
Investigations of clayey soils subject to shear [1-16] indicate that in generalized form, the rheolog-
ic curves can be represented by creep curves under a static load (τ = const) (Fig. 1, a), by τ(t) = f( , σ)
curves under a kinematic loading regime ( ) (Fig. 1, b), and by τ(t) = f(y0, σ) stress-
relaxation curves for an assigned fixed deformation (y(0) = const, τ(t) ≠ const) (Fig. 1, c), where τ and
σ are the tangential and compressive stresses, γ and are the deformation and its rate, v is the rate of
angular deformation, and t is time. 

In [1-16], these curves are described for each case by empirical relationships based on rheolog-
ic models.

In this study, an equation is proposed for description of the shear deformations of a clayey soil
exhibiting clearly expressed rheologic properties; it is derived on the basis of modification of Maxwell's
rheologic model in which the threshold of creep τ*, and the hardening and loosening during shear are
defined more precisely as a function of the accumulated shear strain (Fig. 2).

The idea of simultaneous hardening and loosening of a clayey soil during deformation has been
repeatedly utilized by S. S. Vyalov, M. N. Gol'dshtein, and G. I Ter-Stepanyan, and has acquired exper-
imental confirmation in [1-5].

In codifying these investigations, Vyalov [1] noted that creep of soils is accompanied by mutually
opposing hardening and stratification phenomena of the soil. If hardening predominates, deformations will
attenuate, and if stratification predominates, non-attenuating creep resulting in failure of the soil will
develop in the latter. Studying the kinetics of the deformations and structural changes, Vyalov developed a
kinematic theory of the strength and creep of soil on the basis of Ya. I. Frekel's molecular theory of flow.

The equation that we are proposing applies to the theory of flow, when the strain rate is summed
from the elastic e and viscoplastic vp strain rates = e + vp
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A rheologic equation is proposed for description of the shear deformations of an incom-
pletely saturated clayey soil; the equation was derived on the basis of modification of
Maxwell's rheologic model. It is demonstrated that the proposed equation describes
creep, relaxation, and kinetic shear for the same parameters, including transient, steady-
state, and progressive creep as a function of tangential-stress intensity.
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where a, b, α, and β are hardening and loosening parameters, G is the shear modulus, and τ* is the creep
threshold

(2)

where σ ' is the effective stress, and c(t) is the time-dependent cohesion. 
Equation (1) is written similarly for triaxial compression, if the subscript i is added to all param-

eters, denoting conversion to strain rates γi, and shear stresses τi and τi
*.

Let us examine the rheologic processes on the basis of (1).

Creep and long-term strength
For a constant coefficient of cohesion (c(t) = const) and dilatational strain, analysis of Eq. (1)

indicated that the critical value of the angular strain γcr, which is obtained from the condition of con-
stancy of acceleration = 0, are constant at the deflection points on the creep curves (see Fig,. 1, a),
upper portion) and are defined by the equation
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Fig. 1. General appearance of rheologic curves: a) creep and long-term strength
(τ1 < τ2 … < τ7 are critical τ values when γcr = const); b) tangential 
stresses τ(t) for different constant shear-strain rates ( = const); here,

; c) relaxation of shear stresses for different σ values 
(on right), and limiting line of residual (long-term) shear strength (on 
left).
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Fig. 2. Maxwell's rheologic model with consideration of hardening, loosening,
and structural shear strength: 1) elastic element; 2) structural strength; 
3) viscous element.



(3)

and the corresponding critical stresses τcr and times tcr will depend on τ and γcr, i.e., τcr = f(τ, γcr) and
tcr = f(τ, γcr). 

The time tcr required for development of a deflection point on the creep curve can be determined
from the intersection of the lines γ(t) and γcr = const (see Fig. 1). Consequently, each τ will have its cor-
responding τcr and tcr.

Using (1) and (3), the parameters τ0 and τ� on the long-term-strength curve can therefore be
determined on the basis of the parameters obtained from the creep curve (see Fig. 1, a, lower portion).

Equation (1) can be used to analyze results of soil tests conducted under laboratory conditions.
By analogy with (1), the equation 

(4)

can be used to describe creep processes in a soil mass. 
When τ = const,

(5)

Solution of (5) can be represented as 

(6)

where a1, α1, b1, γ1, and β1 are time-dependent hardening and softening parameters, and η is the viscosity.
Calculations performed on the basis of (5) indicate that the expression γ(t) has a double curva-

ture as in the case of (1), i.e., describes attenuating, non-attenuating, and progressive creep as a func-
tion of the level of stress τ, and the parameters a1, b1, α1, and β1 (Fig. 3).This result is dictated by the
difference in the exponential functions within the parentheses in (4), the first of which describes hard-
ening, and the second loosening. 

Consequently, Eqs. (1) and (5) are analogous, since their solution leads to the same results. 
For use of (5) in the solutions of boundary problems, it is necessary to determine the parameters

a1, b1, α1, and β1 from experiments, which may differ from the parameters in (1).

