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Abstract
In this paper we derive the asymptotic properties of the least squares estimator (LSE) of frac-
tionally integrated autoregressive moving-average (FARIMA) models under the assumption
that the errors are uncorrelated but not necessarily independent nor martingale differences.
We relax the independence and even the martingale difference assumptions on the innovation
process to extend considerably the range of application of the FARIMAmodels. We propose
a consistent estimator of the asymptotic covariance matrix of the LSE which may be very
different from that obtained in the standard framework. A self-normalized approach to con-
fidence interval construction for weak FARIMA model parameters is also presented. All our
results are done under a mixing assumption on the noise. Finally, some simulation studies
and an application to the daily returns of stock market indices are presented to corroborate
our theoretical work.

Keywords Nonlinear processes · FARIMA models · Least-squares estimator · Consistency ·
Asymptotic normality · Spectral density estimation · Self-normalization · Cumulants

Mathematics Subject Classification Primary 62M10; Secondary 91B84

1 Introduction

Long memory processes takes a large part in the literature of time series (see for instance
Granger and Joyeux (1980), Fox and Taqqu (1986), Dahlhaus (1989), Hosking (1981), Beran
et al. (2013), Palma (2007), among others). They also play an important role inmany scientific
disciplines and applied fields such as hydrology, climatology, economics, finance, to name a

B Yacouba Boubacar Maïnassara
yacouba.boubacar_mainassara@univ-fcomte.fr

Youssef Esstafa
youssef.esstafa@univ-fcomte.fr

Bruno Saussereau
bruno.saussereau@univ-fcomte.fr

1 Université Bourgogne Franche-Comté, Laboratoire de mathématiques de Besançon, UMR CNRS 6623,
16 route de Gray, 25030 Besançon, France

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11203-021-09243-7&domain=pdf
http://orcid.org/0000-0002-8604-5407


550 Statistical Inference for Stochastic Processes (2021) 24:549–608

few. To model the long memory phenomenon, a widely used model is the fractional autore-
gressive integrated moving average (FARIMA, for short) model. Consider a second order
centered stationary process X := (Xt )t∈Z satisfying a FARIMA(p, d0, q) representation of
the form

a0(L)(1 − L)d0 Xt = b0(L)εt , (1)

where d0 ∈ ]−1/2, 1/2[ is the long memory parameter, L stands for the back-shift operator
and a0(L) = 1 − ∑p

i=1 a0i L
i is the autoregressive (AR for short) operator and b0(L) =

1−∑q
i=1 b0i L

i is themoving average (MAfor short) operator (by conventiona00 = b00 = 1).
The operators a0 and b0 represent the short memory part of the model. Process ε := (εt )t∈Z
can be interpreted as in Francq and Zakoïan (1998) as the linear innovation of X , i.e. εt =
Xt − E[Xt |HX (t − 1)], whereHX (t − 1) is the Hilbert space generated by (Xs, s < t). The
innovation process ε is assumed to be a stationary sequence satisfying

(A0): E [εt ] = 0, Var (εt ) = σ 2
ε and Cov (εt , εt+h) = 0 for all t ∈ Z and all h �= 0.

Under the above assumptions the process ε is called a weakwhite noise. Different sub-classes
of FARIMAmodels can be distinguished depending on the noise assumptions. It is customary
to say that X is a strong FARIMA(p, d0, q) representation and we will do this henceforth
if in (1) ε is a strong white noise, namely an independent and identically distributed (iid
for short) sequence of random variables with mean 0 and common variance. A strong white
noise is obviously a weak white noise because independence entails uncorrelatedness. Of
course the converse is not true. Note that the independence hypothesis on the innovation can
be tested using the distance correlation (see for instance Székely et al. (2007), Davis et al.
(2018) and Aknouche and Francq (2021)). Between weak and strong noises, one can say that
ε is a semi-strong white noise if ε is a stationary martingale difference, namely a sequence
such that E(εt |εt−1, εt−2, . . . ) = 0. An example of semi-strong white noise is the general-
ized autoregressive conditional heteroscedastic (GARCH) model (see Francq and Zakoïan
(2019)). Martingale difference hypothesis can be tested using the procedures introduced for
instance in Dominguez and Lobato (2003), Escanciano andVelasco (2006) andHsieh (1989).
If ε is a semi-strong white noise in (1), X is called a semi-strong FARIMA(p, d0, q). If no
additional assumption is made on ε, that is if ε is only a weak white noise (not necessarily
iid, nor a martingale difference), the representation (1) is called a weak FARIMA(p, d0, q).
It is clear from these definitions that the following inclusions hold:

{strong FARIMA(p, d0, q)} ⊂ {semi-strong FARIMA(p, d0, q)}
⊂ {weak FARIMA(p, d0, q)} .

Nonlinear models are becoming more and more employed because numerous real time series
exhibit nonlinear dynamics. For instance conditional heteroscedasticity can not be generated
by FARIMA models with iid noises.1 As mentioned by Francq and Zakoïan (2005, 1998)
in the case of ARMA models, many important classes of nonlinear processes admit weak
ARMArepresentations inwhich the linear innovation is not amartingale difference. Themain
issue with nonlinear models is that they are generally hard to identify and implement. These
technical difficulties certainly explain the reason why the asymptotic theory of FARIMA
model estimation is mainly limited to the strong or semi-strong FARIMA model.

