
Introduction
Considering the approaches described in [1-3], if the shear deformations in the soil medium are

described by S. P. Timoshenko's elastic-plastic model [4], and the volumetric deformations are described
by S. S. Grigoryan's nonlinear model, then the finally calculated settlement − load (S − p) relationship
could be plotted as a non-linear curve having a double curvature. 

Within the framework of the current regulatory documents [5], the stress-strain curves (ε − σ ),
based on the results of soil tests, allow us to determine the soil's deformation modules E0 i depending on
stresses σzi , changing with depth along the foundation vertical axis z. These modules, in accordance
with the Hooke equation, determine the deformation of the soil layers εzi = 0,8(σzi/E0i) (i is the number
of the current layer from 1 to N), and the foundation settlement under loads less than the normative soil
resistance R is defined as the sum of the layer's settlements along the central vertical axis (under the
compression conditions εx = 0, εy = 0). Then 

Thus, assuming that the stress state of the base is determined by Flaman [6], it is possible to
indirectly take into account the nonlinearity of deformation of the foundation soils.

In this paper, the system of Hencky's equations [7] is used, which describes εz as the sum of
shear and volumetric deformations (εz = εzγ + εzv):

(1)

where G(σm, τi /τi
*) and K(σm) are the shear and volumetric strain modulus, depending on the mean stress

σm and the ratio of the intensity of tangential stresses τi to its limit value τi
*, where τi

* = σ tgϕ + c (ϕ
is the angle of internal friction and c is cohesion).

In the special case, when G = const and K = const, Eq. (1) transforms into the system of Hooke equa-
tions. The parameters G(σm, τi/τi

*) and K(σm) are determined by the results of standard triaxial tests (Fig. 1).
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The analytical solution of the problem of the bearing capacity of the soil base and the
foundation settlement of a limited width is presented, considering the soil's own weight
and residual stresses (in the presence of over-compacted soils). The Flamant's solutions
(plane problem) are used for the stress state calculation. The Hencky's equations are used
to determine the stress − strain relationships and the influence of the average stress on
the shear and the volume strain modulus. 
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Equation (1) allows one to consider the naturally different forms of the shear and volumetric defor-
mation curves (not only the always attenuating εm − σm but also the non-attenuating progressive εi −σi ); see
Fig. 1, upper left and lower right segments.

Moreover, the Hencky's equations make it possible to predict the settlement for both p < R and
p > R.

Foundation Settlement and the Soil Base Bearing Capacity Prediction Based on the Hencky's Equation
Let us consider a computational model of the soil base as a linearly deformable half-space under

the action of a distributed load (p = const) over a strip of the limited width b = 2a (flat problem).
According to the Flamant's formulas [6]:

(2)

(3)

(4)

The isolines of σz, σm, and σz−σm for the strip load (a = 20 m and p = 400 kPa) according to (1)-
(4) are shown in Figs. 2a, 2b, and 2c.

V. A. Florin [8] compiled extensive tables to determine σx/p, σz/p, and σm(z/p), for the Hencky's equa-
tions:

(5)

where (6)

τi is the intensity of tangential stresses, and μσ is the Nadai-Lode parameter [6].
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Fig. 1. Standard triaxial tests results of the soils under the kinematic 
loading mode (ε

.
1 = const or σ

.
1 = const).



The Hencky's equations for χ = 1/2G and χ* = 1/K,, where G = E/2(1 + v) and K = E/2(1 + v) are
transformed into the system of Hooke equations.

We take the dependence proposed by S. S. Grigoryan as a computational model for nonlinear
volume deformations:

(7)

The secant modulus of the volumetric strain is determined as 

(8)

when σm�� and εm� ε*.
To describe the elastic-plastic deformation of clay soil during shear, the formula of S. P. Timo-

shenko [4], adopted to the soil media, is used [2]:

(9)

(10)

where ϕi and ci are the limit strength parameters corresponding to the limit straight line at the plane
τi −σm (Fig. 2); σg is the natural gravity stress,

for the normally compacted soils
σg = γ h; (11)

for the  overcompacted soils

σ'g = γ h + σp, (12)
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Fig. 2. The isolines of σz (a), σm (b), and σz −σm (c) and the scheme for calculation of the shear 
and volumetric deformations (Hencky's model) (d)



where γ is the specific gravity of the soil; h is the depth, where τi
* is measured; σp is the residual stress

in over-compacted soils, determined by the compression tests (Cazagrande method [2, 9]).
For the secant shear modulus G = τi/γi from Eq. (9) we get

(13)

where G = Ge when τi = 0 and G�0 when τi�τi
*.

The calculation scheme for shear and volumetric deformations using. (1), (8), and (13) is shown
in Fig. 2d, where NL and FL are the marks of the natural terrain and the bottom of the foundation.

Forecast of a Linearly Deformable Base Settlement
In the simplest case, when there is a linear relationship between stresses and deformations with

G and K parameters, the settlement can be determined by an analytical solution for the z axis (x = 0):

(14)

where ha is the thickness of the compressible layer; σz and σm are determined by Eqs. (2) and (3),
respectively.

The stresses σm and σz − σm change with depth along the z axis (x = 0) in accordance with Eqs. (3)
and (4).

