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Pseudo-static methods are commonly employed to analyze slope stability in seismic design, but these methods 
neglect ground acceleration characteristics (i.e., frequency and duration). In this paper, a pseudo-dynamic method, 
combined with a kinematic limit analysis method, was developed to calculate the translational seismic stability of 
slopes with a weak layer, based on the two-part wedge failure mechanism. The proposed method was validated 
against results from different limit equilibrium methods. Parametric analyses were also conducted to investigate 
the effects of loading time, frequency, vertical acceleration, slope geometry, and soil strength on slope stabilities.

Introduction
Translational failure is usually the dominant failure-mode for landfills with leachate collection systems 

or slopes with weak layers. Limit equilibrium methods are commonly employed to evaluate slope stability. 
Qian et al. [1] developed a two-part wedge method to calculate safety factors with respect to the issue of 
translational failure analyses of waste masses on clay soil. Qian and Koerner [2] modified this original two-
part wedge method to consider the effects of cohesion on slope stabilities and found that safety factors were 
substantially influenced by the apparent cohesion for cases with a lower friction angle. Eid et al. [3] calculat-
ed stability factors for slopes susceptible to a translational failure and concluded that the two-dimensional 
limit equilibrium method could underestimates slope stabilities. Zhou and Cheng [4] developed a rigorous 
limit equilibrium method to analyze the stability of three-dimensional slopes. 

Since the velocity field associated with an upper bound solution is compatible with the imposed dis-
placements, limit analysis methods are more rigorous than the previous limit equilibrium methods. Assum-
ing a multiple wedge failure mechanism, Donald and Chen [5] compared the safety factors calculated from 
their proposed method with those from limit equilibrium methods and concluded that the limit analysis 
method could accurately predict the failure mechanism and safety factors of slopes. Viratjandr and Mich-
alowski [6] analyzed the stability of slopes subjected to water drawdown using the kinematic approach of 
limit analysis. Huang et al. [7] proposed a rotational-translational failure mechanism for slopes with a weak 
layer and compared their calculated results with those from limit equilibrium methods. Xu et al. [8] ana-
lyzed the effects of backfill strength on rotational stability of reinforced soil walls. 

Pseudo-static methods are usually employed to analyze the stability of slopes under seismic loading, 
such as an earthquake, where the seismic force is assumed to be a static force with a constant value [9]. This 
method doesn’t, however, consider the effects of ground motion frequency and duration [10]. In this paper, 
a pseudo-dynamic method, combined with a kinematic limit analysis method, is proposed to calculate the 
translational seismic stability of slopes with a weak layer. The accuracy of the method is demonstrated by 
comparing the predicted results with those from different limit equilibrium methods. Parametric analyses 
are also conducted to study the influences of ground acceleration, soil strength, and slope geometry on the 
stability of slopes.
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Methodology
Assumptions
Sliding failures usually occur along with a weak layer within a slope [1] as shown schematically in the 

cross-sections in Fig. 1. The bilinear line A-B-C and the quadrilateral A-B-C-H represent a weak layer and 
a sliding zone, respectively. To implement the method proposed in this paper, the following assumptions 
are made: 

(1) plane strain analysis is employed for the two-dimensional model in Fig. 1,
(2) the failure line A-B-C is defined by θ1 and θ2, denoting the inclination angles of AB and BC, respec-

tively, and θ3 is the inclination angle of HC,
(3) a two-part wedge failure mechanism is assumed. The whole sliding zone is divided into an upper 

and lower wedge by line BD, which is an internal potential failure line,
(4) the slope is subjected to harmonic horizontal and vertical base accelerations with amplitudes of kh 

and kv, respectively. The horizontal and vertical seismic coefficients, kh (z, t) and kv (z, t) acting at elevation 
z and time t are expressed as [10]:
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Fig. 1. Sliding failure mechanisms: a) slope models, b) mechanical models,
 c) kinematically admissible velocity fields.
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where h = hAB + hBC is the slope height; fh and fv are the horizontal and vertical acceleration amplification fac-
tors, respectively; ωh and ωv are the horizontal and vertical acceleration angular frequencies, respectively, 
ωh = 2π/Th and ωv = 2π/Tv (Th and Tv are  the horizontal and the vertical acceleration periods); zj (j = 1, 2, 3) is 
the propagation distance in zone AECB, the weak layer, and the sliding zone, respectively; and vp-j and vs-j 
(j = 1, 2, 3) are the primary and shear wave velocities in zone AECB, the weak layer, and the sliding zone, re-
spectively, which can be expressed as:
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where υj, ρj, Ej, and Gj (j =1, 2, 3) are the Poisson’s ratio, density, elastic modulus, and shear modulus, re-
spectively.

