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Abstract
The purpose of this paper is to study the convergence of the quasi-maximum likelihood
(QML) estimator for long memory linear processes. We first establish a correspondence
between the long-memory linear process representation and the long-memory AR(∞) pro-
cess representation. We then establish the almost sure consistency and asymptotic normality
of the QML estimator. Numerical simulations illustrate the theoretical results and confirm
the good performance of the estimator.

Keywords Long memory process · Semiparametric estimation · Linear process · Limit
theorems

1 Introduction

Since Hurst’s (1953) introduction of long-range dependent processes, much research has
focused on estimating the long-range parameter, whether defined on the basis of the asymp-
totic power-law behavior of the correlogram at infinity or that of the spectral density at zero
[see the monographs (Beran 1994) and Doukhan et al. (2003) for more details].

Two estimation frameworks have been studied extensively. The first focused on the esti-
mation of the long-memory parameter alone, but could be carried out in a semi-parametric
framework, ı.e. if only the asymptotic behavior of the correlation or spectral density was
specified. This led to the first methods proposed historically, such as those based on the R/S
statistic, on quadratic variations, on the log-periodogram, or more recent methods such as
wavelet or local Whittle [again, see Doukhan et al. (2003) for more details].

Hereweare interested in amoreparametric framework, and in estimating all the parameters
of the process, not just the longmemory parameter. The first notable results on the asymptotic
behavior of such a parametric estimator were obtained in Fox and Taqqu (1986) in the special
case of Gaussian long-memory processes, using the Whittle estimator. These results were
extended to linear long-memory processes with a moment of order 4 by Giraitis and Surgailis
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(1990). In both settings, the asymptotic normality of the estimator was proved, while non-
central limit theorems were obtained for functions of Gaussian processes in Giraitis and
Taqqu (1999) or for increments of the Rosenblatt process in Bardet and Tudor (2014). The
asymptotic normality of the maximum likelihood estimator for Gaussian time series was also
obtained by Dahlhaus (1989) using that of the Whittle estimator obtained in Fox and Taqqu
(1986).

For weakly dependent time series, especially for conditionally heteroscedastic processes
such as GARCH processes, the quasi-maximum likelihood (QML) estimator has become
the benchmark for parametric estimation, providing very interesting convergence results
where Whittle’s estimator would not. This is true for GARCH or ARMA-GARCH processes
[see (Berkes and Horváth 2004) and Francq and Zakoian (2004)], but also for many others
such as ARCH(∞), AR(∞), APARCH processes, etc. (Bardet and Wintenberger 2009).
We will also note convergence results for this modified estimator for long-memory squares
processes, typically LARCH (∞) processes, see Beran and Schützner (2009), or quadratic
autoregressive conditional heteroscedastic processes, seeDoukhan et al. (2016). But for long-
memory processes, such as those defined by a non-finite sum of their autocorrelations, to our
knowledge only the paper by Boubacar Maïnassara et al. (2021) has shown the normality
of this QML estimator in the special case of a FARIMA(p, d, q) process with weak white
noise.

We therefore propose here to study the convergence of the Gaussian QML estimator in
the general framework of long-memory one-sided linear processes. In such a framework, we
begin by noting that theQML estimator is in fact a non-linear least-squares estimator. The key
point of our approach is to prove that long-memory one-sided linear processes can be written
in autoregressive form with respect to their past values, which we can call long-memory
linear AR(∞). This is perfectly suited to the use of QMLE, since this estimator is obtained
from the conditional expectation and variance of the process. We then show the almost sure
convergence of QMLE for these long-memory AR(∞) processes, which generalizes a result
obtained in Bardet and Wintenberger (2009) for weakly dependent AR(∞) processes. We
also prove the asymptotic normality of this estimator, which provides an alternative to the
asymptotic normality of Whittle’s estimator obtained in Giraitis and Surgailis (1990). An
advantage of QML estimation lies in the fact that, because it is applied to processes with
an AR(∞) representation, the fact that the (Xt ) series is centered or not has no effect at all
on the parameters of this AR(∞) representation, particularly on the estimation of the long
memory parameter.

Finally, we performed simulations of two long-memory time series and examined the
performance of the QMLE as a function of the size of the observed trajectories. This showed
that the behavior of theQMLE is consistentwith theory as the size of the trajectories increases,
and provides a very accurate alternative to Whittle’s estimator. An application on real data
(average monthly temperatures in the northern hemisphere) is also presented.

This article is organized as follows: the Sect. 2 below presents the AR(∞) notation of an
arbitrary long memory one-sided linear process, the Sect. 3 is devoted to the presentation of
the QMLE estimator and its asymptotic behavior, numerical applications are treated in the
Sect. 4, while all proofs of the various results can be found in the Sect. 6.
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2 Long-memory linear causal time series

Assume that ε = (εt )t∈Z is a sequence of centered independent random variables such as
E[ε20] = 1 and (ai )i∈N is a sequence of real numbers such as:

ai = La(i) i
d−1 for i ∈ N

∗ and a0 > 0, (2.1)

where d ∈ (0, 1/2) and with La(·) a positive slow varying function satisfying

for any t > 0, lim
x→∞

La(xt)

La(x)
= 1.

Now, define the causal linear process (Xt )t∈Z by

Xt =
∞∑

i=0

ai εt−i for any t ∈ Z. (2.2)

Since 0 < d < 1/2, it is well know that (Xt )t∈Z is a second order stationary long-memory
process. Indeed, its autocovariance is

rX (k) = Cov (X0, Xk) =
∞∑

i=0

ai ai+k ∼ Cd L
2
a(k) k

2d−1 when k → ∞, (2.3)

where Cd = ∫ ∞
0 (u + u2)d−1 du (see for instance Wu et al. 2010).

Then, it is always possible to provide a causal affine representation for (Xt )t∈Z, i.e. it is
always possible to write (Xt )t∈Z as an AR(∞) process:

Proposition 2.1 Let (Xt )t∈Z be a causal linear process defined in (2.2) where (ai ) satisfies
(2.1). Then, there exists a sequence of real number (ui )i∈N∗ such as:

Xt = a0 εt +
∞∑

i=1

ui Xt−i for any t ∈ Z, (2.4)

where (ui )i∈N∗ satisfies

∞∑

i=1

ui = 1 and un ∼
n→∞

a0 d

�(d) �(1 − d)
L−1
a (n) n−1−d = Lu(n) n−1−d (2.5)

where Lu is a slow varying function.

Remark 2.1 Using (6.1), the reciprocal implication of Proposition 2.1 is also true: if (Xt )

satisfies the linear affine causal representation (2.4) where (ui )i∈N satisfies (2.5), then (Xt )

is a one-sided long-memory linear process satisfying (2.2) where (ai ) satisfies (2.1).

Remark 2.2 It is also known that �(d) �(1 − d) = π

sin(π d)
for any d ∈ (0, 1), and this

implies un ∼
n→∞

a0 d sin(π d)

π La(n)
n−1−d .

As a consequence, every long-memory one-sided linear process is a long-memory AR(∞)

process with the special property that the sum of the autoregressive coefficients equals 1.
This is the key point for the use of quasi-maximum likelihood estimation in the following
section.

123



Statistical Inference for Stochastic Processes

Example of the FARIMA process Let (Xt )t∈Z be a standard FARIMA(0, d, 0) with d ∈
(0, 1/2), which means X = (I − B)−dε, where B is the usual backward linear operator on
R
Z and I the identity operator. Then, using the power series of (1 − x)−d , it is known that

Xt =
∞∑

i=0

aiεt−i with ai = �(i + d)

�(i + 1)�(d)
for t ∈ Z.

Using the Stirling expansion of the Gamma function, i.e. �(x) ∼
x→∞

√
2π e−x x x−1/2, we

obtain an ∼
n→∞

1
�(d)

nd−1, which is (2.1) with La(n) ∼
n→∞

1
�(d)

.

Moreover, the decomposition X = ε + (I − (I − B)d) X implies:

Xt = εt + d
∞∑

i=1

�(i − d)

�(1 − d) �(i + 1)
Xt−i for t ∈ Z.

Theexpansion
�(n − d)

�(n + 1)
∼

n→∞ n−1−d provides Xt = εt+∑∞
n=1 un Xt−n withun ∼

n→∞
d

�(1−d)

n−1−d is equivalent to (2.5) when a0 = 1 and La(n) ∼
n→∞

1
�(d)

.

3 Asymptotic behavior of the Gaussian Quasi-maximum likelihood
estimator

3.1 Definition of the estimator

Wewill assume that (Xt )t∈Z is a long-memory one-sided linear process written as an AR(∞)

process, i.e.

