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SOIL MECHANICS

Introduction
The road compaction effect will determine its quality, performance, and service life [1]. During

the process of vibratory compaction, soil demonstrates elastic, plastic, and viscous characteristics [2],
and acts like a viscoelastic material with properties of both an ideal solid and ideal fluid [3].The vis-
coelastic properties of soil have a significant influence on the final compaction effect; therefore, the
dynamic mechanical properties of soil during the process of vibratory compaction should be fully con-
sidered. 

Integer-order differential operators are often used in viscoelastic constitutive equations, and the
kernel functions (creep modulus and relaxation modulus) of a viscoelastic model are generally a combi-
nation of exponential functions [4]. Therefore, simple constitutive relationships do not provide an ade-
quate description of the actual deformation process of viscoelastic materials [5], and such models thus
have difficulty accurately describing the dynamic mechanical properties of soil, which significantly lim-
its their application. Fractional constitutive models of viscoelastic materials were first introduced by
Gemant [6]. In the constitutive equations, integer-order differential operators are replaced by fractional-
order differential operators. Extensive studies have since been performed in this field, and fractional cal-
culus has shown promise in describing the rheological properties of viscoelastic and viscoplastic mate-
rials [7, 8]. Fractional calculus was previously used to describe memory-intensive and path-dependent
phenomena, and fractional calculus-based models generally have fewer parameters in comparison with
classical models [9-11]. The models have demonstrated powerful capabilities in capturing the static and
dynamic stress-strain-time relationships of viscoelastic materials and have been applied in various fields
over the past few decades [11-16]. Past research thus provides a theoretical basis for using fractional-
order differential theory to describe the constitutive models and dynamic mechanical properties of soil
during vibratory compaction. To date, research is still lacking and limited studies exist in the literature.

In this paper, a new viscoelastic constitutive model is proposed based on fractional-order
differential theory, replacing the Newtonian dashpot of the classical Kelvin-Voigt model
with the Abel dashpot. The analytic solutions for the fractional-order three-element model
and classical three-element model are presented. The results estimated by the fractional-
order three-element model correlate better with experimental data than those of the clas-
sical three-element model. The parameters of the fractional-order three-element model
were further optimized using the nonlinear least squares method. The proposed fraction-
al-order three element model was able to accurately describe the viscoelastic dynamic
mechanical properties of soil during vibratory compaction.
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This paper briefly describes the basic theory of fractional calculus and viscoelastic properties of
soil. A Fractional-order three-element constitutive model of soil during vibratory compaction is present-
ed, and the dynamic mechanical properties of soil are evaluated including the storage modulus, loss
modulus, loss factor, and dynamic modulus. Several comparisons are made between the proposed model
and classical three-element model. Finally, experimental data is used to verify the accuracy of the frac-
tional-order three-element model and further optimization is explored.

Brief Introduction of Fractional Calculus
The basic operator of fractional calculus [8, 17, 18] can be defined as

(1) 

where a and t are the lower and upper bounds of the operator respectively; α is the integral and differ-
ential order, which can be any complex number; and R(α) is the real part of α.

At present, there are numerous definitions of fractional calculus [8, 17-20], such as the Riemann-
Liouville, Caputo, Grunwald-Letnikov, and Riesz definitions, which although different in form, can be
used interchangeably and are essentially equivalent.

The Riemann-Liouville differential [21]  

(2)

The left and the right fractional integrals are defined as

(3) 

(4) 

where Γ is the Gamma function and is its integral definition, which meets the basic

requirement of Γ(z + 1) = zΓ(z).

Viscoelastic properties of soil
The stress-strain relationship of an ideal solid should satisfy Hooke's Law, σ (t) −ε (t), and the

stress-strain relationship of ideal fluid should satisfy Newton's law of viscosity [5], σ (t) − d 1ε (t)/dt1.
Moreover, σ (t) − ε (t) can be written as σ (t) − d 0ε (t)/dt 0, such that the stress-strain relationship of an
object with properties of both an ideal solid and ideal fluid can be defined as

(5) 

where ξ and u are invariable parameters of the material, ξ is the equivalent of the modulus of elasticity
for Hooke's law or dynamic viscosity coefficient for Newton's law of viscosity.

Before compaction, soil is saturated with the optimum moisture content; therefore, it is reason-
able to assume that compacted soil has properties of both an ideal solid and ideal fluid, and that the
stress-strain relationship of compacted soil can be expressed by Eq.(5).
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The constitutive relation of a Newtonian body (dashpot) states that stress is proportional to the
first derivative of strain [22-24]. Therefore, the constitutive relation, relaxation modulus, and creep com-
pliance of a Newtonian body under the uniaxial stress state are as follows:

(6) 

(7)
(8)  

where v is the dynamic viscosity coefficient of the fluid or fluid viscosity, δ (t) is the Dirac function,
and H(t) is the Heaviside step function.

When v = 1, the relaxation modulus G(t) of a Newtonian body is proportional to δ (t), from Eq.(7).
However, δ (t) = 0 at every point except zero, and its integral over the entire domain is equal to 1. Begin-
ning at time t = 0, the relaxation modulus G(t) suddenly relaxes from infinity to zero, and from Eq.(8),
the creep compliance J(t) is related to H(t) and t; when independent variable value H(t) > 0, the func-
tion value is 1, otherwise the function value is zero. Therefore, beginning at t = 0; H(t) will always be
equal to 1. Thus, J(t) is proportional to t.

