DOI 10.1007/s11204-021-09727-x
Soil Mechanics and Foundation Engineering, Vol. 58, No. 3, July, 2021 (Russian Original No. 3, May-June, 2021)

SOIL MECHANICS

PREDICTING THE SETTLEMENT AND LONG-TERM BEARING
CAPACITY OF A BASE OF FOUNDATION OF FINITE WIDTH

UDC 624.131.524/624.151.5
Z. G. Ter-Martirosyan,'* A. Z. Ter-Martirosyan,'*
and N. O. Kurilin'*

'National Research Moscow State University of Civil Engineering,
Moscow, Russia, REC Geotekhnika, Moscow, Russia,
*Corresponding author Email: kurilin93 @gmail.com.

The article shows that if the model proposed by A. Z. Ter-Martirosyan is used to describe
shear deformations in a soil medium, and the Kelvin-Voigt model is used to describe vol-
ume deformations, the calculated settlement-time dependence is nonlinear and has a dou-
ble curvature. The article presents an analytical solution to the problems of predicting
settlement and long-term bearing capacity of a base of foundation of finite width using
the above models.

Introduction

In [1], the authors considered the problem of the stress-strain state (SSS) of the base of founda-
tions of finite width, taking into account the elastoplastic properties of soils during shear and nonlin-
earity during volume deformation. As a result, a solution that allows constructing a family of settle-
ment—load (S—p) curves with double curvature at different acting loads was obtained.

In this study, in order to take into account the propagation in time of deformations of soils with
the creep property, the rheological model proposed by A. Z. Ter-Martirosyan [2] is used as a calculation
model to describe shear, and the elastic-viscous Kelvin-Voigt model is used to describe volume defor-
mations [3].

Determining the Creep of Base Soils During Shear
In the simplest case (7 = const), the rheological model proposed by A. Z. Ter-Martirosyan [2] is

described by an equation of the form
11" (e PY
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where 7 and 7 are the effective and limiting shear stresses; y(y) is the angular deformation rate, depend-
ing on the value of the accumulated deformation ¥, 1,(0,) is the initial shear viscosity of the soil, which
in the general case depends on the mean stress 0,; o, 8, a, and b are the hardening (softening) param-
eters of clay soil, which are determined by the results of the kinematic shift (¥ = const). The expression
in brackets is the hardening (softening) function, where y is essentially a measure of hardening accord-
ing to the terminology of creep by Yu. N. Rabotnov [4, 5].

According to Eq. (1), the shear deformation rate depends nonlinearly on the accumulated shear
deformation. Eq. (1) allows describing the y — ¢ dependence at different 7 as a curve with double cur-
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Fig. 1. Creep curves of plastic clays during shear according to S. S. Vyalov [6].

0.8}t
0.6
04}
0.2

400

800

7 (0)

Fig. 2. Long-term strength curves (lower part) 7(0) —7(o°) at + — ©°, constructed according

to Eq. (1), and y — ¢ creep curves: 1) 7., 2) 7,, 3) 7,, 4) 7,,5) 7, 6) T,.
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Fig. 3. Curves: a) T—t according to test results in kinematic mode at different y = const,

b) relaxation of the shear stress 7(¢) at different initial shear stresses 7(0) and at y(#) = const,
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vature, which is typical for many types of soils with rheological properties (Fig. 1). This dependence
includes three stages: the initial, nonlinear intermediate with a steady shear rate and the final, develop-
ing with an increasing rate and transferring to the stage of progressive destruction. Moreover, based on
Eq. (1), it is possible to construct 7 — ¢ curves during kinematic shear (¥ = const), as well as relaxation

curves 7(0) — () at y(¢f) = const (Figs. 2 and 3). Curves of a similar form were obtained based on the
laboratory tests results of various authors [6, 2].
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Fig. 4. Deformations of the sample: 1) shear (according to the model by
A. Z. Ter-Martirosyan), 2) volume (according to the Kelvin-Voigt
model), 3) € —t total deformations (according to Eq. (5)).

It is important that for the first time all these curves are described based on a unified formula of
Eq. (1) with the same parameters ¢, f3, a, and b (for example, A. R. Rzhanitsyn [7] proposed to describe
separately the initial, intermediate and continuous stages of creep curves with double curvature).