Xt = σ ∗ εt +
∞∑

k=1

uk(θ
∗) Xt−k for any t ∈ Z, (3.1)

where

• (εt )t∈Z is a white noise, such that ε0 has an absolutely continuous probability measure
with respect to the Lebesgue measure and such that E[ε20] = 1;

• for θ = t (γ, σ 2) ∈ � a compact subset of Rp−1 × (0,∞), (un(θ))n∈N is a sequence of
real numbers satisfying for any θ ∈ �,

un(θ) = Lθ (n) n−d(θ)−1 for n ∈ N
∗ and

∞∑

n=1

un(θ) = 1. (3.2)

with d(θ) ∈ (0, 1/2). We also assume that the sequence (un(θ)) does not depend on
σ 2;

• θ∗ = t (γ ∗, σ ∗2), θ∗ is in the interior of �, with σ ∗ > 0 an unknown real parameter and
γ ∗ ∈ R

p−1 an unknown vector of parameters.

A simple example of such a sequence (un(θ)) is un(θ) = (ζ(1 + d))−1 n−1−d for n ∈ N
∗,

with θ = (d, σ 2) ∈ (0, 1/2) × (0,∞) where ζ(·) is the Riemann zeta function. Then
� = [dm, dM ] × [σ 2

m, σ 2
M ], with 0 < dm < dM < 1/2 and 0 < σ 2

m < σ 2
M .
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For ease of reading, denote d∗ = d(θ∗) the long-memory parameter of (Xt ). Denote also
d∗+ = d∗ + ε where ε ∈ (0, 1/2 − d∗) is chosen as small as possible. Since (un(θ))n∈N
satisfies (3.2), we know from Remark 2.1 that there exists Ca such that for any t ∈ Z,

Xt =
∞∑

i=0

ai (θ
∗) εt−i with |ai (θ∗)| ≤ Ca

i1−d∗+
for all i ∈ N

∗. (3.3)

We also deduce from (2.3) that there exists Cc > 0 satisfying

|rX (k)| = ∣∣Cov (X0, Xk)
∣∣ ≤ Cc

(1 + k)1−2d∗+
for all k ∈ N. (3.4)

In the sequel we will also denote for any θ ∈ �,

mt (θ) =
∞∑

k=1

uk(θ) Xt−k for any t ∈ Z. (3.5)

We want to estimate θ∗ from an observed trajectory (X1, . . . , Xn), where (Xt ) is defined
by (3.1). For such an autoregressive causal process, a Gaussian quasi-maximum likelihood
estimator is really appropriate, since it is built on the assumption that (εt ) is Gaussian white
noise, and it is well known that an affine function of εt is still a Gaussian random variable (see
for example Bardet and Wintenberger 2009). It consists in considering the log-conditional
density In(θ) of (X1, . . . , Xn) when (εt ) is a standard Gaussian white noise and with Xt =
σ εt + mt (θ), i.e.

In(θ) =
n∑

t=1

qt (θ) = −1

2

n∑

t=1

(
log

(
σ 2) +

(
Xt − mt (θ)

)2

σ 2

)
for any θ ∈ �. (3.6)

However, such conditional log-likelihood is not a feasible statistic since mt (θ) depends on
(Xk)k≤0 which is unobserved. Hence it is usual to replace mt (θ) by the following approxi-
mation:

m̂t (θ) =
t−1∑

i=1

ui (θ) Xt−i for any t ∈ N
∗, (3.7)

with the convention
∑0

t=1 = 0. Then, a quasi conditional log-likelihood În(θ) can be defined:

În(θ) = −1

2

n∑

t=1

(
log

(
σ 2) +

(
Xt − m̂t (θ)

)2

σ 2

)
. (3.8)

If � is a subset of Rp such as for all θ ∈ � there exists an almost surely stationary solution
of the equation Xt = σ εt + mt (θ) for any t ∈ Z, we define the Gaussian quasi maximum
likelihood estimator (QMLE) of θ by

θ̂n = Argmax
θ∈�

În(θ). (3.9)

Note that a direct implication of the assumption that (un(θ)) does not depend on σ 2 is that
if we denote θ̂n = t (γ̂n, σ̂

2
n ) the QMLE, then:

γ̂n = Argmin
(γ,σ 2)∈�

n∑

t=1

(
Xt −

t−1∑

k=1

uk(γ ) Xt−k
)2 and σ̂ 2

n = 1

n

n∑

t=1

(
Xt −

t−1∑

k=1

uk(γ̂n) Xt−k
)2

,
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where by writing convention un(θ) = un(γ ). Hence, in this case of long-memory AR(∞),
γ̂n is also a non-linear least square estimator of the parameter γ .

3.2 Consistency and asymptotic normality of the estimator

The consistency of the QMLE is established under additional assumptions.

Theorem 3.1 Let (Xt )t∈Z be a process defined by (3.1) and its assumptions. Assume also:

• for any n ∈ N
∗, θ ∈ � 	→ un(θ) is a continuous function on �;

• If un(θ) = un(θ ′) for all n ∈ N
∗ with θ = (γ, σ 2) and θ ′ = (γ ′, σ 2), then θ = θ ′.

Let θ̂n be the QMLE defined in (3.9). Then

θ̂n
a.s.−→

n→∞ θ∗.

This result extends the θ̂n consistency obtained in Bardet and Wintenberger (2009) to short-
memory time series models, including ARMA, GARCH, and APARCH, among others,
including AR(∞) processes. It also applies to long memory AR(∞) processes.

Remark 3.1 Regarding the long-memory linear process example, θ∗ could also be estimated
using Whittle’s estimator, which is constructed from the spectral density and second-order
moments of the process. The consistency and asymptotic normality of this estimator were
shown by Giraitis and Surgailis (1990).

Having shown the consistency, we would like to show the asymptotic normality of the QML
estimator in the case of the long-memory one-sided linear processes considered above. This
amounts to proving it for linear processes whose linear filter depends on a vector of parame-
ters. This will be the case, for example, for FARIMA(p, d, q) processes, for which Boubacar
Maïnassara et al. (2021) have already shown asymptotic normality in the more general case
where (εt ) is weak white noise, i.e. in the case of weak FARIMA(p, d, q) processes.

As it is typical to establish the asymptotic normality of an M-estimator, we make assump-
tions about the differentiability of the sequence of functions (un(θ))n∈N∗ with respect to
θ :

(A) Differentiability of (un(θ))n∈N∗ : for any n ∈ N
∗, the function un(θ) is a C2(�) function

and for any δ > 0, there exists Cδ > 0 such that:

sup
n∈N

sup
θ∈�

{
n1+d(θ)−δ

(∣∣un(θ)
∣∣ + ∥∥∂θun(θ)

∥∥ + ∥∥∂2
θ2
un(θ)

∥∥
)}

≤ Cδ. (3.10)

Moreover we assume that:

for v ∈ R
p−1, if for allk ∈ N

∗, tv ∂γ uk(θ
∗) = 0 �⇒ v = 0. (3.11)

Example (called LM in the numerical applications): For the simple example where (un(θ))

is such as un(θ) = ζ(1 + d)−1n−1−d for n ∈ N
∗ with θ = (d, σ 2) ∈ (0, 1/2) × (0,∞), we

have:

∂dun(θ) = − n−1−d

ζ 2(1 + d)

(
ζ(1 + d) log(n) + ζ ′(1 + d)

)

∂2d2un(θ) = n−1−d

ζ 3(1 + d)

(
ζ 2(1 + d) log2(n) + 2ζ ′(1 + d)ζ(1 + d) log(n)
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+2(ζ ′(1 + d))2 − ζ ′′(1 + d)ζ(1 + d)
)
.

Therefore (3.10) of (A) is satisfied with d(θ) = d (note also that δ = 0 is not possible).
Moreover (3.11) is also clearly satisfied.

Theorem 3.2 Consider the assumptions of Theorem 3.1 and also that E[ε30] = 0 and μ4 =
‖ε0‖44 < ∞. Then with θ̂n defined in (3.9), and if (A) holds,

√
n

(
θ̂n − θ∗) = √

n

((
γ̂n
σ̂ 2
n

)
−

(
γ ∗
σ ∗2

))

L−→
n→∞N

(
0 ,

(
(M∗)−1 0

0 σ ∗4 (μ∗
4 − 1)

))
, (3.12)

where M∗ = 1
σ ∗2

∑∞
k=1

∑∞
�=1 ∂γ uk((γ ∗, 0)) t

(
∂γ u�((γ

∗, 0))
)
rX (� − k).

It is clear that θ̂n satisfies (3.12) in the case of the FARIMA processes [but this asymptotic
normality has been already established under more general assumptions in Boubacar Maï-
nassara et al. (2021)] or in the case of the LM processes example. It is also worth noting that
the central limit theorem is written in exactly the same way as the one obtained in Bardet
and Wintenberger (2009), although the latter dealt only with weakly dependent AR(∞)

processes.

