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To combine the advantages of the Mohr-Coulomb  and the Duncan-Chang models, a new model called 
the nonlinear elastic-perfectly plastic model was established. In the numerical implementation of this model, 
a newly developed smoothing technique for yield and plastic potential surfaces was employed to accurately 
fit the side face of the hexagonal pyramid surface of the Mohr-Coulomb criterion. A user material subroutine 
was developed in Abaqus and was verified by modeling a conventional triaxial test of a soil specimen with the 
feature of a nonlinear elastic-perfectly plastic model. Finally, to further validate the applicability of this model 
and its subroutine, the 3D numerical simulation of a relatively complex deep excavation project was performed, 
and the results were compared with measured data, the results determined by the method recommended in the 
current code, and the results of the Mohr-Coulomb and Duncan-Chang models. The comparison demonstrates 
that the results of this new model were the closest to the measurements.

Introduction
Numerous experiments have shown that the Mohr-Coulomb (M-C) yield criterion can reasonably 

predict the yielding or failure of soil and rock. However, as is generally known, the M-C yield criteri-
on represents a hexagonal pyramid surface in three-dimensional principal stresses space, which limits 
numerical computation due to the gradient discontinuities that occur at both the edges and the tip of 
the hexagonal pyramid surface. Many researchers have proposed various methods to solve these dif-
ficulties [1-3]. In particular, Abbo and Sloan [2] presented a simple hyperbolic yield surface to elimi-
nate the singularity of the M-C surface. Later, a practical subroutine based on their methodology was 
developed by Jia et al. [4]. These studies have greatly promoted the development of techniques to ad-
dress the numerical singularity of the M-C criterion so that the simple linear elastic-perfectly plastic 
model could be widely employed in the numerical analysis of geotechnical engineering. However, the 
M-C model is more reliable for stability analysis than for deformation analysis in geotechnical engi-
neering applications. As is generally known, no constitutive relation of any soil coincides with the M-C 
model because no soil fully obeys linear elastic behavior before yielding. As a result, the M-C model is 
unable to accurately predict the deformations of soils under various loading and/or unloading cases. 

Usually, the stress-strain relationship of soil is nonlinear, even if subjected to a small load. In 
this respect, the Duncan-Chang (D-C) model can reasonably reflect the nonlinear elastic properties 
of hardening soil [5]. In this model, an unloading or reloading deformation modulus Eur is introduced 
to discriminate it from the monotonic loading modulus Et to reflect unrecoverable residual deforma-
tion, which can be considered as plastic deformation. For this reason, the D-C model can be applied to 
numerical computations not only in loading cases but also in unloading or reloading cases such as in 
excavation engineering [6]. Nevertheless, the D-C model is not able to take yielding or softening into 
account.

As mentioned above, the prevailing M-C and D-C models have unique advantages and disadvan-
tages. To combine the advantages and overcome the disadvantages of these two models, a new con-
stitutive model called the nonlinear elastic-perfectly plastic model was established, in which the D-C 
model and M-C yield criterion are used to describe the nonlinear elastic-perfectly plastic stress-strain 
relationship before and after yielding, respectively. Theoretically, this new model can exactly or ap-
proximately match the experimental curves of some soils that exactly or approximately exhibit these 
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features. For the convenience of application, a FORTRAN subroutine was successfully developed for 
this model in the secondary development interface of the finite element software Abaqus, and this sub-
routine will be verified by numerically modeling the triaxial test of a soil specimen. Furthermore, this 
subroutine will be applied in the 3D numerical analysis of a deep excavation project.

