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Abstract
This paper concerns the estimation of stationary probability of ergodic semi-Markov chains
based on an observation over a time interval.We derive asymptotic properties of the proposed
estimator, when the time of observation goes to infinity, as consistency, asymptotic normality,
law of iterated logarithm and rate of convergence in a functional setting. The proofs are based
on asymptotic results on discrete-time semi-Markov random evolutions.
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1 Introduction

Semi-Markov processes have received extensive attention recently in that it is revealed as a
very efficient tool for many applied science and engineering problems. As an extension of
Markov processes and renewal processes, the sojourn time of the semi-Markov process can
be any distribution, which provides great flexibility in modelling the real problems. Many
applications can be found onqueuing theory problems (Afanasyeva et al. 2012), reliability and
survival analysis (Barbu and Limnios 2008), biological sequences (Barbu and Limnios 2008;
Garcia-Maya and Limnios 2019), finance and insurance (Petersson 2016) and so on. The
present paper concentrates on the discrete-time semi-Markov process, i.e., the semi-Markov
chain.

Since Anselone (1960) first introduced the semi-Markov chain and Howard (1971) further
refined its description, more and more researchers have been attracted and dedicated to this
topic. Stenflo (1996) presented the periodicity concept of the semi-Markov chain. Mode and
Pickens (1998) investigated the computational methods for the renewal theory of the semi-
Markov chain and applied it to biology. Barbu et al. (2004) presented an efficient algorithm for
solving theMarkov renewal equationwhich is the basic tool in semi-Markov chain theory and
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applications. Girardin and Limnios (2006, 2018) presented entropy rate calculation of semi-
Markov chains. Barbu and Limnios (2006), Barbu and Limnios (2008) presented estimation
results with asymptotic properties of semi-Markov chains, and the theory and algorithms
of hidden semi-Markov chains. Properties of the maximum likelihood estimator of hidden
semi-Markov chains were analyzed by Trevezas and Limnios (1979), and Malefaki et al.
(2010). Limnios (2011) and Limnios and Swishchuk (2013), Limnios and Swishchuk (2020)
presented the asymptotic theory of random evolution in semi-Markov chain media.

One of the most important characteristics in the ergodic processes is their stationary
probability measure. It is a significant problem to estimate the stationary distribution of a
semi-Markov chain, because in applied sciences and engineering, we are usually interested
in the equilibrium behavior of a system or device, which can be reached after a more or less
long run, depending on some spectral properties of the transition operators.

Hence, to estimate the stationary distribution of a semi-Markov chain and find an estimator
with asymptotic properties is meaningful and essential. This is the problem we face in this
paper, i.e., how to estimate the stationary probability given an observation that consists of a
trajectory of a semi-Markov chain in a time interval. We propose an empirical estimator and
obtain its asymptotic properties in a functional setting.

Nevertheless, the stationary distribution of a semi-Markov process, in discrete or
continuous-time, cannot be defined as in the Markov case, that is, π A = 0, where π is
the stationary probability of the Markov process and A its generator, since we do not have a
semigroup. The stationary probability of a semi-Markov process is defined either as a limit
of the transition function of the process, or as a marginal distribution of a coupled process,
e.g., the semi-Markov process together with the backward recurrence time process.

The stationary distribution for continuous-time semi-Markov processes is studied in the
case of finite-state space case in Limnios et al. (2005) and general-state space in Limnios
(2006) respectively. However, the present paper is the first to consider the estimation of
the stationary distribution for semi-Markov chains in the case of general state space. The
proof method used here, for consistency and asymptotic normality, is based on the random
evolution theory. The law of iterated logarithm is based on results presented in Herkenrath
et al. (2003).

Next Sect. 2, presents the semi-Markov chain setting. Section 3 defines the proposed
estimator and the asymptotic results. Section 4 presents the proofs, and finally Sect. 5 presents
some concluding remarks.