Remark 3.2 As already mentioned, Boubacar Maïnassara et al. (2021) have also established
the almost certain convergence and asymptotic normality of theQML estimator in the specific
case of FARIMA processes, but allowing the white noise (εt ) to be a weak white noise (non-
correlation) and not a strong white noise as in our work. This comes at the price of slightly
stronger moment conditions: in Boubacar Maïnassara et al. (2021), a moment of order 2+ ν

is required for almost sure convergence and amoment of order 4+ν for asymptotic normality
(with 0 < ν < 1). This is the price to pay in their Assumption A4 for working with strong
mixing properties of (εt ).

Remark 3.3 Of course, in this specific context of linear long-memory processes, we would
like to make a comparison between the asymptotic results for the convergence of the QMLE
estimator and those obtained with Whittle’s estimator in Giraitis and Surgailis (1990). In
this paper, more precisely in Theorem 4, the asymptotic covariance matrix of γ̂n is given by
the spectral density fγ and is written as (4π)−1

∫ π

−π

(
∂γ log( fγ (λ))

)
t
(
∂γ log( fγ (λ))

)
dλ.

However, Dahlhaus (1989) has shown that this asymptotic covariance matrix is also that of
the maximum likelihood estimator in the case of a Gaussian process, the latter also being
(M∗)−1 if (εt ) is Gaussian white noise. This means that asymptotically, the QML andWhittle
estimators behave identically. However, we will see a slight numerical advantage due to the
convergence of the QMLE in the case of observed trajectories whose size is not too large.

3.3 Case of a non-centered long-memory linear process

Finally, we can consider the special case where the process (Xt ) is not centered and estimate
the location parameter μ∗ = E[X0]. This means that (Xt ) can now be written as:

Xt = μ∗ +
∞∑

i=0

ai (θ
∗) εt−i for all t ∈ Z, (3.13)
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with the same assumptions on θ , on (ai (θ)) and on (εt ).
First of all, the AR(∞) representation we used to define (Xt ) does not allow μ∗ to

intervene, so the QML estimator cannot estimate this parameter. So, if (Xt ) satisfies (3.13),
then (Xt ) still satisfies (3.1). This is because

∑∞
k=1 uk(θ) = 1 for any θ . Consequently, the

QML estimate of the parameter θ is not at all affected by the fact that (Xt ) is not a centered
process and verifies (3.13) and Theorems 3.1 and 3.2 are still valid. Note that the same applies
to the Whittle’s estimator, as it was already remarked in Dahlhaus (1989).

Concerning the estimation of the localization parameter E[X0] = μ∗ for long-memory
processes, this question has been the subject of numerous publications. Among the most
important are Adenstedt (1974) and Samarov and Taqqu (1988) and the review article (Beran
1993). We are dealing here with long-memory linear processes, and the article (Adenstedt
1974) had already shown the most important point: we cannot expect a convergence rate in√
n, contrary to the other process parameters. In the case of the QML estimator, this can

be explained by the fact that μ∗ cannot intervene in the Eq. (3.1), contrary to what would
happen for an ARMA process, for example.

More precisely, from these references, under the assumptions of Theorem 3.2 except that
(Xt ) is defined by (3.13), we obtain:

n1/2−d(θ∗)

La(n)

(
Xn − μ∗) L−→

n→∞N
(
0 ,

Cd(θ∗)
d(θ∗) (2d(θ∗) + 1)

)
with Xn = 1

n

n∑

k=1

Xk,

and Cd = ∫ ∞
0 (u + u2)d−1 du. However, as we are considering linear processes here,

Adenstedt (1974) proved by a Gauss–Markov type theorem that there exists a Best Lin-
ear Unbiased Estimator (BLUE) and provided its asymptotic efficiency. By adapting its
writing, it will be enough to consider the matrix �(θ) = (

rX (| j − i |))1≤i, j≤n with

rX (k) = Cov (X0, Xk) =
∞∑

i=0

ai (θ) ai+k(θ) and define:

μ̂BLUE (θ∗) = (t I 1�−1(θ∗)I 1
)−1t I 1�−1(θ∗)X , with X = t (X1, . . . , Xn).

Then it is established in Adenstedt (1974) that
Var

(
Xn

)

Var
(
μ̂BLUE (θ∗)

)

−→
n→∞

πd(θ∗)(2d(θ∗) + 1)

B
(
1 − d(θ∗), 1 − d(θ∗)

)
sin

(
πd(θ∗)

) , where B(a, b) is the usual Beta function, and

this limit belongs to [0.98, 1] when 0 < d(θ∗) < 1/2. Therefore, since μ̂BLUE (θ∗) is a
linear process, we obtain:

n1/2−d(θ∗)

La(n)

(
μ̂BLUE (θ∗) − μ∗) L−→

n→∞N
(
0 ,

π Cd(θ∗)
B

(
1 − d(θ∗), 1 − d(θ∗)

)
sin

(
π d(θ∗)

)
)
.

Finally, the estimation of θ∗ by θ̂n makes the use of the BLUE estimator of μ∗ effective.
Indeed, as θ̂n is a convergent estimator of θ∗, as θ ∈ (0, 0.5) 	→ (

t I 1�−1(θ)I 1
)−1t I 1�−1(θ)

is a continuous function, we deduce by Slutsky’s lemma that:

n1/2−d(θ∗)

La(n)

(
μ̂BLUE (θ̂n) − μ∗) L−→

n→∞N
(
0 ,

π Cd(θ∗)
B

(
1 − d(θ∗), 1 − d(θ∗)

)
sin

(
π d(θ∗)

)
)
.
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Fig. 1 Boxplots for estimating d on FARIMA(0, d, 0) processes with the estimators d̂n and d̂W (denoted
dest and dWest for n = 300 (top left), n = 1000 (top right), n = 3000 (bottom left) and n = 10000
(bottom right)

4 Numerical applications

4.1 Numerical simulations

In this section, we report the results of Monte Carlo experiments conducted with different
long-memory causal linear processes. More specifically, we considered:

• Three different processes generated from Gaussian standard white noises:

1. A FARIMA(0, d, 0) process, denoted FARIMA, with parameters σ 2 = 4 and d =
0.1, 0.2, 0.3 and 0.4;

2. A FARIMA(1, d, 0) process, denoted FARIMA(1,d,0), with parameters σ 2 = 4 and
d = 0.1, 0.2, 0.3 and 0.4, and AR-parameter α = 0.5 and 0.9;

3. A long-memory causal affine process, denoted LM, defined by:

Xt = a0 εt + ζ(1 + d)−1
∞∑

k=1

k−1−d Xt−k for any t ∈ Z,

with parameters σ 2 = 4 and d = 0.1, 0.2, 0.3 and 0.4.

• Several trajectory lengths: n = 300, 1000, 3000 and 10000.
• In the case of the FARIMA process, we compared the accuracy of the QMLE with the

one of the Whittle estimator which also satisfies a central limit theorem [see Giraitis and
Surgailis (1990))]. We denote θ̂W = (d̂W , σ̂ 2

W ) this estimator.

The results are presented in Tables 1, 2 and 3.
The results of Tables 1 and 3 show aweak effect of the value of d on the speed of convergence
of the d̂n estimator and, more generally, of θ̂n , which may seem counter-intuitive since the
long memory being stronger, the effect of initial values should be stronger. To investigate
this further, we carried out new numerical studies using simulations of the FARIMA process
for values of d approaching 0.5, i.e. d = 0.43, d = 0.46 and d = 0.49, and the results are
shown in Table 4.
Conclusions of the simulations:

1. The results of the simulations show that the consistency of the QML estimator θ̂n is
satisfied and also that its 1/

√
n convergence rate of the estimators almost occurs for all

processes considered.
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Table 2 Square roots of the MSE computed for the QMLE θ̂n in the case of the FARIMA(1,d,0) process
computed from 1000 independent replications

n = 300 n = 1000 n = 3000 n = 10000
d̂n α̂n d̂n α̂n d̂n α̂n d̂n α̂n

d = 0.1 α = 0.5 0.099 0.116 0.063 0.070 0.043 0.048 0.024 0.026

α = 0.9 0.129 0.110 0.060 0.041 0.029 0.017 0.015 0.008

d = 0.2 α = 0.5 0.128 0.140 0.080 0.084 0.041 0.046 0.022 0.023

α = 0.9 0.110 0.084 0.052 0.030 0.028 0.016 0.014 0.009

d = 0.3 α = 0.5 0.148 0.158 0.081 0.088 0.042 0.045 0.023 0.026

α = 0.9 0.103 0.067 0.055 0.034 0.027 0.015 0.016 0.009

d = 0.4 α = 0.5 0.197 0.202 0.119 0.125 0.042 0.045 0.023 0.025

α = 0.9 0.132 0.054 0.069 0.034 0.036 0.017 0.018 0.009
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Fig. 2 Recentered series of monthly temperatures (in degree Celsius) for the northern hemisphere for the years
1854–1989 (left) and the same series detrended by simple linear regression (right)

2. The value of the parameter d seems to have little influence on the speed of convergence
of the estimators as long as d does not get too close to 0.5. However, when we consider
values of d which increase towards 0.5, if the rate of convergence still looks good in

√
n,

the asymptotic variance considerably increases.
3. When a short-memory component is added to the long-memory component, as in the case

of a FARIMA(1, d, 0) process, the rate of convergence to d deteriorates, especially for
small trajectories. But the rate of convergence still seems to be in

√
n. We can also see that

the rate of convergence deteriorates much more sharply than for the FARIMA(0, d, 0)
process as d increases towards 0.5.