Kinematic shear
Deviator loading of a specimen after hydrostatic compression at a constant axial-strain rate = const

is one of the most widely utilized triaxial tests of soils. For simple shear (distortion) and a kinematic
loading regime ( = const), Eq. (1) assumes the form

(7)

where v is the angular-strain rate = v = const.γ
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After transforming (7), we have:

(8)

Solution (8), which is obtained with use of the MathCad software package for different shear-
strain rates , makes it possible to construct a family of τ(t)−γ curves (Fig. 4). Analyses indi-
cated that they have extrema corresponding to the maximum τmax, and minimum τmin in a characteristic
time tcr = const, and a common asymptote. It is obvious that τmax(σ) and τmin(σ) curves can be con-
structed from these curves when the assigned = const. 

Stress relaxation
Equation (1) describes the stress relaxation when = 0, i.e., when γ(t) = γ(0) = const, and the

initial stress τ0 > τ*. In that case, solution (1) takes on the form

τ (t) = τres(1 − e−At) + τ0e
−At, (9)
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Fig. 3. γ − t curves for clayey soil subject to various tangential 
stresses τ (1-4) under simple shear from (1) for assigned 
parameters α, β, a, b, and η, and when τ > τ*.
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where and τres = f(σ) is the residual strength. (10)

The limiting line of residual strength can be determined from the stress-relaxation curve for dif-
ferent compressive stresses σ (see Fig. 1, c, left side).

Solution of some problems of applied soil mechanics
When a pile interacts with the surrounding soil exhibiting rheologic properties, the problem

reduces to determination of the distribution law governing the constant force N on the pile between the
resistance against the lateral surface T(t) and under the lower end of the pile R(t) (Fig. 5), whereupon 

N = T(t) + R(t), (11)

where N = πa2
0p1; T = 2πa2

0l; R = πa2
0p2; a0 and b0 are the radii of the pile and its zone of influence, l is

the length of the pile, and p1 and p2 are the stresses at the level of the head  and beneath its heel.
To solve this problem, the settlements of the pile due to the effect of forces T(t) and R(t) should

be determined, and equated, assuming that the compression modulus Ep of the pile is much greater than
the compression modulus of the surrounding soil Es, i.e., Ep > Es. Let us examine different cases for a
two-layer mass, the upper layer of which exhibits type-(4) elastoviscous properties, and the lower layer
elastoplastic and viscous properties.

The settlement rate of the pile under the action of friction force T(t) can be determined from the
solution that we have obtained on the assumption of a shear mechanism for displacement of the soils
around the pile, and with disregard of dilatational strains [11]. When τ* = 0, we have

(12)
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(13)

The settlement rate of the pile due to the force R(t) can be determined from the solution con-
cerning the impression of a circular rigid plate in an elastic medium 

(14)

where K1 < 1 is a coefficient that takes into account the depth of load application on the plate, and p1

and are the load on the plate and its rate of change, respectively.
Comparing (12) and (14) with consideration of (11), we obtain

(15)

After certain transformations, we have

(16)

where

(17)

Solution (16) with the initial condition p2(0) = 0 (obtained with use of the MathCad software
package) indicated that p2 varies over time at a different rate, and tends to constant values (Fig. 6). The
settlement of the pile can also be determined from (14), substituting p2(t) for (t). It is obvious that
S(t) � S� = const.

The settlement rate of the bed soils beneath the heel of the pile can be determined, assuming an
elastoplastic bed in first approximation

(18)

where p*
2 is the limiting load on the bed soil, as determined from [11].

It follows from (1) that when p2 � p*
2, � �.

Comparing (4) with (18), and considering (11), we obtain the nonlinear differential equation in
terms of p2:
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(19)

In solving (19), it was established that p2 evolves over time at a different attenuating rate, and
tends to constant values (Fig. 7), while in contrast to Fig. 6, b, the settlement develops at an attenuat-
ing and non-attenuating rate, depending on the intensity of the applied load p1 = N/πa2 (Fig. 7, b).

Basic conclusions
1. A rheologic equation in which the hardening and softening of a clayey soil are defined more

precisely is proposed for description of shear deformations on the basis of a modified Maxwell model.
2. Analysis of the equation indicated that for a constant load, it describes attenuating, non-atten-

uating, and progressive creep of soils, and also processes of stress relaxation and shear deformation in
a kinematic loading regime.   

3. When the equation is used in the problem of interaction between a pile and the surrounding
soil, distribution of the forces on the pile between the lateral surface and under its lower end will occur
over time, and may lead to attenuation, or non-attenuation of the pile's settlement, depending on the
load applied and the parameters of the soil around the pile and under its heel.
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Fig. 6. Plots showing dependencies of p2 on t (a), and S on t (b) based on (16) and (14),
respectively, for assigned parameters 1, 2, 3, and 4, which are introduced to (15).
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