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A numerical model based on the extended finite element method (XFEM) is developed to
serve this purpose. The present approach involves several features of an effective numer-
ical tool in modelling hydraulic fracturing: the generalized shape functions are used in a
cluster of nodes around the cracks, whereas the conventional finite element shape func-
tions are applied outside the cracks; the ramp function is introduced to remove the blend-
ing elements in the XFEM setting; and the contact conditions between crack faces are
considered by combining the mortar method with the augmented Lagrange's method. This
study assumes uniform water pressures at the crack faces. The effect of the water pres-
sure on the fracture behaviours of cracks and the interaction between the hydraulic and
natural fractures are analyzed. Numerical examples are presented and discussed to show
that the water pressure acting on the crack faces has a significant influence on the stress
and the deformation in the vicinity of the cracks, and the crack propagation path depends
on the mechanical properties of rock mass and natural fracture faces, water pressure, in-
situ stresses, and relative positions of natural and hydraulic fractures.

1. Introduction

Hydraulic fracturing is the fracturing of porous media, such as rock, soil or concrete, by a pres-
surised liquid, and was first used to increase production in the oil and gas industry. Hydraulic fractur-
ing has been widely used in many engineering applications, including measuring in-situ stresses [1],
stimulating groundwater wells [2], increasing injection rates for hazardous solid waste disposal [3] and
enhancing hydrocarbon production and geothermal energy extraction [4]. However, hydraulic fracturing
sometimes may cause severe disasters in engineering. The Malpasset dam in France [5] and the Teton
dam in the USA [6] are typical engineering accidents caused by hydraulic fracturing. Thus, hydraulic
fracturing in rock mass has become a concern in rock engineering.

Natural fractures are present in rock mass, so the interaction between hydraulic and natural frac-
tures is required in the analysis of hydraulic fracturing of rock mass. Given its complexity, research on
the interaction between the natural and hydraulic fractures has focused on experimental tests [7] and
numerical simulation. Several numerical methods have been proposed to solve hydraulic fracturing prob-
lems, including the finite element method (FEM) [8], boundary element method (BEM) [9], element-free
method[10], and finite difference method [11]. However, the mesh must be aligned with the crack path
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Fig.1.  Schematic description of tractions acting on the fracture faces: the rock mass
containing a natural fracture and hydraulic fracture (a); the water pressure on the
hydraulic fracture faces (b); and the contact forces on the natural fracture
faces (c).

in FEM and BEM, and a re-meshing technique is required for the methods as the crack propagates.
Although the element-free method can conveniently deal with crack propagation problems, their compu-
tational costs are high to model multiple cracks.

To overcome the inherent drawbacks associated with the use of FEM and BEM in the simulation
of fracture propagation problems, Belytschko and co-worker [12] proposed the extended finite element
method (XFEM). Numerous studies have been conducted to improve and/or apply XFEM to model frac-
ture propagation problems, including hydraulic fracture problems. Lecampion [13] modelled the fluid
pressure and fracture opening in hydraulic fracture using XFEM for the behaviours of two limiting tips
in the impermeable case.

To improve the accuracy of values in the vicinity of cracks, the first-order generalized node
shape functions are used at the nodes around the cracks, whereas the conventional finite element
shape functions are adopted at nodes outside the cracks. The ramp function is used to remove the
blending elements, and the junction enrichment function is used to model the crack junction. A com-
bination of the mortar method (i.e., segment-to-segment contact approach) with the augmented
Lagrange's method is adopted to establish the contact between natural fracture faces. In this work, the
water pressure on the crack faces is considered as a constant, i.e., the uncoupled hydraulic fracturing
model is applied.

This paper is organized as follows. Section 2 presents the governing equations of hydraulic frac-
turing in rock mass. Section 3 presents the XFEM formulation for hydraulic fracturing in rock mass.
Section 4 presents the crack propagation. Numerical validation is studied in Section 5, while Section 6
presents our numerical applications using the present XFEM method. We will end with concluding
remarks in the last section.