4. In the case of the FARIMA process, the comparison between the QML and Whittle
estimators leads to very similar results for large n, but for n = 300 the QML estimator
provides slightly more accurate estimate, in particular with a more centered distribution
around the estimated value.

4.2 Application on real data

Here, we will apply the QML estimator to a time series observation known to have a long
memory. These are monthly temperature (in degree Celsius) for the northern hemisphere for
the years 1854–1989, from the data base held at the Climate Research Unit of the University
of East Anglia, Norwich, England. The numbers consist of the temperature difference from
the monthly average over the period 1950–1979. For our purposes, and given the general
rise in temperatures due to climate change, it is preferable to work on detrended data, for
example using simple linear regression, as had already been done in Beran (1994). Figure 2
shows the two time series:
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Table 4 Square roots of the MSE computed for the QMLE θ̂n of FARIMA process computed from 1000
independent replications when d is close to 0.5

n d = 0.43, σ 2 = 4 d = 0.46, σ 2 = 4 d = 0.49, σ 2 = 4

300 θ̂n = (d̂n , σ̂ 2
n ) 0.053 0.328 0.065 0.369 0.113 0.633

1000 θ̂n = (d̂n , σ̂ 2
n ) 0.028 0.177 0.036 0.189 0.066 0.283

3000 θ̂n = (d̂n , σ̂ 2
n ) 0.016 0.113 0.018 0.109 0.036 0.132

10000 θ̂n = (d̂n , σ̂ 2
n ) 0.009 0.059 0.011 0.057 0.021 0.071

These data have been studied in Beran (1994) (see for example p.179), and Whittle’s
estimator of the long memory parameter for a FARIMA process applied to detrended data
yielded d̂W � 0.37, while the observed path size is n = 1632.

We applied the QML estimator for the FARIMA(0, d, 0) process to this same series and,
as we might have expected, the result was almost identical d̂n � 0.37, with σ̂n � 0.056. We
also applied the QML estimator for processesLM and the result obtained is rather d̂n � 0.44,
which is not very far from the previous value. This confirms the long-memory nature of this
series, and the implementation of a goodness-of-fit test could enable us to go a little further
in choosing between the 2 models or others (note that such a test has been implemented for
FARIMA processes in Boubacar Maïnassara et al. (2023)).

5 Conclusion

In this paper, we have shown that the QML estimator, which offers excellent convergence
results for parameters of classical short-memory time series such as GARCH, ARMA,
ARMA-GARCH or APARCH processes, also gives excellent results for long-memory time
series. This had already been established for FARIMA processes, even with weak white
noise, in Boubacar Maïnassara et al. (2021). And we generalize this to all long-memory
linear processes, offering a very interesting alternative to Whittle estimation, both from a
theoretical and a numerical point of view.

6 Proofs

6.1 Proofs of themain results

Proof of Proposition 2.1 Using B the lag or backshift linear operator on R
Z, we can denote

X = S(B) ε, where X = (Xt )t∈Z and ε = (εt )t∈Z and S(B) = ∑∞
i=0 ai B

i . We know
that there exists a linear operator denoted S−1 such as ε = S−1(B) X . As a consequence,
X = a0 ε + (S(B) − a0 I ) ε = a0 ε + (S(B) − a0 I )S−1(B) X = a0 ε + (I − a0 S−1(B)) X
which is the affine causal representation of X .

Let Xt = a0 εt + ∑∞
i=1 ui Xt−i . Then, for any t ∈ Z,

Xt = a0 εt +
∞∑

i=1

ui Xt−i
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= a0 εt +
∞∑

i=1

∞∑

j=0

ui a j εt−i− j

= a0 εt +
∞∑

k=1

( k−1∑

j=0

uk− j a j

)
εt−k .

As a consequence, denoting u0 = −1, for any k ∈ N
∗,

k−1∑

j=0

uk− j a j = ak �⇒
( k∑

i=0

ui
) ( k∑

j=0

a j

)
= 0. (6.1)

Finally, since the convergence radius of the power series
∑∞

�=0 a� z� is 1 from asymptotic
expansion (2.1), we deduce that for any z ∈ C, |z| < 1,

( ∞∑

k=0

uk z
k
) ( ∞∑

�=0

a� z
�
)

= −a0. (6.2)

Now, we are going to use a Karamata Tauberian theorem as it is stated in Corollary 1.7.3 of
Bingham et al. (1987):

Fix ρ > 0 and let L a slow varying function. Then if (αn)n∈N is a sequence of nonnegative
real numbers and the power series A(s) = ∑∞

n=0 αn sn converges for any s ∈ [0, 1), then
n∑

k=0

αk ∼
n→∞ L(n) nρ ⇐⇒ A(s) ∼ �(1 + ρ)

(1 − s)ρ
L
(
(1 − s)−1) as s → 1−. (6.3)

Note that this result is also established if there exists N0 ∈ N such as (αn)n≥N0 is a sequence
of nonnegative real numbers. We first apply (6.3) to (αn) = (an). Indeed, from (2.1) and with
ρ = d , there exists N0 ∈ N such as (an)n≥N0 is a sequence of nonnegative real numbers and∑n

k=0 ak ∼
n→∞ L(n) nρ with L(·) = La(·)

d . Therefore, we deduce that

∞∑

n=0

an s
n ∼ �(1 + d)

d (1 − s)d
La

(
(1 − s)−1) as s → 1−. (6.4)

Therefore, from (6.2), the following expansion can be deduced:

∞∑

n=0

un s
n ∼ −a0 (1 − s)d

�(d)
L−1
a

(
(1 − s)−1) as s → 1−. (6.5)

On the other hand, if we consider (6.2) when s → 1−,
∑∞

�=0 a� s� → ∞ since (an) satisfies
(2.1). As a consequence,

∞∑

n=0

un s
n → 0 =

∞∑

n=0

un when s → 1−.

We deduce that un −→
n→∞ 0 and the sequence (Un)n∈N can be defined where we denote Un =

∑∞
k=n+1 uk . But since

∑∞
n=0 un = 0, for any s ∈ [0, 1],

∞∑

k=0

uk s
k = (s − 1)

∞∑

k=0

Uk s
k .
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Using (6.5), we deduce

∞∑

k=0

Uk s
k ∼ a0 (1 − s)d−1

�(d)
L−1
a

(
(1 − s)−1) as s → 1−.

From (6.1), we also have for any n ∈ N

( n∑

k=0

uk
) ( n∑

�=0

a�

)
= −a0 (6.6)

Since (an) satisfies (2.1), we know that there exists N0 such as an > 0 and
∑n

�=0 a� > 0
for any n ≥ N0. Therefore we know from (6.6) that for any n ≥ N0,

∑n
k=0 uk < 0 and thus

Un > 0 since
∑∞

k=0 uk = 0. Thus we can apply (6.3) to (αn) = (Un) with ρ = 1 − d and
this induces

n∑

k=0

Uk ∼
n→∞

a0
�(d) �(2 − d)

L−1
a (n) n1−d .

Since for n ≥ N0, un > 0, we deduce that (Un) is a positive decreasing sequence for n ≥ N0.
Using again Bingham et al. (1987), we deduce that

Un ∼
n→∞

a0 (1 − d)

�(d) �(2 − d)
L−1
a

(
n
)
n−d = a0

�(d) �(1 − d)
L−1
a

(
n
)
n−d .

To finish with, since (Un) is a positive decreasing sequence for n ≥ N0, we deduce:

un = a0 d

�(d) �(1 − d)
L−1
a

(
n
)
n−1−d ,

and this achieves the proof. ��

Proof of Theorem 3.1 In the sequel, we will denote for any t ∈ N
∗ and θ ∈ �,

m̃t (θ) = mt (θ) − m̂t (θ) =
∞∑

k=t

uk(θ) Xt−k . (6.7)

For a random variable Z and r ≥ 1, denote ‖Z‖r = (
E

[|Z |r ])1/r .
1. Firstly we prove some useful inequalities.