2 Stationary probability of semi-Markov chains

Semi-Markov chain. Let us denote by N := {0, 1, 2, ...} the set of natural numbers, and a
complete probability space with countably generated σ -algebra, say (�,F,P), on which
we define all stochastic processes and random variables consider here. It is worth noticing
here that k ∈ N denotes the calendar time, while n ∈ N denotes the number of jumps. Let
us consider a semi-Markov chain (Zk, k ∈ N), with state space a measurable space (E, E).
Let us also consider the embedded Markov renewal chain (Jn, Sn, n ∈ N), where Jn is the
embedded Markov chain, with state space (E, E), and 0 = S0 < S1 < ... < Sn < ... the
successive integer valued jump times, and the semi-Markov kernel q(x, B, k), x ∈ E , B ∈ E ,
k ∈ N, that is,

q(x, B, k) :=
∫
B
P(x, dy) f (x, y, k), k > 0, and q(x, B, 0) = 0,
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where P(x, B) := P(Jn+1 ∈ B | Jn = x) is the transition kernel of the EMC J , and
f (x, y, k) := P(Sn+1 − Sn = k | Jn = x, Jn+1 = y) the conditional distribution of the
sojourn time in state x when the next visited state is y.

The process (Nk, k ∈ N), counts the jumps of the process up to time k, that is, Nk =
sup{n : Sn ≤ k}. The processes (Zk, k ∈ N) and (Jn, n ∈ N) are connected by the following
relations:

Zk = JNk , k ∈ N, and Jn = ZSn , n ∈ N.

Let us define also the survival function of the time the SMC Z spends in a state x ∈ E ,
F̄x (k) := 1 − ∑

�≤k q(x, E, �), and the mean sojourn time in state x ∈ E , that is, m(x) :=∑
k≥0 F̄x (k). Denote also by fx (�) := q(x, E, �) the law of unconditional sojourn time in

state x ∈ E .
Backward recurrence time process. Consider now the backward recurrence time Uk :=

k − SNk , k ≥ 0, and the coupled process (Zk,Uk), which is a Markov chain, with transition
kernel operator P�, see (Limnios and Swishchuk 2020), defined by acting on measurable and
bounded test functions ϕ(x, k), can be written as follows,

P�ϕ(x, k) = ϕ(x, k + 1) + λ(x, k)[Pϕ(x, 0) − ϕ(x, k + 1)] (1)

where P is the transition kernel operator of the embedded Markov chain J , and λ(x, k) :=
Px (S1 = k | S1 ≥ k), the discrete time transition rate of the sojourn time in state x ∈ E .

It is worth noticing that operator P�, defined in (1), acting on test functions ϕ(x), can be
written as

P� = I + λ(x, ·)(P − I )

where I is the identity operator.
Markov Renewal Equation. The Markov renewal equation plays a crucial role, and it is

defined as follows

u(x, k) = v(x, k) +
k∑

�=0

∫
E
q(x, dy, �)u(y, k − �), x ∈ E, k ≥ 0, (2)

where u is an unknown function, and v a given function, both defined on E × N.
For a semi-Markov kernel q , we define the successive convolution powers, by induction,

as follows

q(n+1)(x, B, k) =
k∑

�=0

∫
E
q(x, dy, �)q(n)(y, B, k − �), n ≥ 1,

and

q(1) = q, q(0)(x, B, k) =
{
0 if k ≤ 0
1B(x) if k > 0

where 1B is the indicator function of the set B.
Markov Renewal Theorem. First define the Markov renewal functions as follows

ψ(x, B, k) :=
k∑

n=0

q(n)(x, B, k).

Let us give now the following important result, which is Shurenkov’s Markov renewal
theorem (Shurenkov 1984) restated for discrete-time semi-Markov processes.
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The following assumptions are needed in the sequel.

• A1: The Markov chain (Jn) is ergodic with stationary distribution ρ(B), B ∈ E .
• A2: 0 < m < ∞, with m := ∫

E ρ(dx)m(x).

Theorem 1 (Markov Renewal Theorem). Under assumptions A1-A2, and the additional
assumption that the function v(x, k) satisfies

∫
E ρ(dx)

∑
k≥0 |v(x, k)| < ∞, the MRE (2)

has a unique solution, given by u(x, k) = ψ ∗ v(x, k), and

lim
k→∞ ψ ∗ v(x, k) = 1

m

∫
E

ρ(dx)
∑
k≥0

v(x, k).