2. Governing equations of hydraulic fracturing in rock mass

Consider a two-dimensional rock mass domain Q containing a natural fracture and hydraulic
fracture, as depicted in Fig. 1, a. The boundary of the domain I" is composed of the stress boundary
I',, displacement boundary I' and crack face I'.. The crack face contains both the hydraulic fracture
face I', and natural fracture face I ie,T'= F UL UI'_UT"_. The water pressures are applied on the
hydrauhc fracture faces. The water pressure on the hydrauhc fracture faces may cause the natural
fracture faces to close, so the contact forces on the natural fracture faces must be considered. For
simplicity, we do not distinguish the water pressures on hydraulic fracture faces and the contact forces
on natural fracture faces, both of which are denoted as 7. However, we dlstmgulsh the crack faces I';
and ' as shown in Fig. 1, b, ¢, so that I', = TUT_ . The tractions 7 and —7 are imposed on r’ and
r., respectlvely.
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The equilibrium equations and boundary conditions are

Vo+ b =0in Q (1)
on=1 onT, )
u=uonl, 3)
on= T on r;ur; 4)
o(-n)=—-7 on I UI'_, (5)

where o is the Cauchy stress tensor, b is the body force, 7 is the prescribed external traction on T, u
is the displacement, u is the prescribed displacement on I', and n is the outward unit normal vector on
[ and T

During the hydraulic fracturing process, contact between the two crack faces of natural fracture
may occur. To consider the mechanical behaviour of the natural fracture, the contact conditions between
crack faces must be considered. The augmented Lagrange's multipliers are introduced between the crack
faces, which are expressed as

),_n:),n+Eu /’L_T=2,T+E1ur, (6)

n-n’

where A and A_are the normal and tangential Lagrange's multipliers, and E, and E_ are the normal and
tangential penalty factors, respectively. The relative displacements in normal and tangential directions of
any pair of contact points are

u, = u,— U, U, =U, —u 7

+

where (u,, u;) and (u,, u ) are the normal and tangential displacements of any pair of contact points on
I'"and I'_, as in Fig. 1, c.

n’

Generally, the interpolation of the augmented Lagrange's multipliers field can be expressed as

— 2 —
A =S M)A (j=n1), ®)

i=1
where M () = (1 — /2, M) = (1 + {)/2, { is the local coordinate along the crack, and Aji is the

value at the crack-mesh intersection or inflection point of the crack.
So the weak form of the equilibrium equation is

£ = = - = =
g ((v))dQ+jr+ tvidS — [ tvdS = [ ,bvdQ+ [, tvdS + [t vidS — [ tv7dS, ©)
o(u e e ‘ o o
where u is the trial function that satisfy all displacement boundary conditions and usual smoothness
CO(Q), v is the test function, v and v~ are the virtual displacements on 1"; and 1";'.
By setting u, = v* — v7, considering the frictional contact condition between crack faces, we can
express the weak form of the equilibrium equation, Eq. (9), as

[RS2FT Jr., nbit, + Xeu)dS = [ob Sud Q-+ Iy 16udS + . u,dS. (10)

o (u)

3. XFEM for hydraulic fracturing in rock mass
In XFEM, the standard displacement approximation around the crack is enriched with the dis-
continuous step function in the split elements, asymptotic fields near the crack tip, and junction-
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Fig.2. Enriched nodes and enrichment types: (1) Nodal set J; ®) Nodal
set K'; <) Nodal set K; X) Nodal set L; gray areas show where the nodal
generalized shape functions are used.

enriched function in the junction elements. The enriched displacement approximation can be written as
follows:

Mm=2Mum+zmwmﬂw4mw%+ig@mm@N%ENQW%mm+ (1

iel jed

+EM®Q®—KW%,

where N(x) is the finite element shape function; u, a, b,, and c, are the displacements and enrichment
nodal variables; [ is the set of all nodes in the discretisation; J is the set of nodes whose support is
entirely split by the crack (the squared nodes in Fig.2) and are enriched with a modified Heaviside step
function H(x), which assumes the value +1 above the crack and —1 below the crack; K is the set of
nodes whose support is partly split by the crack (the circled solid nodes in Fig.2); K is the set of nodes
in K" plus their nearby nodes (the circled hollow nodes in Fig.2) and are enriched with the crack-tip
fields; L is the set of nodes whose support contains the junction (the crossed nodes in Fig.2); and
R(x)= Z*N ;(x) is the ramp function [14] whose introduction can remove the blending elements.