From the Cauchy-Schwarz Inequality, for any θ ∈ � and t ∈ Z,

(
mt (θ)

)2 ≤
( ∞∑

k=1

∣∣uk(θ)
∣∣
) ( ∞∑

k=1

∣∣uk(θ)
∣∣ X2

t−k

)

≤ sup
θ∈�

{ ∞∑

k=1

∣∣uk(θ)
∣∣
}
sup
θ∈�

{ ∞∑

k=1

∣∣uk(θ)
∣∣ X2

t−k

}

�⇒ ∥∥ sup
θ∈�

∣∣mt (θ)
∣∣∥∥2

2 ≤
(
sup
θ∈�

{ ∞∑

k=1

∣∣uk(θ)
∣∣
})2 ∥∥X0

∥∥2
2 < ∞,

since (uk) follows (3.2), � is a compact subset, θ ∈ � 	→ uk(θ) is a continuous function for
any k ≥ 1 and d(θ) ∈ (0, 1/2).
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Using the same inequalities we also obtain that there exists C2 > 0 such that for any
t ≥ 1,

∥∥ sup
θ∈�

∣∣m̂t (θ)
∣∣∥∥2

2 < ∞

and
∥∥ sup

θ∈�

∣∣m̃t (θ)
∣∣∥∥2

2 ≤
(
sup
θ∈�

{ ∞∑

k=t+1

∣∣uk(θ)
∣∣
})2 ∥∥X0

∥∥2
2 ≤ C2 t

−2 d , (6.8)

with 0 < d < infθ∈� d(θ) from the condition (3.2) on (un(θ)).
Finally with

⎧
⎪⎪⎨

⎪⎪⎩

qt (θ) = − 1
2

(
log

(
σ 2

) +
(
Xt−mt (θ)

)2
σ 2

)

q̂t (θ) = − 1
2

(
log

(
σ̂ 2

) +
(
Xt−m̂t (θ)

)2
σ 2

) , (6.9)

we obtain from the previous bounds and σ 2 ∈ [σ 2
m, σ 2

M ] where 0 < σ 2
m < σ 2

M ,

sup
θ∈�

∣∣qt (θ)
∣∣ ≤ sup

θ∈�

{ 1

σ 2
m

(
X2
t + m2

t (θ)
) + 1

2

∣∣ log(σ 2
M )

∣∣
}

�⇒
∥∥∥ sup

θ∈�

∣∣qt (θ)
∣∣
∥∥∥
1

≤ 1

σ 2
m

(‖Xt‖22 + ∥∥ sup
θ∈�

∣∣mt (θ)
∣∣∥∥2

2

) + 1

2

∣∣ log(σ 2
M )

∣∣

< ∞. (6.10)

And to conclude with these preliminary bounds, using Cauchy-Schwarz and the triangular
inequality, there exists C > 0 such as for t ≥ 1,

∥∥∥ sup
θ∈�

∣∣qt (θ) − q̂t (θ)
∣∣
∥∥∥
1

≤ 1

2

∥∥∥ sup
θ∈�

∣∣2Xt + mt (θ) + m̂t (θ)
∣∣
∥∥∥
2

∥∥∥ sup
θ∈�

∣∣m̃t (θ)
∣∣
∥∥∥
2

≤ 1

2

(
2 ‖X2

0‖22 + ∥∥ sup
θ∈�

∣∣mt (θ)
∣∣∥∥2

2 + ∥∥ sup
θ∈�

∣∣m̂t (θ)
∣∣∥∥2

2

) (
C2 t

−2 d)1/2

≤ C t−d . (6.11)

2. From its AR(∞) representation (2.1), and since ‖X0‖2 < ∞, then (Xt )t∈Z is a second
order ergodic stationary sequence (see Theorem 36.4 in Billingsley 1995). But for any θ ∈ �,
there exists Hq

θ : RN → R such that

qt (θ) = Hq
θ

(
(εt− j ) j≥0

)
,

with also E
[∣∣qt (θ)

∣∣] < ∞ from (6.10). Then using Theorem 36.4 in Billingsley (1995),(
qt (θ)

))
t∈Z is an ergodic stationary sequence for any θ ∈ � and therefore

In(θ)
a.s.−→

n→∞E
[
q0(θ)

]
for any θ ∈ �,

with In(θ) defined in (3.6). Moreover, since � is a compact set and since we have
E

[
supθ∈�

∣∣qt (θ)
∣∣] < ∞ from (6.10), using Theorem 2.2.1. in Straumann (2005), we deduce

that
(
qt (θ)

))
t∈Z also follows a uniform ergodic theorem and we obtain

sup
θ∈�

∣∣In(θ) − E
[
q0(θ)

]∣∣ a.s.−→
n→∞ 0. (6.12)
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Now, using În(θ) defined in (3.8), we can write

sup
θ∈�

∣∣In(θ) − În(θ)
∣∣ ≤ 1

n

n∑

t=1

sup
θ∈�

∣∣qt (θ) − q̂t (θ)
∣∣. (6.13)

InCorollary 1 ofKounias andWeng (1969), it is established that for aL1 sequence of r.v. (Zt )t

and a sequence of positive real numbers (bn)n∈N∗ such as bn −→
n→∞ ∞, then

∑∞
t=1

E

[
|Zt |

]

bt
< ∞

implies 1
bn

∑n
t=1 Zt

a.s.−→
n→∞ 0.

Therefore, with bt = t and Zt = supθ∈�

∣∣qt (θ) − q̂t (θ)
∣∣ for t ∈ N

∗, using the inequality
(6.11),

∞∑

t=1

1

t
E

[
sup
θ∈�

∣∣qt (θ) − q̂t (θ)
∣∣] ≤ C

∞∑

t=1

t−d−1 < ∞

�⇒ 1

n

n∑

t=1

sup
θ∈�

∣∣qt (θ) − q̂t (θ)
∣∣ a.s.−→
n→∞ 0.

Then, using (6.13) and (6.12), we deduce:

sup
θ∈�

∣∣ În(θ) − E
[
q0(θ)

]∣∣ a.s.−→
n→∞ 0. (6.14)

3. Finally, the same argument already detailed in the proof of Theorem 1 of Bardet and
Wintenberger (2009) is used: θ ∈ � 	→ E

[
q0(θ)

]
has a unique maximum reached in θ =

θ∗ ∈ � because it is assumed that if un(θ) = un(θ ′) for all n ∈ N
∗ with θ = (γ, σ 2) and

θ ′ = (γ ′, σ 2), then θ = θ ′. This property and the uniform almost sure consistency (6.14)

lead to θ̂n
a.s.−→

n→∞ θ∗. ��

Proof of Theorem 3.2 As a preamble to this proof, since θ̂n
a.s.−→

n→∞ θ∗ by Theorem 3.1, we will

be able to reduce the � domain. Let �̃ ⊂ � be a compact set of Rp such that:

�̃ = {
θ ∈ �, 2d(θ∗) − 1/2 < inf

θ∈�̃
d(θ) < d(θ∗)

}
.

Note that 2d(θ∗) − 1/2 < d(θ∗), so it’s still possible to determine �̃.
In the spirit of (3.9), let’s define

θ̃n = Argmax
θ∈�̃

În(θ).

Using Theorem 3.1, it is clear that θ̃n
a.s.−→

n→∞ θ∗. Moreover, for all x = (x1, . . . , xp) ∈ R
p ,

P

(√
n

(
θ̂n − θ∗) ×p

j=1(−∞, x j ]
)

= P

(√
n

(
θ̂n − θ∗) ∈ ×p

j=1(−∞, x j ]
∣∣ θ̂n ∈ �̃

)
P
(
θ̂n ∈ �̃

)

+P

(√
n

(
θ̂n − θ∗) ∈ ×p

j=1(−∞, x j ]
∣∣ θ̂n /∈ �̃

)
P
(
θ̂n /∈ �̃

)

= P

(√
n

(
θ̃n − θ∗) ∈ ×p

j=1(−∞, x j ]
)
P
(
θ̂n ∈ �̃

)

+P

(√
n

(
θ̃n − θ∗) ∈ ×p

j=1(−∞, x j ]
)
P
(
θ̂n /∈ �̃

)
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Since θ̂n
a.s.−→

n→∞ θ∗ by Theorem 3.1 and therefore P
(
θ̂n /∈ �̃

) −→
n→∞ 0 because θ∗ ∈ �̃, it is clear

that the asymptotic distribution of
√
n

(
θ̂n − θ∗) is the same as the one of

√
n

(
θ̃n − θ∗).

Consequently, throughout the rest of the proof, � will be replaced by �̃ and θ̂n by θ̃n .
In the sequel, for θ ∈ �̃, we will denote d = d(θ) − ε and d∗+ = d∗ + ε where

d∗ = d(θ∗) is the unknown long-memory parameter, and we chose ε > 0 such as ε ≤
1
6

(
1 − 4d(θ) + 2d(θ∗)

)
. Hence, from the definition of �̃, 1 − 4d(θ) + 2d(θ∗) > 0 and

4 d∗+ − 2 d − 1 < 0. (6.15)

From Assumption (A), for any θ ∈ �̃ and t ∈ Z, ∂θmt (θ) and ∂2θmt (θ) a.s. exist with

∂θmt (θ) =
∞∑

k=1

∂θuk(θ) Xt−k and ∂2
θ2
mt (θ) =

∞∑

k=1

∂2
θ2
uk(θ) Xt−k .