Limiting and stationary probability. Let us apply this theorem for the transition function
of the semi-Markov chain calculation. The transition function of the semi-Markov process
is defined as follows

Pk(x, B) := P(Zk ∈ B | Z0 = x),

and satisfies the following Markov renewal equation

Pk(x, B) = 1B(x)Fx (k) +
k∑

�=0

∫
E
q(x, dy, �)Pk−�(y, B).

Then, by the above Markov renewal theorem, we obtain the solution,

Pk(x, B) = (ψ ∗ 1B F)(x, k)

and the limit

lim
k→∞ Pk(x, B) = 1

m

∫
B

ρ(dx)m(x) =: π(B), for any x ∈ E, B ∈ E .

The limit distribution π(B) is said to be the stationary distribution of the semi-Markov chain
Zk .

Anotherway to define it, is to considerπ� the stationary distribution of theMarkov process
(Zk,Uk), where Uk = k − SNk , the backward recurrence time of the SMC, that is

π�(dx × {�}) = ρ(dx)Fx (�)/m.

The stationary distribution π of Z , is now defined as the marginal distribution of π�, that
is,

π(B) := π�(B × N) =
∫
B

ρ(dx)m(x)/m.

3 Estimation of stationary probability

Let us observe the semi-Markov chain Z on the time interval [0, k] ⊂ N, that is the censured
trajectory (Z�(ω), 0 ≤ � ≤ k). Based on these data, we propose the following empirical
estimator for the stationary probability of the SMC, π , as follows

π̂k(B) := 1

k

k∑
�=1

1B(Z�), k > 0, (3)
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for any B ∈ E .
Convergence results considered here are in the weak functional sense in the space

DE [0,∞) with Skorohod topology, denoted by ⇒. The following results are functional
asymptotic properties of the estimator (3), namely, consistency, asymptotic normality, and
convergence rate results.

In fact π̂[t/ε](B) and π̂[t/ε2](B), t ≥ 0, ε > 0, where the [x] denotes the integer part of
the real number x , are families of stochastic processes in continuous time t > 0.

Let us denote by L2
0(π) the subspace of the centered second order elements of L2(π), that

is, v ∈ L2
0(π) implies that

∫
E v2(x)π(dx) < ∞ and

∫
E v(x)π(dx) = 0.

Proposition 1 (Consistency). Under assumptions A1-A2, we have, for any fixed B ∈ E ,
π̂[t/ε](B) 
⇒ π(B), ε → 0

for t > 0. And, we can also state this result in the following convergence in probability,

lim
ε↓0 sup

0<t≤T

∣∣π̂[t/ε](B) − π(B)
∣∣ = 0,

for any but fixed T ∈ R+.

Let us now state the following assumption, (see, e.g., Limnios and Swishchuk 2013;
Koroliuk and Limnios 2005).

• C1: We assume moreover the following uniform integrability condition

lim
M→∞ sup

x∈E

∑
k≥M

k2 fx (k) = 0

which, of course, implies

sup
x∈E

∑
k≥1

k2 fx (k) < ∞.

This assumption is needed for tightness of the semi-Markov chains.
For notational simplicity, let us define the process

ξε
t := ε−1t[π̂ ε

t (B) − π(B)] := ε−1t[π̂[t/ε2](B) − π(B)]
for any but fixed B ∈ E and ξε

0 = 0 for any ε > 0.

Proposition 2 (Asymptotic normality). Under assumptions A1-A2 and C1, we have

ξε
t 
⇒ bBt , ε → 0,

where Bt , t ≥ 0, is the standard Brownian motion, and

b2 := b2(B) := 2
∫
B

π(dx)R0(x, B) − π(B) + π2(B) − 2π(B)

∫

E

n(dx)R0(x, B),

and 0 < b < ∞, where R0 is the potential operator of the discrete generator P� − I , and I
is the identity operator.

Remark 3.1 In the weak convergence scheme, the initial value, ξε
0 , must satisfy the following

two conditions, (see, e.g., Koroliuk and Limnios 2005, p. 93),

ξε
0

P−→ 0, and E
∣∣ξε
0

∣∣ ≤ C < ∞. (4)
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In our case, both conditions are trivially satisfied. We could also consider ξε
0 = εr , for a

constant r .