ieK

For an isotropic elastic material, the crack-tip branch enrichment functions F (x) (a = 1,...,4) are
defined as

F,(r,0)= [\/; singx/;cosgx/;sin gsin 0~/r cos gsin 9]7 (12)

where r and 6 are the local crack tip polar coordinates.
The junction enrichment function J(x) is chosen as [15]:

H(f,(0)-H (f,(x))) for fi(x)fi(x,) <0’

where f|(x) and f,(x) are the signed distance functions of the master crack (the crack with two crack tips
in Fig.2) and minor crack (the crack with one crack tip in Fig.2), respectively.
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To improve the accuracy of stresses around the crack at a low cost, N(x) around the cracks is
adopted as the generalized shape function, whereas the conventional finite element shape function is
used outside the crack. In Fig.2, the red domains show where the nodal generalized shape functions are
used. Considering the cost and accuracy, the first-order nodal displacement interpolation function is
used, and the generalized shape function matrix of node i is expressed as follows [16]:

10 x-x, 0 y-y, O
N, =9, : (14)
01 0 x-x; O y—y;

1

where @, is the conventional finite element shape function and (x,. y,) are the coordinates of node i.
By discretizing Eq. (10) with XFEM, we obtain the governing equation for hydraulic fracturing
in the rock mass:

(K+K)d =f, (15)

where d = [u a b c]" is the array of nodal unknowns, and K, K, and f are the global stiffness matrixes,
the stiffness matrix on the contact crack faces, and external nodal force vector, respectively.

4. Crack propagation

The stress intensity factors are computed using the interaction integral method. Two scenarios
are considered: scenario 1 (GI.J(,”, 81;'), u") corresponds to the actual state; scenario 2 (qj‘?), sif), u?) is an
auxiliary state that will be chosen as the asymptotic fields for model I or II. In the presence of tractions
on the crack faces, such as frictional force or water pressure, the interaction integral may be written as
follows[17]:

ou® au | 9 ou”
1.2) _ 1.2 1 i q
I( ) —_[A —W( )511' +G§j) W-i_dfj a ax —dA - IC i 12 a (552 xl mzdr (16)

where W' = g'g? = 07¢/" is the interaction strain energy; ¢ is a weighting function, which takes a
value of unity on an open set containing the crack tip and vanishes on an outer prescribed contour; m,
is the outward normal to the domain used for the computation of stress intensity factors; and C denotes
the hydraulic fracture faces I', and natural fracture faces F,, ie, C=T, UF

By selecting the aux1hary state as the pure mode I or II asymptotlc flelds we can obtain the
stress intensity factors of modes I and II:

2 2
1) _ (I,mode I) 1) _ (1,mod e II)
KI —_*I > KII - _*I > (17)

where E"= E is the plane stress, and E = E/(1 — V?) is the plane strain.
The crack growth angle in the local crack-tip coordinate system can be expressed as

2 2
0= 2tan-| Kr VK H8K,) | (18)

4K,

In Eq. (18), the fracture mode is pure mode I for K,, = 0; then 6 = 0; the crack growth angle 6 < 0
when K, > 0, and 6 > 0 when K, < 0.
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TABLE 1

Size of the plate Normalized stress intensity factors obtained by

b y proposed standard SBFEM | BCM |analytical solution
a ca XFEM XFEM [19] [18] [20]

4 3 1.840 1.839 1.838 1.8384 1.93

8 5 1.274 1.271 1.297 1.2670 1.35

12 7 1.253 1.252 1.254 1.2521 1.26

16 9 1.201 1.198 1.206 1.1979 1.20

20 11 1.199 1.203 1.205 1.1859 1.19

0o 0o 1.1215 1.1215 1.1215 / 1.1215

For the closed natural fracture, a certain anti-tension strength exists on the crack faces. The nat-
ural fracture will open when the effective normal stress on the natural fracture faces reaches the anti-
tension strength.