And the same for ∂θ m̂t (θ), ∂θ m̃t (θ), ∂2θ m̂t (θ) and ∂2θ m̃t (θ). However, note that for any θ ∈ �̃,
(mt (θ))t , (∂θmt (θ))t and (∂2

θ2
mt (θ))t are stationary processes while (m̂t (θ))t , (m̃t (θ))t and

their derivatives are not.
Due to these results, for any θ ∈ �̃:

∂θqt (θ) =
(

∂γ qt (θ)

∂σ 2qt (θ)

)
=

(
1
σ 2 ∂γmt (θ)

(
Xt − mt (θ)

)

1
2 σ 4

((
Xt − mt (θ)

)2 − σ 2
)
)

, (6.16)

and the same for ∂θ q̂t (θ) by replacingmt (θ) by m̂t (θ). Once again for any θ ∈ �̃, (∂θqt (θ))t
is a stationary process, while (∂θ q̂t (θ))t is not. Finally, for all θ ∈ �̃, define

∂θ Ln(θ) = 1

n

n∑

t=1

∂θqt (θ) and ∂θ L̂n(θ) = 1

n

n∑

t=1

∂θ q̂t (θ).

Following the same reasoning it can be shown that for any t ∈ Z, θ ∈ �̃ 	→ qt (θ) and
θ ∈ �̃ 	→ q̂t (θ) are a.s. C2(�̃) functions and therefore the random matrices ∂2

θ2
Ln(θ) and

∂2
θ2
L̂n(θ) a.s. exist.
The proof of Theorem 3.2 will be decomposed in 3 parts:

1. First, as it was already established in Bardet and Wintenberger (2009), (∂θqt (θ∗))t is a
stationary ergodic martingale difference since with the σ -algebra Ft = σ

{
(Xt−k)k≥1

}
,

E

[
∂θqt (θ

∗)
∣∣Ft

]
= 0,

because (Xt ) is a causal process and εt is independent of Ft and E
[
ε20

] = 1.

Now since E
[∥∥∂θq0(θ

∗)
∥∥2] < ∞ from the same arguments as in the proof of the consis-

tency of the estimator. Then the central limit for stationary ergodic martingale difference,
Theorem 18.3 of Billingsley (1968) can be applied and

√
n ∂θ Ln(θ

∗) L−→
n→∞N (

0 , G∗), (6.17)

since E
[
∂θq0(θ∗)

] = 0 and where G∗ := E

[
∂θq0(θ∗) × t

(
∂θq0(θ∗)

)]
.

2. We are going to prove that:

n E
[
sup
θ∈�̃

∥∥∂θ L̂n(θ) − ∂θ Ln(θ)
∥∥2

]
−→
n→∞ 0. (6.18)
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Using a line of reasoning already used in Beran and Schützner (2009, Lemmas 1 and 2)
and Bardet (2023, Lemma 5.1 3), and derived from Parzen (1999, Theorem 3.B), there
exists C > 0 such that:

E

[
sup
θ∈�̃

∥∥∂θ L̂n(θ) − ∂θ Ln(θ)
∥∥2

]
≤ C sup

θ∈�̃

E

[∥∥∂θ L̂n(θ) − ∂θ Ln(θ)
∥∥2

]
,

because we assumed that θ → un(θ) is a C p+1(�̃) function and therefore ∂θ L̂n(θ) −
∂θ Ln(θ) is a C p(�̃) function.
Then, for θ ∈ �̃,

∂γ qt (θ) − ∂γ q̂t (θ) = 1

σ 2

(
∂γ m̃t (θ)

(
Xt − mt (θ)

) + ∂γ m̂t (θ) m̃t (θ)
)
.

As a consequence, for θ ∈ �̃,

n E
[∥∥∂θ L̂n(θ) − ∂θ Ln(θ)

∥∥2]

= 1

n σ 4

(
2

∑

1≤s<t≤n

E

[
t
(
∂γ m̃t (θ)

(
Xt − mt (θ)

) + ∂γ m̂t (θ) m̃t (θ)
)

×
(
∂γ m̃s(θ)

(
Xs − ms(θ)

) + ∂γ m̂s(θ) m̃s(θ)
)]

+
n∑

t=1

E

[
t
(
∂γ m̃t (θ)

(
Xt − mt (θ)

) + ∂γ m̂t (θ) m̃t (θ)
)

×
(
∂γ m̃t (θ)

(
Xt − mt (θ)

) + ∂γ m̂t (θ) m̃t (θ)
)])

= 1

n σ 4

(
I1 + I2

)
. (6.19)

Concerning I1, since Xt = σ ∗ εt + mt (θ
∗) and since εt is independent to all the other

terms because s < t , we deduce that
(
Xt − mt (θ)

)
can be replaced by nt (θ, θ∗) =(

mt (θ
∗) −mt (θ)

)
. As a consequence, after its expansion, I1 can be written as a sum of 6

expectations of products of 4 linear combinations of (εt ). Moreover, if for j = 1, . . . , 4,
Y ( j)
t j = ∑∞

k=0 β
( j)
k ξt j−k , where t1 ≤ t2 ≤ t3 ≤ t4, (β

( j)
n )n∈N are 4 real sequences and

(ξt )t∈Z is a white noise such as E[ξ20 ] = 1 and E[ξ40 ] = μ4 < ∞, then:

E
[ 4∏

j=1

Y ( j)
t j

] = (μ4 − 3)
∞∑

k=0

β
(1)
k β

(2)
t2−t1+kβ

(3)
t3−t1+kβ

(4)
t4−t1+k

+E
[
Y (1)
t1 Y (2)

t2

]
E

[
Y (3)
t3 Y (4)

t4

] + E
[
Y (1)
t1 Y (3)

t3

]
E

[
Y (2)
t2 Y (4)

t4

]

+E
[
Y (1)
t1 Y (4)

t4

]
E

[
Y (2)
t2 Y (3)

t3

]
.

Now, consider for example Y (1)
t1 = ∂γ m̃s(θ), Y (2)

t2 = (
Xs −ms(θ)

)
, Y (3)

t3 = ∂γ m̂t (θ) and

Y (4)
t4 = m̃t (θ). From Lemma 6.1 and for any used sequence (β

( j)
k )k∈N, there exists C > 0

such as for any k ∈ N:

∣∣β(1)
k

∣∣ ≤ C

sd (k + 1)1−d∗+
,

∣∣β(4)
k

∣∣ ≤ C

td (k + 1)1−d∗+

and max
(∣∣β(2)

k ,
∣∣β(3)

k

∣∣) ≤ C

(k + 1)1−d∗+
.
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As a consequence, with s < t ,

∣∣∣(μ4 − 3)
∞∑

k=0

β
(1)
k β

(2)
k β

(3)
t−s+kβ

(4)
t−s+k

∣∣∣ ≤ C

sdtd

∞∑

k=1

1

k2−2d∗+
1

(k + t − s)2−2d∗+

≤ C

sdtd(t − s)2−2d∗+
. (6.20)

And we obtain the same bound for any quadruple products appearing in I1.
Consider now the other terms of I1. Using Lemmas 6.3 and 6.4, we obtain for any θ ∈ �̃

and s < t :

•
∣∣∣E

[
Y (1)
t1 Y (2)

t2

]
E

[
Y (3)
t3 Y (4)

t4

]∣∣∣ =
∣∣∣E

[
∂γ m̃s(θ)

(
Xs − ms(θ)

)]
E

[
∂γ m̂t (θ) m̃t (θ)

]∣∣∣

=
∣∣∣E

[
∂γ m̃s(θ) ns(θ, θ∗)

)]∣∣∣
∣∣∣E

[
∂γ m̂t (θ) m̃t (θ)

]∣∣∣

≤ C
1

s1+d−2d∗+
1

t1+d−2d∗+
;

•
∣∣∣E

[
Y (1)
t1 Y (3)

t3

]
E

[
Y (2)
t2 Y (4)

t4

]∣∣∣ =
∣∣∣E

[
∂γ m̃s(θ) ∂γ m̂t (θ)

]
E

[(
Xs − ms(θ)

)
m̃t (θ)

]∣∣∣

=
∣∣∣E

[
∂γ m̃s(θ) ∂γ m̂t (θ)

)]∣∣∣
∣∣∣E

[
ns(θ, θ∗) m̃t (θ)

]∣∣∣

≤ C
( 1

sd t1−2d∗+
+ 1

s1+2d−2d∗+

) ( 1

t1+ds−2d∗+
+ 1

t1+2d−2d∗+

)