It is worth noticing that from the above Proposition 2, for an observation time of order
ε−2, we have approximately

π̂ ε
1 (B) ∼ N (π(B); ε2b2).

Let us now define K , a subset of C[0, 1], the space of continuous functions on [0, 1], with
sup-norm, ‖·‖, as follows

K := {x ∈ C[0, 1] : x is absolutely continuous, x(0) = 0,
∫ 1

0
(ẋ(t))2dt ≤ 1}

where ẋ(t) denotes the derivative of the function x with respect to t .
Let us suppose that the time k = 0 is not necessary a jump time, that is, we define

S0 ≤ 0 < S1 < S2 < · · · < Sn < · · · , with U0 = −S0 ≥ 0. In that case, we have a slight
modification of the definition of Uk , for k < S1, as follows

Uk =
{
U0 + k, k < S1
k − SNk , k ≥ S1

Moreover we suppose that the process (Zk,Uk) is a stationaryMarkov chain, that is, its initial
distribution is equal to its stationary distribution π�(dx × {�}) = ρ(dx)Fx (�)/m, defined
previously.

The following assumption is needed in the sequel.

• C2: Denote ‖·‖2 the usual norm of the space L2(π�). We assume that∑
n≥1

∥∥(P�)nv
∥∥
2 < ∞, v ∈ L2

0(π
�)

where the operator P� is defined in (1).

For example, for an one state semi-Markov chain (i.e., a renewal process in discrete-time,
Barbu and Limnios 2008), the above condition is trivially satisfied since the first member of
the relation is bounded by mv where m is here the mean value of the distribution f .

Proposition 3 (Law of the Iterated Logarithms). Under assumptions A1-A2 and C1-C2, and
the additional condition that the process (Z ,U ) is stationary, the limit points of the following
family of processes, as ε ↓ 0, (0 < ε < 1),

tπ̂[t/ε](B)

b
√
2ε log(− log(ε))

are exactly the set K , P-a.s.

As a divergence result, it means that the convergence of the estimator π̂[t/ε](B), in the
worst case, is of order

O((2ε log(− log(ε)))−1/2).

Proposition 4 (Rates of convergence). The rates of convergence, for consistency and asymp-
totic normality, are given by ∥∥Eπ̂[t/εr ](B) − π(B)

∥∥ ≤ εCr

for 0 ≤ t ≤ T , where Cr := Cr (T , ‖R0‖), with r = 1, 2, are two positive constants.
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The above result can be also stated, for both cases, as∥∥Eπ̂[t/εr ](B) − π(B)
∥∥ = O(ε).

And, from the above, we can easily obtain that the bias of estimator (3), goes to zero with
a rate O(1/k), that is, as k → ∞,∥∥Eπ̂t (B) − π(B)

∥∥ ≤ C1/k.

Remark 3.2 It is worth noticing here that all the above results can be also obtained by consid-
ering the stochastic functional βε(t) := αε(t)+εb−1(t/ε2−[t/ε2])a(Z[t/ε2]+1) in the space
C[0,∞) of the continuous functions equipped with the uniform topology, instead of αε(t). In
fact, since a(·) is a bounded function, we have, as ε → 0, ε(t/ε2 −[t/ε2])a(Z[t/ε2]+1) → 0,
a.s.

4 Proofs

In this sectionwewill prove the results presented in the previous section 3. In order to prove the
results for Proposition 1, 2 and 4,we are using results in paper Limnios andSwishchuk (2013),
in particular Result 4.2 and Corollary 5.1. For the asymptotic normality in the stationary case,
see also (Herkenrath et al. 2003), Theorem 1. Here in fact we don’t need the process (Z ,U )

to be stationary, while in Proposition 3, we consider that this process is stationary and we
use results from (Herkenrath et al. 2003). For Theorem 1, in Herkenrath et al. (2003), see
also (Heyde and Scott 1973; Scott 1973). See also Anisimov (2008), Gikhman and Skorohod
(1974), Girardin and Limnios (2018), Shurenkov (1984), Stroock and Varadhan (1979).

Let us now define the projection operator � of transition operator P� by

�ϕ(x, k) :=
∑
s≥0

∫
E

π(dy)F̄y(s)ϕ(y, s)/m.