5. Numerical validation

To validate the accuracy of the developed XFEM model, an edge-cracked rectangular plate with
the height b units and the width ¢ units under water pressure p units acting on the crack faces is ana-
lyzed; and the crack length is in a units centred at of the crack height. Young's modulus E is chosen as
1,000 Pa, and Poisson's ratio v is taken as 0.3. In the numerical analysis, the displacement along the
vertical direction is fixed at the bottom right corner, and the plate is clamped at the bottom left corner;
plane strain conditions are assumed, and the nodes in one layer of elements around the crack have gen-
eralized shape functions.

The normalized stress intensity factors with p\/ﬂ_a are computed and compared with the standard
XFEM, boundary collocation method (BCM) [18], scaled boundary finite element method (SBFEM)
[19], and analytical solutions [20], as shown in Table 1. The numerical results obtained by the developed
XFEM are shown to be in good agreement with the reference SBFEM, BCM, and analytical solutions,
which confirms the higher accuracy of the developed XFEM than the standard XFEM; thus the proposed
method can improve the accuracy.

6. Numerical examples

In this section, two numerical examples are presented to assess the robustness of the developed
XFEM for simulating the hydraulic fracturing in rock mass. In all examples reported below, Poisson's ratio
v is taken as 0.3 and Young's modulus E is chosen as 1,000 MPa, the penalty factors are £, = E_= 1,000E,
the friction coefficient between crack faces is y = 0.3, the critical energy release rate of rock mass
G, = 0.1 MPa'm, the initial state of natural fracture is closed, and the tensile strength of natural frac-
ture is f, =0.005 MPa. Plane strain conditions are assumed, and the nodes in one layer of elements
around the crack have generalized shape functions.

6.1 One horizontal hydraulic fracture and one oblique natural fracture

One domain, including one horizontal hydraulic fracture and a natural fracture with inclination
angle 63.4°, is shown in Fig. 3, a, and the enriched styles are shown in Fig. 3, b. The water pressure
inside the hydraulic fracture is p = 10 kPa.

The hydraulic fracturing process is simulated in two steps. In each step, the crack propagates a
distance of 0.26 m. Table 2 shows the energy release rates (kPa'm) of three crack tips labelled (1), (2)
and (3) in Fig. 3, a for each step. The energy release rate of the hydraulic fracture tip is much bigger
than those of the two natural fracture tips and bigger than the critical energy release rate. Thus, the
hydraulic fracture tip propagates by the direction of maximum hoop stress, whereas the two natural frac-
ture tips stop. When the hydraulic fracture tip intersects with the natural fracture, the crack tip-enriched
elements of the hydraulic fracture become the junction-enriched elements.
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Fig.3. One domain including an oblique natural fracture and one horizontal
hydraulic fracture (a); enriched style around the cracks (b).

TABLE 2
Step Tip (1) Tip (2) Tip (3)
0 1,057 11.6 19.6
1 1,849 394 515
2 3,488 78.2 81.5

Fig.4 shows the opening displacements of the natural fracture during hydraulic fracture propaga-
tion. The following features observed from the results may be evident: (1) the part of the natural frac-
ture around the hydraulic fracture tip is under tensile stress due to the water pressure on the hydraulic
fracture; (2) in the zone far from the hydraulic fracture tip (around the natural fracture tips) the
hydraulic fracture exerts compression on the natural fracture, so the natural fracture faces are closed; (3)
the opening displacement is larger when the hydraulic fracture tip is closer to the natural fracture; (4)
the natural fracture is asymmetric, so the hydraulic fracture propagates in the direction with smaller
pressure (far from the hydraulic fracture).

6.2 One horizontal hydraulic fracture and one oblique natural fracture under far field stress

Similar to the above example, one domain, including one horizontal hydraulic fracture and one
oblique natural fracture, under far field stress in parallel and vertical directions o, = 1 MPa and water
pressure p = 1 MPa is considered.

The contact stresses along the natural fracture are shown in Fig.5. Around the hydraulic fracture
tip, hydraulic fracturing generates tensile stress to the natural fracture, and the far field stress generates
pressure to the natural fracture. The natural fracture around the hydraulic fracture tip is under water
pressure because of both hydraulic fracturing and far field stress. In the entire zone of the natural frac-
ture, the normal stress A, and shear stress A, satisfy |/l |<u|l | so the entire natural fracture is in
the adhesive state.

