
Introduction
Existing methods of analyzing beds in terms of bearing capacity and deformations have been

developed primarily for cases of single, short-duration static loading or cyclical loading with cycle
parameters that remain constant over the entire operating period.

Under actual conditions, loads are applied to soil beds in stages, as the building or
structure is erected. Here, stages of active loading during construction transition to stages of
long-term reaction to load if the building contains no equipment that creates dynamic loads or
of if such equipment is installed in the building, there are stages of successive alternation of
long-term static and cyclical loads. Actual (realistic) loading schemes for soil beds are shown
in Fig. 1.

There is a need to refine the method for analyzing the bearing capacity and settlement of foun-
dations for actual regimes of long-term static and cyclic loading. This task is particularly important for
beds composed of clay soil, since in this case the stress-deformation state varies over time and depends
on the prior loading history.

General mathematical models are proposed in [1-6], describing deformation and failure behaviors
in clay soil under arbitrary loading regimes and paths, although no recommendations are provided for
their practical implementation.

The plasticity theory laws used to develop analytical models are not capable of duly considering
the influence of such factors as dilatancy, crack formation and development, reinforcement, reduction in
internal friction angle, and specific cohesion, volumetric deformation modulus, and shear modulus for
different loading regimes.

In this regard, experiments were carried out on clay soil under triaxial load conditions for the
regimes shown in Fig. 1.
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A spatial model of dilatating soil under triaxial load conditions with different regimes are
described on the basis of a hypothesis that the Coulomb dry friction force acts in the
plane of tangential particle shear. Spatial soil deformation over time is described in
accordance with the theory of inherited creep in the form of the sum of deformations due
to changes in volume and shape, with due regard for their interrelation.
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Experimental study results
As follows from Figs. 2 and 3, all axial parameters-deformation modulus, shear modulus, specif-

ic cohesion, internal friction angle, and ultimate stress-undergo changes in the examined regimes that
describe the stressed and deformed state of soil over time, which permits the conclusion that it is impos-
sible to select some constant for their value for a specific soil. The analytical models must include func-
tional dependencies to calculate these parameters for different loading regimes.

Analytical model of soil deformation
Based on the results of experiments and the data in [7-9], it is assumed that for triaxial loading

of a specimen, staged increases in load result in compressed zones in the form of pyramids of different
size and shape, depending on the loading regime (Fig. 4). Deformation of a specimen occurs as a result
of the motion of these pyramids as solid bodies. The physical and mechanical properties of soil do not
degrade in compressed zones, but improve (density, ϕ, and c increase). Negative processes that reduce
soil characteristics, are localized in a zone between the "pyramids" and the soil in this zone is simulta-
neously subject to cleavage and shear.

Based on the results in [1-10], we represent volumetric deformation in the form

(1)

where εv,0(t1, τ) is the volumetric deformation for three-dimensional compression, εv,Di
(t2, τ) and 

are the volumetric deformations caused by a stress deviator; n and m are, respectively, the
stages of deviator loading and exposure at maximum load, or cyclical loading.
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Soil deformation over time is described in accordance with the Boltzmann-Volterra theory of inherited
creep modified by Maslov-Arutyunyan. Complete shear or volume deformation under an arbitrary loading regime:

(2)

(3)

where G(t) and K(t) are shear modulus and volumetric deformation variables, Kγ (t, τ) and KV(t, τ) are
creep kernels that represent the rate of shear and volumetric deformation for unit load intensities and
average stress (taken per [5]).

Based on the model [5] and the results of experiments, a scheme is proposed for inelastic defor-
mation of clay soil, in which the Coulomb dry friction force deviates from the limit equilibrium area
element and acts in a plane of purely tangential particle shear. Determining the orientation of potential-
ly hazardous area elements requires consideration of the deformed state of the soil.
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Retaining the principle of stress  and deformation rate tensor coaxiality [5], we assume that the
Coulomb dry friction force law links the projections of forces acting on limit equilibrium area elements on the
normal to the shear area element and the area element itself. Then the flow condition for long-term loading:

(4)

where S = σ1ll' + σ2mm' + σ3nn'; t = ((σ1lm' − σ2ml')2 + + (σ2mn' − σ3nm')2 + (σ3nl' − σ1ln')2)1/2; ϕ(t, t1, N, τ)
and c0(t, t1, N, τ) are the time-dependent internal friction angle and specific cohesion variables; l, m, n,
l', m', and n' are the direction cosines of the normals to the limit equilibrium and shear area element s,
respectively.