Establishment of Nonlinear Elastic-Perfectly Plastic Model of Soil 
A schematic diagram of the D-C nonlinear elastic model is illustrated in Fig. 1a. The M-C model 

is plotted in Fig. 1b, and usually, the secant elastic modulus E50, which corresponds to half (50%) of the 
deviatoric stress at failure, is taken as the elastic modulus of the soil for both the loading and unload-
ing cases. A schematic diagram of the new model, which is the integration of the D-C and M-C mod-
els, is shown in Fig. 1c. In the existing D-C model, there is only a fuzzy judgment condition indicating 
that the soil fails if the tangent modulus approaches zero, but this modulus cannot decrease to zero; 
therefore, a lower bound of the tangent modulus Etmin (which will be introduced later) is set [7]. Hence, 
there is no clear concept of plastic yielding and judgment in the D-C constitutive model, but this can 
be included using the M-C model. That is, in this new model, the horizontal line BD of the M-C model 
will be employed to replace the oblique line BD of the D-C model.

Nonlinear elastic stage. As shown in Fig. 1, the nonlinear elastic stage is indicated by segment OB, 
in which the relationship of (σ1 – σ3) vs ε1 can be expressed as a hyperbola, taking (σ1 – σ3) = (σ1 – σ3)u 
as its asymptote, where (σ1 – σ3) is the deviatoric stress and ε1 is the major (axial) principal strain. In 
Fig. 1, Ei and Et are the initial tangent modulus and the tangent modulus at any deviatoric stress, re-
spectively; (σ1 –σ3)f is the deviatoric stress at failure, and all these parameters can be determined (re-
fer to [5] for details).

The value of Et decreases with increasing deviatoric stress. To prevent the tendency of the model 
to underestimate the lateral stresses in the soil elements with a small confining stress and a low stress 
level and to avoid the presence of tension stresses, Seed and Duncan [7] set a lower bound for Et, i.e.,

					   
Etmin= 0.25KPa(0.02)n,	   (1)

where K and n are the experimental constants, Pa is the atmospheric pressure.

a						      b

c

Fig. 1.  Stress-strain relationships: a) D-C model, b) M-C model, and c) new model.
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Perfectly plastic stage. In incremental analyses, once the stress level S1 = (σ1 – σ3)/(σ1 – σ3)f is great-
er than or equal to 1.0, or in other words, once the M-C criterion

				    F = (σ1 – σ3) + (σ1 + σ3)sinϕ – 2c cosϕ = 0 	   (2)

is met (where c and ϕ are the effective cohesion and angle of internal friction of the soil, respec-
tively), the perfectly plastic stage will be reached, as indicated by segment BD shown in Figs. 1b 
and 1c.

As is well known, the gradient discontinuities that occur at both the edges and the tip of the hex-
agonal pyramid surface will bring about numerical singularity, leading to the inefficiency or failure of 
stress integration schemes. To avoid this problem, the embedded M-C model in Abaqus employs the 
plastic potential function, G, proposed by Menétrey and William [8], which is inconsistent with the 
yield function F of the M-C criterion. Since there exists a difference in shape between the potential and 
yield surfaces, the flow rule is always non-associated in the embedded M-C model, and errors in the 
plastic strains or deformations must exist. To replicate the M-C surface and allow both the associat-
ed and non-associated flow rules to be implemented in Abaqus, this work adopts the hyperbolic yield 
function proposed in [2], which is rounded in both the meridional and deviatoric planes. The relevant 
mathematical expressions are
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where sign(θ) is the sign function, θT is the transition angle (θT ranges from 0° to 30°), and the greater 
θT is, the better the fitting to the M-C cross-section in the deviatoric plane. However, θT should not be 
too close to 30° in order to avoid the ill-condition, and Abbo and Sloan [2] recommended its maximum 
to be 25°. Although this paper set θT = 29°, which was consistent with the value suggested by Owen and 
Hinton [9], computations can still converge rapidly. In addition, the negative branch of the hyperbola 
was chosen to consider the tensile strength of soil through parameter a.

Equation (3) can approach the M-C yield function as closely as desired by adjusting parameter a 
and may degrade to the M-C yield function if a = 0 (see Fig. 2). When a = 0.05 and θT = 25°, the hyper-
bolic surface approaches the M-C yield surface with a maximum difference of less than 0.15% [2]. Bet-
ter results were obtained by letting θT = 29° rather than 25° in this work to further approach the edges 
of the hexagonal pyramid surface of the M-C criterion.

