
tion [1] obtained previously in the range of elastic–plastic approaches.

Methods
When considering the stress–strain behavior of a circular foundation on a semi-infinite elastic medi-

um, the relationships obtained by integration of Boussinesq expressions [2] were used:
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where σz, σr, σt and σm are vertical, radial, tangential, and medium stresses respectively; p0 is the distrib-
uted load; z is the vertical coordinate along the foundation axis (depth); r is the foundation radius; and v is 
the coefficient of lateral soil expansion.

We could use Eqs. (1)–(3), as the stress states of elastic and viscoelastic soil foundations are identi-
cal [3–5]. The identity of the stress state of media in accordance with the theory of elasticity and of the 
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Boltzmann–Volterra hereditary theory, when Poisson’s coefficient is constant, was proved by Arutyu-
nyan [5, 6]. 

Note that such an identity may not be provided for the case of nonlinearity. Studying the possible in-
fluence of this aspect is a promising task for future investigations. 

To describe the viscoelastic behavior of soils, the system of Hencky’s physical equations was used [7, 8]:
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where ,  ,  ,  ,  ,  x y z x y zε ε ε σ σ σ    are the linear components of strain rate and normal stresses for x, y, and z axes 
respectively; ,  ,  ,  ,  , xy yz z yy xy yz zτ τγ τγ γ   are the shear strain rates and shear stresses for directions xy, yz, and zy 
respectively; *, χ χ  are the deviatoric and volumetric strain components respectively, defined as:
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where mε is the medium linear strain rate, iγ  is the shear strain intensity rate, μσ is the Nadai–Lode factor, 
t is time, and τi is the shear stress intensity:
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The Kelvin–Voigt model was chosen for the volumetric strains [8]:
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where K and ηv are the volumetric deformation modulus  and soil viscosity respectively.
The expression for volumetric strain and its rate is written in the form [8]:
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From Eq. (5) we obtain:
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The model for the shear component of deformation should describe the creep behavior under long-
term shear stresses, as observed from the experimental results obtained by S. S. Vyalov, G. I. Ter-Stepanyan, 
S. R. Meschyan, N. M. Maslov, and others (Fig. 1) . The model should describe all stages of the deformation: 
steady creep, steady flow, and progressive failure.

It should be noted that the progressive creep model overestimates the deformations under the tangen-
tial stresses less than −0.5τs, where τs is the limit value of shear stresses under short-term loading (Fig. 1).

The model of A. Z. Ter-Martirosyan [3] meets the conditions mentioned above:
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where ( )mγ σ is the shear strain rate; ηγ(σm) is the shear soil viscosity; τ is shear stress; τ* is the limit value 
of shear stresses; α, β, a, and b are the hardening (softening) parameters of clayey soil determined by the 
results of the kinematic shear test.
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The shear stress  should be greater than τ*, otherwise the shear strain rate is zero. Determination of τ* 
can be carried out according to the method [9]; it is also possible following [10] as the first approximation:

				    * ,tanm ccτ σ ϕ= +  	 (12)

where φ is the internal friction angle and cc is the structural cohesion.
According to N. N. Maslov’s classification [10], the structural cohesion is inherent in “rigid” and “hid-

den plastic” clayey soils. For soils of liquid consistency cc = 0 in most cases. It should be noted that accord-
ing to recent studies [11], the influence of the viscous cohesion (part of the cohesion occurring at kinemat-
ic shear) should be additionally considered. 

To use Eq. (11) in the system of Hencky’s equations, the equivalent of the shear stresses’ limit value τ* 
in the principal stresses should be subtracted from σ1 – σ3:
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Then the expression for the rate parameter of the deviatoric component of deformation could be ex-

pressed as:
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The velocity of the vertical component of deformation could be written as follows:
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The results obtained by integrating Eq. (15), however, do not fully reflect the behavior of the founda-
tion, as the limit state is completely determined by the magnitude of shear strain at the point with the max-
imum ( )2 tan3z m m ccσ σ σ ϕ− − + . In reality, the shear strains at this point are limited by the passive earth 
pressure (Fig. 2).

To determine the value of + in the first approximation, this paper proposes to introduce a special func-
tion into (15):
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where λ is the lateral pressure coefficient (in the first approximation it can be taken as equal to the passive 
pressure coefficient); γ is the unit weight of the soil.
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Fig. 1. 	 Creep curves for the plastic clays under different shear stresses (chosen 
	 as a proportion of their limit value under short-term loading) [8].
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The following function can be obtained by solving the Lame problem according to the known method 
[12]:
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where v is Poisson’s ratio; E is the deformation modulus;  
0 ( )b sp h zλ γ= + is the horizontal pressure outside 

the foundation influence zone; λ0 is the lateral soil pressure coefficient at rest; k is the coefficient, which 
can be assumed to be 6; and r is the foundation radius.

Thus, the expression for the vertical component of the strain rate is as follows:
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The solution for εz(t) can be obtained by numerical integration in Mathcad. The foundation settlement 
can be determined by layer-by-layer summation within the depth of the compressible layer hs.

In the present work, a series of calculations was performed using the parameters: ηγ = 1.157×105 kPa.

days, K = 3500 kPa, γ = 18 kN/m3, φ = 10⸰, сс = 10 kPa, ηʋ = 2.187×106 kPa.days, а = 15, b = 60, α = 280, and β = 45. 
The calculation results for a 10-m diameter foundation at a depth of 1 m are shown in Figs. 3a and b. 
For a constant value of the distributed load when the foundation diameter increases, a sharper increase 

in settlement at the initial section with time and a longer period before the onset of the failure stage owing 
to the increase in medium stresses are observed (Fig. 3c).

The obtained shape of the plots (excluding the plots describing the limit state) is consistent with the 
observed settlement curves for the buildings in St. Petersburg [13].

Fig. 2. 	 Calculation diagram demonstrating the effect of 
	 the surrounding soil rebound on the strains.
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Conclusions
The obtained solution allows the behavior of a circular foundation under vertical load to be described, 

taking into account the rheological properties of the foundation soil. Depending on the magnitude of the 
applied load, the solution can describe decaying, steady, and progressive settlement.

The decaying settlement can be described by taking into account the growth of radial stresses as the 
axial shear strain increases.

When the foundation diameter increases during a constant distributed load, the solution shows a sharp 
increase in settlement in the initial part of the settlement-time graph, as well as an increase in the long-
term bearing capacity due to an increase in the medium stresses.

The accuracy of the solution directly depends on the adopted mechanical parameters of rheological 
models. It is necessary to develop a methodology for determining these parameters based on the results of 
laboratory tests of soils.
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Fig. 3. 	 Plots of settlement as a function of time: a) diameter d = 10 m, pressure P = 400 kPa (1 is the 
	 volumetric settlement component, 2 is the shear settlement component, and 3 is the total settlement); 
	 b) d = 10 m, P = 100 kPa (1), P = 200 kPa (2), P = 300 kPa (3), and P = 400 kPa (4); c) P = 400 kPa, 
	 d = 1 m (1), d = 5 m (2), d = 10 m (3), d = 15 m (4), and d = 25 m (5).
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