Determining the Volume Deformation of Soils
As a calculation model for describing the volume deformation of the base soils, the Kelvin-Voigt
rheological equation [3] is taken in the form

c,=0,+0, =K(0,)E, +NE,, 2)

where 7, is the volume viscosity, o¢ and o’ are the elastic and viscoelastic stresses, respectively.
At g (t = 0) = 0, the following equation is obtained:

o
_ m _ —kimy
£m(t)——K (I-e ). (3)
(0,)
In this case, the volume deformation is attenuated and its rate decreases:
£, (n)=—2n| K omm
m K i (4)
@ \

As a calculation model for describing the relationship between stresses and deformations and
their rates, it is advisable to use the Hencky's system of equations [8], which represents any linear
deformation as a sum of shear and volume components.

Determining Total Deformations

In the case under consideration, the deformation rate éz in the soil layer under the impact of o,
and ¢, and with the possibility of the deformations development € # 0 and g, # 0 during elastic-viscous
volume deformation can be represented as

—o€. Pe.
0.-0 : :
g'z — z m € 4 4 + Gm _ K e*K/nv i (5)
n)’ (o-m) a b K(O'm) nv

The first term of this equation is transcendental, and for its integration let us use the Math-
Cad software package. The integral of the second term is determined by Eq. (3). The results of con-

structing the graphs of the dependence of shear and volume deformation components on time
according to Eqgs. (1) and (3), as well as the total graph for sample of Eq. (5), are shown in Fig. 4.
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Fig. 5. Settlements of the base: 1) shear component, 2) volume component,
3) total settlements S'(f), determined by Eq. (5).

The graphs were constructed using the MathCad software package with the following
parameters: 1, = 1.157-10° kPa-day, o, = 580 kPa, o, = 400 kPa, a = 1.2, b = 60, a = 171, f = 40,
K = 8,000 kPa, and K/n, = 0.0106 day™.

Predicting the Settlement and Long-Term Bearing Capacity of the Base

It is known that the stress state of elastic and elastic-viscous bases coincide [2, 9]. To describe
the stress state of a linearly deformable soil base under the action of a load p = const distributed over
a band b = 2a (plane problem), the Flamant formulas are used [10]:

p a— x 2apz(x*—z*—a?)
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Based on these formulas, using Hencky's equations and Eq. (5), it is possible (similarly to [8])
to determine the total settlement of a layer of finite thickness as the sum of the volume and shear com-
ponents:

28 (M) =28,(+XS, (). (10)

The results of the calculations performed to determine the total settlement (layer with thickness
h =10 m and width b = 40 m, distributed load p = 400 kPa, soil parameters are the same as those given
above for the sample) are shown in Fig. 5.

As expected, the use of the Kelvin-Voigt model [3] to describe the volume deformations of the
base soils and the use of the model proposed by A. Z. Ter-Martirosyan [2] to describe the shear defor-
mations, leads to a "total settlement—time" curve, which has a double curvature and at a certain point in
time transfers to the stage of progressive settlement.
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Fig. 6. Total settlement of the base S —¢ at various loads from the foundation:
1) p, = 100 kPa, 2) p, = 200 kPa, 3) p, = 300 kPa, 4) p, = 400 kPa,
5) ps = 500 kPa, 6) p, = 600 kPa, 7) p, = 700 kPa, 8) p, = 800 kPa.

Analysing the graphs of settlement S(¢) at different values of the distributed load from the foun-
dation p (Fig. 6), it is possible to construct the graph of the long-term strength of the base under con-
sideration.

Conclusions

1. Under the impact of a distributed load on a foundation of finite width, a complex and inho-
mogeneous SSS arises in the elastic-viscous base. In this case, the stress distribution can be taken
according to Flamant [9].

2. For soils with rheological properties in case of changes in volume and form (shear), when
determining the components of deformations and their rate, it is convenient to use the system of
Hencky's physical equations, which allows determining the linear deformation in any direction as a sum
of the volume and shear components of this deformation.

3. The use in the system of Hencky's physical equations of the calculation formulas formulated
based on the Kelvin-Voigt rheological model for describing the volume deformation and on the model
by A. Z. Ter-Martirosyan for shear deformations leads to the "total deformations - time" curve with dou-
ble curvature.

4. Summing the settlements of the base layers determined based on these deformations and the
stresses distribution according to Flamant leads to the base settlement - time curve with a double cur-
vature as well.

5. Analysing the graphs of settlement at various loads, it is possible to construct a graph of the
long-term bearing capacity of the base.
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