A plastic potential function G similar to the hyperbolic yield function F (see Eq. (3)) is employed. 
The only difference is that the angle of internal friction of soil ϕ is replaced by the dilation angle ψ 
(ψ ≤ ϕ). If ψ = ϕ, the associated flow rule is adopted; otherwise, the non-associated flow rule is used. 
The discrepancy of the potential surfaces between the new model and the embedded M-C model 
is shown in Fig. 3. In theory, the plastic strain computed by the former will be more reasonable than 
that of the latter because its potential surface agrees with the true M-C yield surface much better than 
that of the latter.
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A subroutine of the user material model (UMAT) based on the new model was developed in Abaqus 
(Fig. 4). In the process of loading, the trial stresses of the Gaussian points of some elements may exceed 
the yield stresses. They must be adjusted to meet the yield criterion, and correspondingly, the plastic 
strains should be computed. The specific steps of stress adjustment are described in [9]. 

Subroutine Verification and 3D Numerical Simulations of an Engineering Case
The plan of the deep excavation project of the Fuzhou Sheng-Hui International Building is square 

with a side length of 53.7 m. There are two stories of basements in this building. The excavation depth 
is 6.54 m. The geological and calculation profiles and retaining structures are shown in Fig. 5.

Fig. 2. 	 M-C yield surface in the 3D principal stress space and Abbo’s rounded 
	 yield surface in the deviatoric plane.

Fig. 3. 	 Comparisons of potential surfaces in the π plane with the projections 
	 of three principal strain axes.

Fig. 4. Flow chart for calling the UMAT and numerical algorithms.
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Steel H-piles with internal supports made with steel pipes and diagonal braces made with steel 
H-beams were employed to retain the excavation slope, with cement-soil mixing piles serving as a wa-
terproof curtain. Each steel H-pile was 15 m in length, 350 mm in both flange width and cross-section 
height, and 19 and 12 mm in flange and web thicknesses. The pile spacing (center to center) of two 
adjacent steel H-piles was 0.8 m. The cement-soil mixing piles were 16 m in length, 0.6 m in diame-
ter, and 0.5 m in pile spacing (center to center). All the steel pipes were 609 mm in outer diameter and 
14 mm in wall thickness (Fig. 5). The horizontal spacing between two adjacent steel pipes was 10.7 m, 
and the vertical spacing between the two rows of steel pipes was 4.2 m. There were two ring beams, 
each combined with two steel H-beams, to connect the internal supports to the steel H-piles, which 
was also beneficial to strengthen the stiffness of the entire retaining structure. Each diagonal brace 
was 8 m long, had the same section dimension as the steel H-piles, and intersected the corresponding 
steel pipe at an angle of 26.3°. The steel material was Q235, which had a unit weight of 78.5 kN/m3, an 
elastic modulus of 2.1×108 kPa, and a Poisson’s ratio of 0.3. In addition, steel H-beams were employed 
as support columns and set at each intersection between the longitudinal and transverse steel pipes, 
but they had no influence on the stiffness of the internal supports; therefore, for the sake of simplic-
ity, they were not modeled. Additionally, the self-weight of all the internal supports was ignored. The 
cement-soil mixing piles created a diaphragm wall with an elastic modulus of 1.7×105 kPa and a Pois-
son’s ratio of 0.3. The design axial prestressing force imposed by the steel pipes in the two rows was 
320 kN, and the surcharge of 20 kPa on the ground behind the steel-H piles was taken into account.

The mechanical parameters of the new model are the same as those of the D-C model. In this work, 
their values were referenced from [6] and listed in Table 1. The parameters were obtained by conven-
tional triaxial compression undrained (CU) and drained (CD) tests in which the K0 consolidation spec-
imens were adopted to determine the parameters of the D-C model in consideration of the static earth 
pressure condition during the sedimentary consolidation of the soil mass.