Define also the potential operator R0 of P� − I by

R0 = (I − P� + �)−1 − �

where P� is the transition kernel operator of the MC (Zk,Uk), as defined by (1).

Proof of Proposition 1 Consider an additive functional of the semi-Markov chain, defined as
follows,

Yk :=
k∑

�=1

a(Z�), k ≥ 0, and Y0 = u,

where the function a : E −→ R, is measurable and bounded.
Consider the additive functional in the series scheme, Y ε

t ,

Y ε
t = ε

[t/ε]∑
�=1

a(Z�), t ≥ 0,

and Y ε
0 satisfying conditions (4), with limit say u, then we have the following averaging

result, see (Limnios and Swishchuk 2013),

Y ε
t ⇒ u + ât, ε → 0,
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where â = ∫
E π(dx)a(x).

Now from the above result, for a := 1B , we get directly the proof of the first part of
Proposition 1.

The second part of this proposition is obtained directly since the above limit is a constant
(see, e.g., Billingsley 1968). ��

Proof of Proposition 2 Consider now the continuous time processes ξε
t , defined as follows

ξε
t = ε

[t/ε2]∑
�=1

a(Z�), t ≥ 0,

and ξε
0 satisfy conditions (4), with limit initial point u.

Then for a ∈ L0(π), which is equivalent to the balance condition, �a = 0, in Limnios
and Swishchuk (2013), Result 4.2, we have,

ξε
t ⇒ u + bBt , ε → 0,

where b2 = 2a0 − â2, with

a0 =
∫
E

π(dx)a(x)R0a(x), â2 =
∫
E

π(dx)a2(x),

and Bt , t ≥ 0, is a standard Brownian motion.
Now putting a(x) := 1B(x) − â, x ∈ E , which obviously satisfy the balance condition

�a = 0, we get the desired result. ��

Proof of Proposition 3 Law of the Iterated Logarithms.
Define

σ 2
a := lim

k→∞
1

k
E(S2k )

with ak := a(Zk) and Sk := a1 + ... + ak .
Let us now consider the processes

αε(t) := ε

[t/ε2]∑
�=1

a(Z�), a ∈ L2
0(π)

By comparison of Theorem 1, in Herkenrath et al. (2003), and the above Proposition 2, we
have that σa = b. Under assumptions A1-A2, C1-C2 and σ 2

a > 0, and from Herkenrath et al.
(2003), Theorem 1, (see also Heyde and Scott 1973; Scott 1973), we have that the sequence

αε(t)

b
√
2 log(− log ε)

, 0 < ε < 1

as a subset of C[0, 1] is Pπ�−a.s. relative compact (in the uniform topology) and the set of
its limit points is exactly K .

Now by taking a = 1B − â, we conclude the proof of Proposition 3. ��

Proof of Proposition 4 This is an easy consequence of Corollary 5.1 in Limnios and
Swishchuk (2013). ��
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5 Concluding remarks

The finite or countable state spaces can be deduced directly as particular cases of the present
one. For the stationary case, the estimator (3) can be considered in any interval, that is, for
any fixed integer c ∈ N,

π̂k(B) := 1

k

c+k∑
�=c+1

1B(Z�),

its asymptotic properties remain still true. Here we have as initial distribution for the process
Z at time c its limit distribution which satisfy conditions (4).

The semi-Markov chains are important for applications, and also for numerical calculus
schemes of continuous-time processes. We can also use the estimator and its properties,
proposed above, to estimate the stationary probability of a continuous-time semi-Markov
process. If Q(t) is the semi-Markov kernel of a continuous-time semi-Markov process (see,
e.g., Limnios and Oprişan 2001), we can consider it in the discrete-time scheme, with time
step h > 0, as a SMCwith semi-Markov kernel, q(k), given by the relations q(k) = Q(kh)−
Q((k − 1)h), k ≥ 1, and q(0) = 0.

Finally, it is worth noticing that all results presented in this paper are equally valuable
when Z is an ergodic Markov chain with transition probability kernel P , since this pro-
cess is a particular case of the semi-Markov chain with semi-Markov kernel Q(x, B, k) :=
P(x, B)[P(x, {x})]k−1, k ≥ 1.
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gestions which led to significant improvements in the presentation of this paper.
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