The crack growing process is simulated in four steps. In each step, the crack propagates a dis-
tance of 0.26 m. To investigate the effect of the mechanical properties of natural fracture faces on the
propagation path, several different mechanical properties of the natural fracture faces are considered.

After the hydraulic fracture intersects with the natural fracture, for the closed natural fracture, if
the effective normal stresses ¢ (water pressure plus normal contact stress 6¢ = p + ©,) of the natural
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Fig.4. Crack opening displacements along the natural fracture.
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Fig.5. Contact stress along the natural fracture under far field stress.

fracture faces at the present and next hydraulic fracture tips reach the anti-tensile strength, the closed
crack faces will open. To investigate the effect of the mechanical properties of the natural fracture faces
on the propagation path, three cases are considered. Case (1): The critical energy release rate of the rock
mass is G** = 0.05 MPa-m, and the water pressure is p = 0.5 MPa. The normal contact stress at the
intersection is —0.61 MPa. When the hydraulic fracture intersects with the natural fracture, the natural
fracture may open at the intersection along two directions (i.e., the positive direction of s and the neg-
ative direction of s). The normal contact stress at the next hydraulic fracture tip in the positive and neg-
ative directions of s is —0.53 and —0.79 MPa, respectively. The effective normal stresses at the present
and next hydraulic fracture tips are less than f,, so the water may not enter the natural fracture. Thus,
the hydraulic fracture is arrested by the natural fracture. Case (2): The critical energy release rate of the
rock mass is G * = 0.1 MPa'm, and the water pressure is p = 2 MPa. In this case, the normal contact
stress at the intersection is —0.09 MPa. When the hydraulic fracture intersects with the natural fracture,
the normal contact stresses at the next hydraulic fracture tip in the positive and negative directions of s
are —0.03 and —0.10 MPa, respectively. The effective normal stresses at the present and next hydraulic
fracture tips in the positive and negative directions of s are greater than f, so the hydraulic fracture
propagates in the two directions along the closed natural fracture for one step. Thus, the normal contact
stresses at the next hydraulic fracture tip in the positive and negative directions of s are —0.13 and —0.22
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MPa, respectively. The effective normal stresses at the present and next hydraulic fracture tips in the
positive and negative directions of s are greater than f, so the hydraulic fracture still propagates in the
two directions along the closed natural fracture for one step. Case (3): The critical energy release rate
of the rock mass is G** = 0.1 MPa-m, and the water pressure is p = 10 MPa. In this case, the normal
contact stress at the intersection is 1.51 MPa. When the hydraulic fracture intersects with the natural
fracture, the normal contact stresses at the next hydraulic fracture tip in the positive and negative direc-
tions of s are 2.96 and 0.20 MPa, respectively. These normal stresses are greater than f,, so the hydraulic
fracture propagates in the two directions along the closed natural fracture for one step. Thus, the normal
contact stresses at the next hydraulic fracture tip in the positive and negative directions of s are 4.59 and
—0.17 MPa, respectively. The effective normal stresses at the present and next hydraulic fracture tips in
the positive direction of s are greater than f, whereas the effective normal stresses at the next hydraulic
fracture tip in the negative direction of s is less than f, so the hydraulic fracture still propagates in the
positive direction along the closed natural fracture for one step.

The results show that the mechanical properties of natural fracture faces and water pressure have
a significant effect on the hydraulic fracture propagation.

Conclusion

Based on the uncoupled hydraulic fracturing model, an XFEM model of hydraulic fracturing is
developed to investigate the hydraulic fracturing phenomenon in rock mass. To improve the accuracy
around the fracture at a low cost, the generalized shape functions are used in a cluster of nodes around
the fractures, whereas the conventional finite element shape functions are applied outside the fractures.
The ramp function is introduced to remove the blending elements. The mortar method (e.g., segment-to-
segment contact approach) is combined with the augmented Lagrange's method to treat the contact con-
ditions between facture faces. The accuracy of the developed XFEM for hydraulic fracturing is very
good, as validated by the reference solution. Numerical results show that the water pressure acting on
the fracture faces influences significantly the stress and deformation in the vicinity of the fractures, and
the fracture propagation path depends on the mechanical properties of rock and natural fracture face,
water pressure, in-situ stresses, and relative positions of natural and hydraulic fractures.
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