•
∣∣∣E

[
Y (1)
t1 Y (4)

t4

]
E

[
Y (2)
t2 Y (3)

t3

]∣∣∣ =
∣∣∣E

[
∂γ m̃s(θ) m̃t (θ)

]
E

[(
Xs − ms(θ)

)
∂γ m̂t (θ)

]∣∣∣

=
∣∣∣E

[
∂γ m̃s(θ) m̃t (θ)

]∣∣∣
∣∣∣E

[
ns(θ, θ∗) ∂γ m̂t (θ)

]∣∣∣

≤ C
1

sd t1−2d∗++d

1

(t − s)1−2d∗+

Using these inequalities as well as (6.20), we deduce from classical comparisons between
sums and integrals:

∑

1≤s<t≤n

E

[
t
(
∂γ m̃t (θ)

(
Xt − mt (θ)

)
∂γ m̂s(θ) m̃s(θ)

)]

≤ C
∑

1≤s<t≤n

μ4 − 3

sd td(t − s)2−2d∗+
+

( 1

sd t1−2d∗+
+ 1

s1+2d−2d∗+

) ( 1

t1+ds−2d∗+
+ 1

t1+2d−2d∗+

)

+ 1

s1+d−2d∗+
1

t1+d−2d∗+
+ 1

sd t1−2d∗++d

1

(t − s)1−2d∗+

≤C
( ∫ n

1
x2d

∗+−1−2ddx +
∫ n

1

dx

x2+d−2d∗+

∫ x

1

dy

yd−2d∗+

+
∫ n

1

dx

x2+2d−4d∗+

∫ x

1

dy

yd
+

∫ n

1

dx

x1+d

∫ x

1

dy

y1+2d−4d∗+

+
∫ n

1

dx

x1+2d−2d∗+

∫ x

1

dy

y1+2d−2d∗+
+

∫ n

1

dx

x1+d−2d∗+

∫ x

1

dy

y1+d−2d∗+

+
∫ n

1

dx

x1+d−2d∗+

∫ x

1

dy

yd(x − y)1−2d∗+

)

≤ C
(
n2d

∗+−2d + n4d
∗+−2d + n4d

∗+−3d + n4d
∗+−3d + n4d

∗+−4d + n4d
∗+−2d + n4d

∗+−2d)
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≤ C n4d
∗+−2d .

We obtain exactly the same bounds if we consider the 3 others expectations, i.e.

E

[
t
(
∂γ m̃t (θ)

(
Xt − mt (θ)

))
∂γ m̃s(θ)

(
Xs − ms(θ)

)]
,

E

[
t
(
∂γ m̂t (θ) m̃t (θ)

)
∂γ m̃s(θ)

(
Xs−ms(θ)

))]
orE

[
t
(
∂γ m̂t (θ) m̃t (θ)

)
∂γ m̂s(θ) m̃s(θ)

)]
.

As a consequence, we finally obtain:

1

σ 4 n
I1 ≤ C n4d

∗+−2d−1 for any n ∈ N
∗. (6.21)

Now consider the term I2 in (6.19) and therefore the case s = t . For Y (1)
t1 = ∂γ m̃t (θ),

Y (2)
t2 = (

Xt − mt (θ)
)
, Y (3)

t3 = ∂γ m̂t (θ) and Y (4)
t4 = m̃t (θ), and the coefficient (β

( j)
k )

defined previously, we obtain:

∣∣∣(μ4 − 3)
∞∑

k=0

β
(1)
k β

(2)
k β

(3)
k β

(4)
k

∣∣∣ ≤ C
∞∑

k=1

1

t2d
1

k4−4d∗+
≤ C

1

t2d
. (6.22)

Moreover, using the same inequalities as in the case s < t , we obtain:

•
∣∣∣E

[
Y (1)
t1 Y (2)

t2

]
E

[
Y (3)
t3 Y (4)

t4

]∣∣∣ ≤ C
1

t2+2d−4d∗+
;

•
∣∣∣E

[
Y (1)
t1 Y (3)

t3

]
E

[
Y (2)
t2 Y (4)

t4

]∣∣∣ ≤ C
1

t2+2d−4d∗+

•
∣∣∣E

[
Y (1)
t1 Y (4)

t4

]
E

[
Y (2)
t2 Y (3)

t3

]∣∣∣ ≤ C
1

t1−2d∗++2d
.

Therefore,
n∑

t=1

E

[
t
(
∂γ m̃t (θ)

(
Xt − mt (θ)

)
∂γ m̂t (θ) m̃t (θ)

)]

≤ C
n∑

t=1

μ4 − 3

t2d
+ 1

t1−2d∗++2d
≤ C n1−2d .

As a consequence, we finally obtain that there exists C > 0 such that:

1

σ 4 n
I2 ≤ C n−2d for any n ∈ N

∗. (6.23)

Therefore, from (6.21) and (6.23), we deduce that there exists C > 0 such that for any
n ∈ N

∗:

n E
[∥∥∂θ L̂n(θ) − ∂θ Ln(θ)

∥∥2] ≤ C
(
n−2d + n4d

∗+−2d−1) −→
n→∞ 0, (6.24)

from (6.15).
3. For θ ∈ �̃ and n ∈ N

∗, since ∂2
θ2
L̂n(θ) is a.s. a C2(�̃) function, the Taylor-Lagrange

expansion implies:
√
n ∂θ L̂n(θ

∗) = √
n ∂θ L̂n(θ̃n) + ∂2

θ2
L̂n(θ̄n) × √

n (θ∗ − θ̃n)

where θ̄n = c θ̃n + (1− c) θ∗ and 0 < c < 1. But ∂θ L̂n(θ̃n) = 0 because θ̃n is the unique
local extremum of θ → L̂n(θ). Therefore,

√
n ∂θ L̂n(θ

∗) = ∂2
θ2
L̂n(θ̄n) × √

n (θ∗ − θ̃n). (6.25)
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Now, E
[∥∥∂2

θ2
q0(θ)

∥∥]
< ∞ from the same arguments as in the proof of the consistency of

the estimator, and using Theorem 36.4 in Billingsley (1995),
(
∂2
θ2
qt (θ)

))
t∈Z is an ergodic

stationary sequence for any θ ∈ �̃. Moreover θ̄n
a.s.−→

n→∞ θ∗ since θ̃n
a.s.−→

n→∞ θ∗. Hence:

∂2
θ2
Ln(θ̄n)

a.s.−→
n→∞E

[
∂2
θ2
q0(θ)

] = F(θ∗).

Moreover, using the same arguments as in Lemma 4 of Bardet and Wintenberger (2009),
we have:

sup
θ∈�̃

∥∥∥∂2
θ2
Ln(θ) − ∂2

θ2
L̂n(θ)

∥∥∥ P−→
n→∞ 0 �⇒ ∂2

θ2
L̂n(θ̄n)

P−→
n→∞ F(θ∗). (6.26)

Usual calculations show that:

F(θ∗) = −
(
M∗ 0
0 1

2 σ ∗4

)
and G(θ∗) =

(
M∗ 0

0
μ∗
4−1

4 σ ∗4

)
,

with M∗ = 1

σ ∗2
∞∑

k=1

∞∑

�=1

∂γ uk((γ
∗, 0)) t

(
∂γ u�((γ

∗, 0))
)
rX (� − k)

where G(θ∗) = E
[
∂θq0(θ∗) t∂θq0(θ∗)

]
has already been defined in (6.17).

Thanks to the formula forM∗, we can deduce that F∗ is invertible. Indeed,M∗ is invertible
if and only if E

[
∂θq0(θ∗) t∂θq0(θ∗)

]
is invertible and therefore if and only if for all v ∈

R
p−1, tv E

[
∂γ q0(θ∗) t∂θq0(θ∗)

]
v = E

[(
tv ∂γ q0(θ∗)

)2] = 0 or tv ∂γ q0(θ∗) = 0 a.s.

implies v = 0. Or, pour v ∈ R
p−1,

tv ∂γ q0(θ
∗) = 0 a.s. �⇒ 1

σ ∗2 ε0

∞∑

k=1

tv ∂γ uk(θ
∗) X−k = 0 a.s.

�⇒
∞∑

k=1

tv ∂γ uk(θ
∗) X−k = 0 a.s. (ε0 is independent toF0)

�⇒ tv ∂γ uk(θ
∗) = 0 for all k ∈ N

∗

�⇒ v = 0 from(3.11).

Now, from (6.17) and (6.24), we deduce that:

√
n ∂θ L̂n(θ

∗) L−→
n→∞N (

0 , G(θ∗)
)
,

and since F(θ∗) is a definite negative matrix, from (6.25) we deduce that

√
n

(
θ̃n − θ∗) L−→

n→∞N (
0 , F(θ∗)−1 G(θ∗) F(θ∗)−1). (6.27)

Finally, from the previous computations of G(θ∗) and F(θ∗), we deduce (3.12).