Since sliding failures are usually caused by the positive horizontal coefficients as shown in Fig. 1b, 
kh (z, t) in Eq. (1) cannot be a negative value. Thus, only a half-cycle of Eq. (1) is considered.

The safety factor F is defined as:
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where cj and φj (j =1, 2, 3) are the drained cohesion and friction angle along failure lines AB, BC, and BD, re-
spectively; and cj-m and φj-m (j =1, 2, 3) are the reduced drained cohesion and friction angle required to main-
tain an energy balance for an admissible mechanism along failure lines, respectively.

Analysis
According to the kinematic upper bound theorem of limit analysis, a geotechnical structure will collapse 

if the rate of external work, WE, from external loads and body forces exceeds the energy dissipation rate, DI, 
of soil along failure lines for any kinematically admissible failure mechanism [8]. This can be expressed as:

     WE < DI.      (5)

The admissible sliding mechanism assumed in this study is shown in Fig. 1c, where the lower wedge and 
the upper wedge move as a rigid body. The velocities v1, v2, and v3 are inclined to the failure lines at angles 
α1, α2, and α3, respectively. In addition, according to the associated flow rule, α1, α2, and α3 are also the fric-
tion angles along failure lines AB, BC, and BD, respectively.

The magnitudes of the velocities v2 and v3 can be expressed as a function of v1 as:

     1 2 1 2 1
3

2 3

sin( )
,

sin( )
v

v
θ θ α α
β α α
− + −

=
− −

  (6a)

     1 1 2 1 3
2

2 3

sin( )
.

sin( )
v

v
π θ β θ α α

β α α
+ − − + +

=
− −

  (6b)



82

The external work rate, WE, can be expressed as:

   WE = Wu-i + Wu-g + Wl-i + Wl-g,                      (7)

where Wu-i and Wu-g are the external work rates of the upper wedge induced by ground accelerations and its 
weight, respectively; and Wl-i and Wl-g are the external work rates of the lower wedge induced by ground ac-
celerations and its weight, respectively.

The external work rates Wl-g and Wl-i can be calculated as follows:

   
2 2 1 2 2 2 1 2sin( ) sin( ),l gW S v G vγ θ α θ α− = − = −    (8)

   2 2 1 2 2 2 1 2( , ) cos( ) ( , ) sin( ),l i l h M l v MW k z t G v k z t G vθ α θ α− − −= − − −    (9)

where γ is the unit weight of the sliding body; S2 is the area of the lower wedge; and kl-h(zM, t) and kl-v (zM, t) 
are the horizontal and vertical coefficients acting at the centroid of the lower wedge, M, respectively. 

Similarly, for the upper wedge, Wu-i and Wu-g can be calculated with:

   1 1 2 1 1 1 2 1sin( ) sin( ),u gW S v G vγ θ α θ α− = − = −     (10)

   1 1 2 1 1 1 2 1( , ) cos( ) ( , ) sin( ),u i u h N u v NW k z t G v k z t G vθ α θ α− − −= − − −   (11)

where S1 is the area of the upper wedge; ku-h (zN, t) and ku-v (zN, t) are the horizontal and vertical coefficients 
acting at the centroid of the upper wedge, N, respectively. 

The centroidal coordinates of the upper and lower wedges in a rectangular coordinate system can be 
determined as follows:
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where zB, zC, zD, zM, and zN are z-axis coordinates of points B, C, D, M, and N, respectively. Once zM and zN are 
determined, the horizontal and vertical seismic coefficients acting at the centroids of the upper and lower 
wedges can be obtained with Eqs. (1a) and (1b), respectively.

The energy dissipation rate, DI, for the slope model in Fig. 1 is expressed as
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where lj is the length of the failure planes.
Substituting Eqs. (7) and (14) into Eq. (5), the safety factor F at time t, can be calculated:

     F = F(β, t).        (15)

The minimum safety factor is defined as Fmin under the conditions of 0 ≤ β ≤ θ4 and 0 ≤ t ≤ T/2.

Validation of the Proposed Method
When kh (z, t) and kv (z, t) equal kh and kv in Eqs. (1a) and (1b), the method developed here reduces to a 

pseudo-static method. Assuming a two-wedge mechanism, Qian et al. [1] proposed a limit equilibrium meth-
od to analyze the translational stability of landfills. In this section, a comparison was made for the case of 
a landfill with kh = 0.3, kv =0, γ = 10.2 kN/m3, θ1 = 1.1o, θ2 = 18.4o, θ3 = 0o, α1 = α2 = 17o, α3 = 33o, hBC = 30 m, and 
lHC = 20 m. Values of minimum safety factors, Fmin from the above two methods and Morgenstern and Price 
method are shown in Fig. 2.
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As shown in Fig. 2, Fmin values calculated from these three methods all increase with α1, and the results 
from the proposed method lie between the results from Morgenstern and Price method and Qian et al. [1]. 
This proposed method is thus in good agreement with existing methods.