According to the theory of the D-C model, the major principal strains can be calculated by
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To validate the subroutine, a standard cylindrical soil specimen with a diameter of 39.1 mm and a 
height of 80 mm was modeled and discretized with C3D20R elements (Fig. 6). The bottom of the model 

Fig. 5.  Typical geological and calculation profile, m.
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was constrained with zero displacement in all directions, and a confining pressure and an axial pressure 
were applied to the side and top of the model, respectively, to model the K0 consolidation. Then, the 
numerical compression test was accomplished by gradually increasing the axial pressure. For example, 
under the K0 consolidation (with σ1 = 100 and σ3 = 70 kPa) and undrained compression test conditions, 
the mud stress-strain curves determined by the experimentation, theoretical calculation (Eq. (8)) and 
numerical simulation of the M-C, D-C, and new models are shown in Fig. 7. Notably, some oscillations 
formed along the backbone curve of the experiment due to the influence of the sensitivity of the tri-
axial apparatus. When a = 0.05, the new model coincided with the D-C model before yielding and the 
M-C model after yielding. Furthermore, overall, the experimental stress-strain relationship displayed 
a nonlinear and weak softening behavior that could not be described by either the M-C or D-C model 
but might be satisfactorily described by the new model. This demonstrates that the new model is ac-
curate and that its subroutine development was successful.

Taking the boundary effect, the characteristics of the simulation object, the geological conditions, 
and the computational efficiency into account, the size (length × width × height) of the 3D numeri-

TABLE 1 

Soil type c, kPa ϕ, °
Duncan-Chang model Mohr-Coulomb 

modelCU test CD test

Rf K n Kur KB m E, kPa v ψ, °

Clay 21.43 17.13 0.82 100.53 0.67 217.79 59.90 0.6 2300 0.40 0.1

Mud 12.43 15.07 0.88 108.15 0.67 194.29 62.48 0.32 3670 0.45 0.1

Silt clay 28.80 19.30 0.76 181.92 0.58 318.36 163.84 0.65 200000 0.35 0.1

Mucky clay 22.41 19.96 0.87 162.90 0.57 314.44 100.86 0.49 11960 0.42 0.1

Fig. 6. Finite element model and mesh.  

Fig. 7.  Comparison of the stress-strain curves from the tests, simulations, and calculations.
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cal model was determined to be 85×85×32 m3. The overall finite element model before excavation and 
the model of the retaining structures are shown in Figs. 8a and 8b, respectively. Note that to simplify 
the finite element model, following the equivalent principle of bending stiffness, each steel H-pile is 
equivalent to a steel sheet with a rectangular section with a width of 0.8 m (pile spacing) and a height 
of 0.181 m. Accordingly, the isolated steel H-piles may be regarded as a continuous steel sheet wall 
with a thickness of 0.181 m (see Fig. 8b) and thus modeled with thick shell elements. The C3D20R, S8R, 
B32, and T3D2 elements were used to model the soils and diaphragm wall, the equivalent steel sheet 
piles, the ring beams, the internal supports (steel pipes), and the diagonal braces (steel H-beams), re-
spectively. The round steel pipes and the steel H-beams were modeled according to their true dimen-
sions using the above beam or truss elements.

In practical engineering, excavation and retaining are normally carried out step by step. However, 
for brevity, only the results of the final construction step are provided here. For example, Fig. 9 shows 
the contours of the vertical displacements U3 by the D-C, M-C, and new models, respectively. The distri-
bution laws of the vertical displacements were similar, especially those shown in Figs. 9b and 9c. How-
ever, the vertical displacement magnitudes were not the same among the different models. The maxi-
mum settlement on the ground and the maximum upheaval on the final excavation surface determined 
by the M-C model were 64.91 and 206.0 mm, respectively; the corresponding values determined by the 
D-C model were 42.86 and 77.9 mm, respectively; and the corresponding values determined by the new 
model were between the former two, 53.94 and 139.9 mm, respectively. The differences in these results 
were attributed to not only the constitutive models but also the parameters, especially the soil moduli, 
used in each model. In general, the deformations computed by the M-C or D-C model are either over-
estimations or underestimations due to known shortcomings. However, the deformations computed by 
the new model may be moderate, and the resulting distribution laws are described next.

a						      b

Fig. 8. Finite element models: a) the whole model without excavation, b) retaining structures.