The spatial orientation of the limit equilibrium area elements varies during inelastic soil defor-
mation in response to regime loading and is taken in accordance with [5].

Based on the stated model and the results of research (see Figs. 2 and 3), the strength conditions for
triaxial compression:

(5)

where Ash = b2/(4cosα2(t, t1, N)) is the surface area of the lateral sides of a pyramid; A1 = b2 is the area of
the sides of a cube; .α1(t, t1, N) and α2(t, t1, N) are time-dependent variables of the angle of inclination of
the limit equilibrium and shear area element; σv(t, t1, N)=σ1l(t, t1, N)l'(t, t1, N)+σ2m(t, t1, N)m'(t, t1, N) +
+ σ3n(t, t1, N)n'(t, t1, N)+σd(t, t1, N) are the normal stresses; σd(t, t1, N) = EΔδd/((1 + ν)r) are the dilatant stress-
es; τV(t, t1, N)=Stanϕ0(t, t1, N, τ) + c0(t, t1, N, τ) are the tangential stresses in the limit equilibrium area element.

Thus, soil strength in response to triaxial compression depends on the varying angle of internal
friction, the specific cohesion, and the angle of inclination of the limit equilibrium plane.

Per the results of [1, 2, 5], failure occurs when the extent of damage from microcracks in the
limit equilibrium zone attains a critical value. Soil strength is reduced over time, principally, by reduced
cohesion forces, while at the same time, the internal friction angle changes little.

Relying on the results of [3-6], we proposal the following scheme for development of creep
deformations and changes in long-term strength during the loading process. Depending on the magnitude
and duration of a load in clay soil, there occur two oppositely directed processes-reinforcement, caused
by rebonding of defects and more dense rearrangement of particles, and degradation, caused by the
reorientation of particles and the formation and propagation of micro- and macrocracks (Fig. 4). A stage
of failure and progressive creep occurs in those cases where degradation starts to prevail over reinforce-
ment. An intense disruption of microstructures and reorientation of particles occurs in this stage; more-
over, these processes do not encompass the entire volume of soil, but only zones of limit equilibrium
with reduced strength, where cracks develop (see Fig. 4).
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Fig. 4. Stressed state in a unit volume of soil in X, Y, Z, space at an arbitrary 
time t in a pre-limit state (a); in the principal stress state at the stage of 
limit equilibrium (b); diagram of crack development in limit equilibrium 
planes within a unit volume of soil (c).
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The crack development process may, for convenience, be divided into three stages. The first
stage is that of soil disintegration, which starts with the appearance of submicroscopic cracks. Cracks
appear at pores or at the continuations of shrinkage microcracks (structural defects).

At this stage, cracks are small and it is more correct to speak of the formation of local plasti-
cally deformed sections that unite a set of sub-microcracks and gradually form a disintegration chain
that prepares a route for microcracks. At the initial stage of loading, several disintegration zones are
formed, distributed throughout the entire volume. The disintegration chains turn into microcracks only if
a certain concentration of sub-microcracks is achieved. Large-sized microcracks or macrocracks are
formed as the load exposure time or number of loading cycles increases in the zones where deformation
energy is sufficient to unite individual increments of disintegrated soil.

This stage may be called the incubation stage. The higher the load, the shorter this stage.
The second stage begins when one of the microcracks, which finds itself under the most adverse

conditions, becomes a macrocrack. A zone of plastically deformed material (disintegration zone) always
forms along the front of a developing macrocrack, and subsequent crack growth occurs as a result of this
terminal zone. Processes of material disintegration in the terminal plastic zone and new macrocrack section
creation alternate. Then, depending on the level of stress, the macrocrack develops via stable or stepwise
progress along the length of the disintegration zone. Subsequently, this process repeats systematically.