Replacing the integer-order operator D in the constitutive relation of the Newtonian body with
the fractional-order differential operator Dα [22-24], we can obtain the constitutive relation, relaxation
modulus, and creep compliance for an Abel body under the uniaxial stress state 

(9) 

(10) 

(11)

When v = 1, the relaxation modulus G(t) of the Abel body relaxes to zero according to the neg-
ative fraction power-law t−α (Fig. 1a), and the creep compliance J(t) of the Abel body increases accord-
ing to the positive fraction power-law tα (Fig. 1b); therefore, the Abel body can more closely describe
the characteristics of viscoelastic materials [25].

Establishment of three-element constitutive model 
The classical three-element model [26, 27] is formed by an elastic element (e1) and classic

Kelvin-Voigt model in series, and the classical Kelvin-Voigt model (k) is formed by an elastic element
(e2) and Newtonian dashpot (v) in parallel (Fig. 2).
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Fig.1. Relaxation modulus (a) and creep compliance (b) of Abel model as α increases from 0.1 to 0.9.
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The stress of the classical Kelvin-Voigt model is equal to the sum of stress of the elastic element
(e2) and Newtonian dashpot (v), and the strain is equal to each of the strains of e2 and v:

(12) 

The total stress of the classical three-element model is equal to each of the stresses of e1 and
classical Kelvin-Voigt model, and total strain is equal to the sum of the strains of e1 and classical
Kelvin-Voigt model:

(13) 

From Eqs.(12) and (13), we obtain

When β = (E1 + E2)/v, E� = E1E2/(E1 + E2), and E0 = E1, the viscoelastic constitutive equation of
the classical three-element model is

(14) 

Taking the Fourier transform of Eq.(14), the complex modulus of the classical three-element
model is

(15)

The storage modulus (elastic section of the stress-strain relationship of the soil), loss modulus
(viscous section of the stress-strain relationship of the soil), loss factor (ratio of loss modulus to storage
modulus), and dynamic modulus (module value of complex modulus that reflects the ability of soil to
resist deformation of soils during vibratory compaction) [28, 29] of the classical three-element model
can be expressed as

(16)
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(18)

(19)

Replacing the classical Kelvin-Voigt model in the classical three-element model with the frac-
tional-order Kelvin-Voigt model, we obtain the fractional-order three-element model. The stress-strain
relationship can be expressed as

(20)

(21) 

where e1 and e2 represent the elastic element outside and inside the fractional-order Kelvin-Voigt model,
respectively, k represents the fractional-order Kelvin-Voigt model, and v represents the Abel dashpot in
the fractional-order Kelvin-Voigt model.

Using Eqs.(20) and (21), we can obtain the viscoelastic constitutive equation of the fractional-
order three element model as

(22) 

Taking the Fourier transform of Eq.(22) yields

(23)  

The complex modulus of the fractional-order three element model is

(24) 

Since ia = cos(απ /2) + isin(απ /2), Eq.(24) can be transformed into

(25) 

Then, the storage modulus, loss modulus, loss factor, and dynamic modulus of the fractional-
order three-element model can be expressed as

(26)
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(28)

(29)

Estimation of dynamic mechanical properties of compacted soil using three-element model
The storage modulus, loss modulus, loss factor, and dynamic modulus of the fractional-order

three-element model are compared with those obtained using the classical three-element model, as well
as experimental data obtained using uniaxial compressive strength tests performed at a temperature of 25
C and pressure of 700 kPa. The results are illustrated in Fig.3.

Based on the results presented in Fig.3, the following observations can be made:
(1) Comparing the results estimated using the classic three-element model to the experimental

data, curves of the loss modulus and loss factor are inconsistent with the experimental data and suggest
the classical three-element model does not accurately reflect the actual dynamic mechanical properties
of compacted soil.

(2) The results estimated using the proposed fractional-order three-element model are consistent
with the experimental data, suggesting the model is more suitable than the classical three-element model
for describing the characteristics of viscoelastic materials.

(3) The estimated curves based on the fractional-order three element model, including the stor-
age modulus, loss modulus, and dynamic modulus of the compacted soil, increase rapidly; however, at
small frequencies the loss factor rapidly decreases. The upward trends of storage modulus, loss modu-
lus, and dynamic modulus slow down. Moreover, the downward trend of the loss factor also slows and
tends to be stable at higher frequencies.
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Although the results estimated using the fractional-order three element model are relatively con-
sistent with the experimental data, some error exists, particularly in relation to the dynamic modulus
curve. Therefore, to obtain better estimates that are closer to the actual dynamic mechanical properties
of compacted soil, it is necessary to further optimize the fractional-order three-element model.

The fractional-order three-element model can be optimized using the nonlinear least squares
method, which estimates β = 636330, E� = 7787.6, E0 = 3.2014�109, and α = 0.4364 from Eq.(26). The
optimized curves are illustrated in Fig. 4.

Results based on the optimized fractional-order three-element model are extremely close to the exper-
imental data; therefore, the model can more accurately describe the dynamic mechanical properties of soil
during vibratory compaction compared with the classical three-element model and non-optimized model.

Conclusions
1. Rheological properties of viscoelastic and viscoplastic materials can be described by fraction-

al calculus; moreover, fractional calculus-based models can reflect the real deformation process and thus
have powerful capabilities in capturing the static and dynamic stress-strain-time relationship of vis-
coelastic materials.

2. Results estimated using the proposed fractional-order three-element model are better correlat-
ed with experimental data compared with those estimated using the classical three-element model.

3. The proposed fractional-order three-element model can describe the viscoelastic dynamic
mechanical properties of soil during vibratory compaction more accurately than the classical three-ele-
ment model.
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