Parametric Analysis
In this section, parametric analyses are performed to investigate the influences of ground accelera-

tion, slope geometry, and soil strength on the safety factors at time t, F, and the minimum safety factors 
during periods, Fmin, with the following control values: θ1 = 18o, θ2 = 42o, θ3 = 0o, lAB = 9 m, lBC = 6 m, lHC  = 1 m, kh 
= 0.3, kv = 0, fa = 1.3, ρ = 22 kg/m3, c1 = c2= 8 kPa, φ1 = φ2 = 25°, φ3 = 40°, vs-1 = 301 m/s, vs-2 = 30 m/s, vs-3 = 95 m/s,  
vp-1 = 564 m/s, vp-2 = 77 m/s, vp-3 = 167 m/s, and T = Th = Tv = 1s. 

Ground acceleration
Figure 3a shows the predicted values of F as a function of t for various values of fa, T, and kh, calculated us-

ing the proposed method and Morgenstern and Price method. The values of F predicted from the pseudo-static 
method are independent of time. In contrast, since the seismic coefficients are functions of time, F values calcu-
lated from the proposed method initially decrease to a minimum value but then increase with t. Furthermore, 
when the period, T, increases from 1 s to 2 s, the shape of the curve of predicted F changes, but the mini-
mum value of F stays constant. Although the values of F from the proposed method are different depending 
on the input variables, the minimum value for all cases was obtained at t =T/4.Results in Fig. 3a also indi-
cate that the influence of kh on F is more significant than that of fa. 

Figure 3b shows the minimum safety factor, Fmin, as a function of kh for different values of kv. Similar to 
the results in Fig. 3a, the predicted values of Fmin from the proposed method decrease nonlinearly with kh. 
The values of Fmin increase with kv when kh is smaller than 0.3. However, a larger vertical ground accelera-
tion coefficient, kv could decrease the stability of slopes when kh is greater than 0.3. In addition, the results 
also indicate that the influence of kv on Fmin is more significant when kh is smaller.

Failure line geometry
To describe the geometry of the sliding line A-B-C in Fig. 4, parameters λ and κ are defined as:
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Fig. 2.  Predicted Fmin using different methods.
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Figure 4a shows variations of Fmin with λ given different values of κ. Results show that, overall, Fmin varies 
non-uniformly with λ. Fmin initially decreases to a minimum value, and then increases with larger λ, particu-
larly for the cases in which κ = 0.31 and 0.41. This can be attributed to the fact that since the area of the siding 
body ABCH increases with λ when κ is constant, the stability decreases with λ. However, the inclination of 
AB decreases with λ, which could increase the stability of the slope. The results in Fig. 4 also indicate that 
the influence of λ on Fmin is more significant when κ is smaller. 

Figure 4b shows the influence of the top length of the sliding body, lHC,, on Fmin with different values of 
failure surface strength. Results show that Fmin decreases non-linearly with lHC, particularly if the failure sur-
face strength is small. Additionally, the predicted values of Fmin from the proposed method increase with 
c and φ. Results in Fig. 5 also show that increasing φ is more effective to increase slope stability, especial-
ly if lHC is larger.

Conclusions
A pseudo-dynamic method, combined with a kinematic limit analysis method, has been proposed for 

the analysis of the translational seismic stability of slopes. The safety factors predicted from the proposed 
method are in good agreement with results from the Morgenstern and Price method and two-part wedge 
method. The following conclusions regarding the proposed method are drawn from this study:

Fig. 3.  Predicted F and Fmin: a) variation of F with fa, kh, and T; b) variation of Fmin with kh.

a b

Fig. 4. Variations: a) of Fmin with λ and b) of F with lHC.

a b
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1. Safety factors, F, predicted from the proposed method are not constant values but vary with time. 
The influence of horizontal acceleration coefficient magnitude on F is more significant as compared with 
the vertical acceleration amplification.

2. If the magnitude of the horizontal base acceleration coefficient magnitude, kh, is less than 0.3, the 
minimum safety factor of slopes, Fmin, increases with the vertical base acceleration coefficient magnitude, 
kv. However, a larger vertical acceleration coefficient may reduce the slope stability if kh is greater than 0.3.

3. Values of Fmin calculated from the proposed method increase substantially if the potential failure sur-
face is close to the sliding body surface. 
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