The second stage ends when the macrocrack achieves a critical size. The crack then develops in
an unstable manner by means of the energy of deformation of the analyzed soil volume.

The duration of the third stage is normally negligible in comparison to the previous stages, and
it manifests itself on the descending leg of the soil deformation diagram. The transition between stages
is stepwise.

The critical opening of the crack tip

δ(x, t, l) = δcr (6)

is taken to be the "failure" criterion (the beginning of increase in length).
The growth in the crack length occurs in a stepwise manner by Δln as stresses increase, until an

overall length d is attained (Fig. 5).
The start of macrocrack development follows. Here, it is assumed that cracks develop in stages

as deformations at the tip achieve a critical value. The increased crack length Δln (see Fig. 5) at each
stage is determined from the condition:

(7)
const .i

i r pl
r

W
W W W

W

β⎡ ⎤⎛ ⎞Δ⎢ ⎥Δ − Δ = =∑ ⎜ ⎟⎝ ⎠⎢ ⎥⎣ ⎦

9

1

1

1 2 i-1 i 2

2
i-1

i

ΔW
ΔWi

ΔWi-1
ΔW2
ΔW1

ΔlnΔln Δln Δln Δln Δln Δln

Δl0                  d              d

x

x

Fig. 5. Diagram of shear crack development in limit equilibrium planes:
1) macro-/microcrack; 2) zones of plastic soil deformation.



The stress intensity factor at the crack tip is:

(8)

The contour interval is:

(9)

The energy accumulated within the plastic deformation zone at the crack tip is:

(10)

The overall crack length in the soil is:

(11)

where l(t0) is the initial crack length at the stage of microcrack development; is the crack
length that depends on plastic deformations.

The above equations are valid provided cracks are situated sufficiently far from each other, i.e.,
when their interaction may be ignored. It is known that the interaction of micro- and macrocracks may
result in a reduction or increase in soil deformability and strength, depending on the mutual positions of
the microcracks and their orientation.

One of the most effective methods of addressing the issue of micro- and macrocrack interaction
is the method of singular integral equations [11]. The essence of the method reduces to the construction
of a complex potential using the superposition method.

The mutual influence is considered by increasing the stress intensity factor at the tip of the
macrocrack [11]:

(12)

where g'n(x) are the derivatives of displacement discontinuities for the k-th crack; l(n) is the length of
the n-th crack; xn is the coordinate of the point under consideration.

The derivative of the displacement discontinuity at the tip of the macrocrack, with due regard for
the formation of a system of micro- and macrocracks in the soil of the analyzed volume is [11]:

g'n(x) = (B/B0)g'n0(x), (13)

where B and B0 are functions of the yielding property of the soil massif when a system of cracks is pre-
sent (B) or when there is one crack in the volume under consideration (B0).

The expression that takes account of the change in specific cohesion between soil particles has
the general form:

c0(t, τ) = KM
Ictq(S), (14)

where q(S) is a function of the total crack length S; KM
Ict is the factor of stress intensity at the crack tip

during the loading process.
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Hereinafter, using the method in [5], after performing certain transformations and simplifications,
we obtain the soil strength reduction function:

(15)

Then the specific cohesion between particles is, with due regard for the time factor:

(16)

where C(t, τ1) is the measure of volumetric soil creep; C0(τ1) is the initial specific cohesion of soil for
short-term loading; m(t, τ1) is a function of soil reinforcement due to the restoration of water-colloidal
bonds; λ(t, τ1) is a function of reinforcement due to the restoration of structural bonds in the soil, with
due regard for the mixture of different blocks during the loading process.

The functions m(t, τ1) and λ(t, τ1) consider delay effects in crack propagation, self-reinforcement,
and self-rebonding of clay soil via the restoration of structure and coagulational bonds.

The change in the soil internal friction angle is determined by the changes in orientation of limit
equilibrium area elements over long-term inelastic deformation.

Conclusion
Analytical models have been developed for the deformation and strength of clay soil under dif-

ferent triaxial loading regimes, including expressions to determine the specific cohesion and internal
friction angle, as well as shear moduli and linear and volumetric deformations.

Analytical models correctly reflect features of nonlinear deformation in clay soil.
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