��
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6.2 Proofs of additional lemmas

Lemma 6.1 Under the assumptions of Theorem 3.1, for any θ ∈ � and t ∈ Z or t ∈ N
∗,

with mt (θ), m̂t (θ) and m̃t (θ) respectively defined in (3.5), (3.7) and (6.7), we have:

mt (θ) =
∞∑

k=1

αk(θ, θ∗) εt−k , m̂t (θ) =
∞∑

k=1

α̂k,t (θ, θ∗) εt−k and m̃t (θ) =
∞∑

k=0

α̃k,t (θ, θ∗) ε−k,

where there exists C > 0 such as for any k ≥ 1 and t ∈ N
∗,

max
(∣∣αk(θ, θ∗)

∣∣ ,
∣∣̂αk,t (θ, θ∗)

∣∣) ≤ C

k1−d∗+
and

∣∣̃αk,t (θ, θ∗)
∣∣ ≤ C

td k1−d∗+
.

Moreover, under the assumptions of Theorem 3.2, the same properties also hold for ∂θmt (θ),
∂θ m̂t (θ) and ∂θ m̃t (θ).

Proof We know that Xt = ∑∞
�=0 a�(θ

∗) εt−� for any t ∈ Z. Then,

mt (θ) =
∞∑

k=1

∞∑

�=0

uk(θ)a�(θ
∗) εt−k−� =

∞∑

j=1

( j∑

k=1

uk(θ)a j−k(θ
∗)

)
εt− j

=
∞∑

j=1

α j (θ, θ∗) εt− j

m̂t (θ) =
t−1∑

k=1

∞∑

�=0

uk(θ)a�(θ
∗) εt−k−� =

∞∑

j=1

(min( j, t−1)∑

k=1

uk(θ)a j−k(θ
∗)

)
εt− j

=
∞∑

j=1

α̂ j,t (θ, θ∗) εt− j

m̃t (θ) =
∞∑

k=t

∞∑

�=0

uk(θ)a�(θ
∗) εt−k−� =

∞∑

j=0

( j∑

k=0

ut+k(θ)a j−k(θ
∗)

)
εt− j

=
∞∑

j=0

α̃ j,t (θ, θ∗) εt− j

As a consequence, using
∣∣a�(θ

∗)
∣∣ ≤ C �d

∗+−1 and
∣∣u�(θ)

∣∣ ≤ C �−d−1 for any � ∈ N
∗, we

obtain:

∣∣α j (θ, θ∗)
∣∣ ≤ C

j∑

k=1

1

k1+d

1

(1 + j − k)1−d∗+

≤ C
( 1

( j/2)1−d∗+

j/2∑

k=1

1

k1+d
+ 1

( j/2)1+d

j∑

k= j/2

1

(1 + j − k)1−d∗+

)

≤ C

j1−d∗+
.

Using the same kind of decomposition, we obtain the other bounds. ��
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Lemma 6.2 For any α > 1, β ∈ (0, 1), there exists C > 0 such as for any 1 ≤ a,

Iα(a) =
∞∑

k=1

1

kα (k + a)α
≤ C

aα

Iα(a, b) =
∞∑

k=1

1

(k + a)α (k + b)α
≤ C

aα−1 bα
for any b > a ≥ 1

Jα,β(0, a) =
∞∑

k=1

1

(k + a)α kβ
≤ C

aα+β−1

Jα,β(a, 0) =
∞∑

k=1

1

kα (k + a)β
≤ C

aβ

Jα,β(a, b) =
∞∑

k=1

1

(k + a)β (k + b)α
≤ C

aβbα−1 min
(
1 ,

a

b

)
for any b ≥ 1

Lemma 6.3 Under the assumptions of Theorem 3.1, there exists C > 0 such as for any θ ∈ �

and 1 ≤ s ≤ t ≤ n,

∣∣E
[
m̃s(θ) m̃t (θ)

]∣∣ ≤ C

sdt1−2d∗++d
. (6.28)

Proof Using the bounds of functions I1+d and J1+d,1−2d defined in Lemma 6.2, we obtain

E
[
m̃s(θ) m̃t (θ)

] =
∞∑

k=s

∞∑

�=t

uk(θ) u�(θ) rX (t − s + k − �)

≤ C
∞∑

k=1

∞∑

�=1

1

(s + k)1+d

1

(t + �)1+d

1

(1 + |k − �|)1−2d∗+

≤ C
( ∞∑

j=1

1

(1 + j)1−2d∗+

∞∑

�=1

1

(� + s + j)1+d(� + t)1+d

+
∞∑

k=1

1

(k + s)1+d(k + t)1+d

)

+
∞∑

j=1

1

(1 + j)1−2d∗+

∞∑

k=1

1

(k + s)1+d(k + t + j)1+d

)

≤ C
(
I1+d(s, t) +

∞∑

j=1

1

(1 + j)1−2d∗+

(
I1+d(s + j, t) + I1+d(s, t + j)

))

≤ C
( 1

sd t1+d
+ 1

sd
J1+d,1−2d∗+(0, t) + 1

td+1

t−s∑

j=1

1

(1 + j)1−2d∗+
1

(s + j)d

+ 1

td

∞∑

j=t−s

1

(1 + j)1−2d∗+
1

(s + j)1+d

)

≤ C
( 1

sd t1+d
+ 1

sd t1−2d∗++d
+ 1

sd td+1 (t − s + 1)2d
∗+
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+ 1

td
J1+d,1−2d∗+(t − s, t)

)

≤ C
( 1

sd t1+d
+ 1

sd t1−2d∗++d
+ 1

sd t1−2d∗++d
+ 1

t
J1+d,1−2d∗+(t − s, t)

)

≤ C

sdt1−2d∗++d
.

��
Lemma 6.4 Under the assumptions of Theorem 3.1, there exists C > 0 such as for any θ ∈ �

and any 1 ≤ s and 1 ≤ t ,

∣∣E
[
m̃s(θ)mt (θ)

]∣∣ ≤

⎧
⎪⎪⎨

⎪⎪⎩

C
( 1

sd t1−2d∗+
+ (1 + t − s)2d

∗+

s1+2d

)
if s ≤ t

C
( t2d

∗+

s1+d
+ (1 + s − t)2d

∗+

s1+d td

)
if s ≥ t

. (6.29)

Proof

E
[
m̃s(θ)mt (θ)

] =
∞∑

k=s

∞∑

�=1

uk(θ) u�(θ) rX (t − s + k − �)

≤ C
∞∑

k=1

∞∑

�=1

1

(s + k)1+d

1

�1+d

1

(1 + |t + k − �|)1−2d∗+

≤ C
( ∞∑

j=1

1

(1 + t + j)1−2d∗+

∞∑

�=1

1

(� + s + j)1+d�1+d

+
t∑

j=1

1

(1 + t − j)1−2d∗+

∞∑

k=1

1

(k + s)1+d(k + j)1+d

+
∞∑

j=t

1

(1 + j − t)1−2d∗+

∞∑

k=1

1

(k + s)1+d(k + j)1+d

)

≤ C
( ∞∑

j=1

1

(t + j)1−2d∗+
I1+d(s + j, 0) +

t∑

j=1

1

j1−2d∗+
I1+d(s, t − j)

+
∞∑

j=1

1

j1−2d∗+
I1+d(s, j + t)

)
.

Then, if s ≤ t ,

∣∣E
[
m̃s(θ)mt (θ)

]∣∣ ≤ C
(
J1+d,1−2d∗+(t, s) + 1

sd

t−s∑

j=1

1

j1−2d∗+
1

(t − j)1+d

+ 1

s1+d

s∑

j=1

1

(t − j)1−2d∗+
1

(s − j)1+d
+ 1

sd
J1+d,1−2d∗+(0, t)

)

≤ C
( 1

sd t1−2d∗+
+ 1

s2d t1−2d∗+
+ 1

s1+2d−2d∗+
+ 1

sd t1+d−2d∗+

)

≤ C
( 1

sd t1−2d∗+
+ 1

s1+2d−2d∗+

)
.
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And if s > t ,

∣∣E
[
m̃s(θ)mt (θ)

]∣∣ ≤ C
(
J1+d,1−2d∗+(t, s) + 1

s1+d

t∑

j=1

1

j1−2d∗+
1

(t − j)1+d

+ 1

s1+d

s−t∑

j=1

1

j1−2d∗+
1

(t + j)d
+ 1

sd

∞∑

j=s−t

1

j1−2d∗+
1

(t + j)1+d

)

≤ C
( 1

s1+d t−2d∗+
+ 1

s1+d t1−2d∗+
+ 1

s1+2d−2d∗+
+ 1

s1+2d−2d∗+

)

≤ C
( 1

s1+d t−2d∗+
+ 1

s1+2d−2d∗+

)
.
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