Fig. 9.  Contours of vertical displacements: a) D-C model, b) M-C model, and c) new model.

c

a						               b
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A comparison of the horizontal displacements along the vertical central axis of an equivalent sheet 
pile wall and the actual measured data and the values calculated by the method recommended in the 
current code (m-method) are provided in Fig. 10. Most likely, overall, the D-C model underestimated 
the horizontal displacements, which is dangerous, whereas the M-C model overestimated them, which 
is unnecessarily conservative. However, the position and magnitude of the maximum horizontal dis-
placement determined by the new model were close to those of the measured results. Such prediction 
results can meet the demands for the design stiffness of retaining structures. Notably, the new mod-
el still predicted great differences from the measurements in the upper or lower part. One of the main 
reasons for this outcome is that the measured data were from an inclinometer installed in the soil near 
one of the piles close to the central axis, not from the pile itself. In addition, one can see that the re-
sults of the upper or lower parts were either greatly overestimated or greatly underestimated by the 
method recommended in the current code.

Figure 11 shows the contours of the equivalent plastic strains (general plastic strains) in the soil un-
der the final excavation surface by the M-C model and the new model with a = 0.05 and a = 0.5. Clear-

Fig. 10. Comparison of the horizontal displacements of the equivalent steel sheet pile.

Fig. 11. 	Contours of equivalent plastic strain in soil: a) M-C model, b) new model with 
	 a = 0.05, and c) new model with a = 0.5.

a						          b

 c
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ly, the distribution forms of the former two approaches are quite similar, yet there are great differences 
in their magnitudes due to the influence of the different plastic potential surfaces shown in Fig. 3. Fig-
ure 11c indicates that parameter a significantly affects the computed plastic strains. Previous work has 
shown that the magnitude of a may reflect the tensile strength of soil to some extent. Such a plastic zone, 
of course, cannot be described by the D-C model because the D-C model does not consider plasticity.

Conclusions
A new constitutive model for soils, the nonlinear elastic-ideal plastic model, was presented by com-

bining the Duncan-Chang model with the Mohr-Coulomb elasto-plastic model. 
To overcome the numerical singularity and ensure that the new model approaches the hexagonal 

pyramid surface of the Mohr-Coulomb criterion, near the edges, the yield surface is replaced by the Ab-
bo-Sloan hyperboloid, and the yield and potential functions have similar expressions so that both the 
associated and non-associated flow laws can be implemented in the new model.

The numerical simulation of a triaxial test shows that the results of the new model fit the mea-
sured stress-strain curve fairly well. This proves that the new model can fairly reliably describe soils 
with a perfect plasticity or weak softening behavior, and that its subroutine is accurate. Another prom-
inent advantage of this new model is that it uses the same parameters as the D-C model, which can be 
obtained by the conventional triaxial testing that most engineering investigations and design insti-
tutes are capable of performing.

The practical application in a deep excavation engineering case shows that among the results of 
all the methods tested, the results predicted by the new model were the closest to the measured data. 
Similar to the conventional M-C model, the new model can identify the plastic zone, which is of great 
significance in the design and analysis of geotechnical engineering, and it can simultaneously consid-
er the nonlinearity before yielding.

Therefore, the new model can be employed to accurately predict not only the ultimate bearing ca-
pacity of foundations and the factor of safety of soil slopes but also their deformation before reaching 
the critical state. Such investigations still need to be performed.
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