Substituting Eq. (3) in the first integral of Eq. (14), we obtain the part of the foundation settle-
ment corresponding to the volumetric component of the linear deformation εz,v

(15)

Substituting Eq. (4) into the second integral of Eq. (14), we obtain the foundation settlement
caused by the shear component of the linear deformations εz,γ :

(16)

It can be seen from Eqs. (15) and (16) that Sγ and Sv depend nonlinearly on the geometric param-
eters (a and ha).

The results for the example with a = 40 m, ha = 80 m, v = 0,33, K = 40000 kPa, p = 400 kPa,
Ge = 5113 kPa showed that Sv = 38.8 cm and Sγ = 96.7 cm, i.e., the settlement caused by the shear com-
ponent Sγ is 2.49 times greater than Sv!
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Fig. 3. The vertical pressure σz, versus: a) total εz (1); volumetric εz,v (2), and shear εz,γ (3) 
components of the total strain, b) lateral pressure σx.



Nonlinear Deformation of a Soil Layer of Limited Thickness 
Deformations and settlements of a soil layer under the compression conditions (εx = εy = 0) are

considered in [10] (Fig. 3). The total deformations in Fig. 3a (εz) are calculated by (14). The residual εz

and σx are clearly obtained during the elastic unloading. In addition, the εz −σ curve has a decaying char-
acter with increasing σ.

It can be shown that if horizontal displacements of the layer have no special limitations (εx � 0), the
εz −σ curve could not only be decaying but also have a non-attenuating, progressive character, depend-
ing on the value of σzp and the ratio τi/τi

* (Fig. 4).

Settlement of a Nonlinearly Deformable Soil Layer Allowing Free Horizontal Deformations
Substituting G(σm, τi) and K(σm) in Eq. (1), we get

(17)

(18)

where τi = (σ1 − σ3)/ = (σz − σx)/ (x = 0); τi = (σm + σg)tgϕ + c; σxp and σzp are determined from
Eq. (2).

Similarly, we can determine the components of εx,v and εx,γ .
From the analysis of Eqs. (17) and (18), it follows that the volumetric component of the strains

εz,v with the growth of σz will have a decaying character at σm��; εzv� ε*. At the same time, with the
growth of σz, the value of εz,γ will initially grow linearly and then pass into the stage of progressive
growth, since εzγ�� at τi�τi

*. Consequently, the graph of the total strain will have a double curvature,
i.e., εz(σz) has a decaying character in the initial section when τi < τi

*, and then at τi�τi
* it passes into

the stage of progressive deformation (see Fig. 4).
The solution with ε* = 0.016, α = 0.005, Ge = 50,000 kPa, v = 0.3, ϕ = 25o, c = 10 kPa, and h = 8 m has

confirmed this analysis.
Based on Eqs. (17) and (18), it is possible to draw up the isolines of εzv = const and εzγ = const,

as well as εz = εzv and εzγ = const for the given parameters p, a, G, K, ϕ, and c, and the isolines of the
stress components. As expected, a nonuniform stress state occurs in the soil base (i.e., induced
anisotropy) [6].
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Fig. 4. The soil layer (h = 8 m) settlement calculated by Eqs. (17) and (18):
1) εz,v; 2) εz,γ ; 3) εz = εz,v + εz,γ .



A comparison of the total settlement of a layer of limited thickness obtained by Eqs. (17) and
(18), when the horizontal displacements are limited (or not limited), demonstrates the significant differ-
ence in the results (Fig. 5).

Deformations at the Vertical Surfaces and Calculation of the Settlement 
The total deformations of the base at different verticals x > 0 are as follows:

(19)

where ha is the distance between z = 0 and the lower boundary of the compressible thickness.
The total deformations εz = εz,v + εzγ when ha = 80 m at different verticals x > 0, with the

parameters ε* = 0.016, α = 0.005, v = 0.3, Ge = 50,000 kPa, ϕ = 25o, and c = 10 kPa are shown in
Fig. 6. 

Additionally, to Eq. (18), τi = f(σxp, σzp, and τxzp) should be defined [2] as

(20)
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Fig. 5. The settlement of the foundation of limited width (nonlinearly deformable 
soil layer), calculated according to Eqs. (17) and (18), including (1) and 
neglecting (2) horizontal displacements of the layers.
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The results of the calculation of the settlement for a layer with the thickness h = 8 m and dif-
ferent parameters of deformability (Ge, v, ε*, and α) and strength (ϕ and c) are shown in Fig. 7.

The settlement − load (S − p) curves calculated according to the Coulomb Mohr elastic-plastic
model with different deformability and strength parameters [2] turn out to be like the curves calculated
on the basis of the Hencky's model (see Fig. 7).

Conclusions
1. In this paper the line deformation of soil εz (σ, τ) is represented in the framework of the

Hencky's model as the sum of the volumetric component, described by a nonlinear dependence on the
mean stress, and the shear component according to the elastic-plastic model of Tymoshenko. Conse-
quently, in dependence on the combination of the input parameters, the calculation model represents
well the real strain−stress and the settlement-load curves, including not only decaying but also non-
attenuating, progressive stages (double curvature trajectories).

2. If the horizontal movements of the soil are restricted (εx = 0) the calculation model inevitably
leads to the attenuation of εz deformations with an increase in σz.
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Fig. 7. S −p graphs along the x = 0 axis, with different 
parameters of deformability and strength.
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