1 To cite few examples of nonlinear processes, let us mention the self-exciting threshold autoregressive
(SETAR), the smooth transition autoregressive (STAR), the exponential autoregressive (EXPAR), the bilinear,
the random coefficient autoregressive (RCA), the functional autoregressive (FAR) (see Tong (1990) and Fan
and Yao (2008) for references on these nonlinear time series models).
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Now we present some of the main works about FARIMA model estimation when the
noise is strong or semi-strong. For the estimation of long-range dependent processes, the
commonly used estimation method is based on the Whittle frequency domain maximum
likelihood estimator (MLE) (see for instance Dahlhaus (1989), Fox and Taqqu (1986), Taqqu
and Teverovsky (1997), Giraitis and Surgailis (1990)). The asymptotic properties of theMLE
of FARIMA models are well-known under the restrictive assumption that the errors εt are
independent or martingale difference (see Beran (1995), Beran et al. (2013), Palma (2007),
Baillie et al. (1996), Ling and Li (1997), Hauser and Kunst (1998), among others). Hualde
and Robinson (2011), Nielsen (2015) and Cavaliere et al. (2017) have considered the prob-
lem of conditional sum of squares estimation (see Klimko and Nelson (1978)) and inference
on parametric fractional time series models driven by conditionally (unconditionally) het-
eroskedastic shocks. All the works mentioned above assume either strong or semi-strong
innovations. In the modeling of financial time series, for example, the GARCH assumption
on the errors is often used (see for instance Baillie et al. (1996), Hauser and Kunst (1998)) to
capture the conditional heteroscedasticity. The GARCHmodels are generally martingale dif-
ferences. Various researchworkswere devoted to testing themartingale difference hypothesis
(see for example Dominguez and Lobato (2003), Escanciano and Velasco (2006) and Hsieh
(1989)). In financial econometrics, the returns are often assumed to be martingale increments
(though they are not generally independent sequences). However, many works have shown
that for some exchange rates, the martingale difference assumption is not satisfied (see for
instance Escanciano and Velasco (2006)). There is no doubt that it is important to have a
soundness inference procedure for the parameter in the FARIMA model when the (possibly
dependent) error is subject to unknown conditional heteroscedasticity. Little is thus known
when the martingale difference assumption is relaxed. Our aim in this paper is to consider
a flexible FARIMA specification and to relax the independence assumption (and even the
martingale difference assumption) in order to be able to cover weak FARIMA representations
of general nonlinear models.

A very few works deal with the asymptotic behavior of the MLE of weak FARIMA
models. To our knowledge, Shao (2012, 2010b) are the only papers on this subject. Under
weak assumptions on the noise process, the author has obtained the asymptotic normality
of the Whittle estimator (see Whittle (1953)). Nevertheless, the inference problem is not
fully addressed. This is due to the fact that the asymptotic covariance matrix of the Whittle
estimator involves the integral of the fourth-order cumulant spectra of the dependent errors
εt . Using non-parametric bandwidth-dependent methods, one builds an estimation of this
integral but there is no guidance on the choice of the bandwidth in the estimation procedures
(see Shao (2012), Taniguchi (1982), Keenan (1987), Chiu (1988) for further details). The
difficulty is caused by the dependence in εt . Indeed, for strong noise, a bandwidth-free
consistent estimator of the asymptotic covariance matrix is available. When εt is dependent,
no explicit formula for a consistent estimator of the asymptotic variance matrix seems to be
provided in the literature (see Shao (2012)).

In this work we propose to adopt for weak FARIMA models the estimation procedure
developed in Francq and Zakoïan (1998) so we use the least squares estimator (LSE for
short). We show that a strongly mixing property and the existence of moments are sufficient
to obtain a consistent and asymptotically normally distributed least squares estimator for
the parameters of a weak FARIMA representation. For technical reasons, we often use an
assumption on the summability of cumulants. This can be a consequence of a mixing and
moments assumptions (see Doukhan and León (1989), for more details). These kind of
hypotheses enable us to circumvent the problem of the lack of speed of convergence (due
to the long-range dependence) in the infinite AR or MA representations. We fix this gap by
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proposing rather sharp estimations of the infinite AR andMA representations in the presence
of long-range dependence (see Sect. 6.1 for details).

In our opinion there are three major contributions in this work. The first one is to show that
the estimation procedure developed in Francq and Zakoïan (1998) can be extended to weak
FARIMAmodels. This goal is achieved thanks to Theorems 1 and 2 in which the consistency
and the asymptotic normality are stated. The second one is to provide an answer to the open
problem raised by Shao (2012) (see also Shao (2010b)) on the asymptotic covariance matrix
estimation. We propose in our work a weakly consistent estimator of the asymptotic variance
matrix (see Theorem 5). Thanks to this estimation of the asymptotic variance matrix, we can
construct a confidence region for the estimation of the parameters. Finally another method
to construct such confidence region is achieved thanks to an alternative method using a self
normalization procedure (see Theorem 8).

The paper is organized as follows. Section 2 shows that the least squares estimator for the
parameters of a weak FARIMA model is consistent when the weak white noise (εt )t∈Z is
ergodic and stationary, and that the LSE is asymptotically normally distributed when (εt )t∈Z
satisfies mixing assumptions. The asymptotic variance of the LSE may be very different in
the weak and strong cases. Section 3 is devoted to the estimation of this covariance matrix.
We also propose a self-normalization-based approach to construct a confidence region for the
parameters of weak FARIMA models which avoids to estimate the asymptotic covariance
matrix. We gather in Section 7 all our figures and tables. These simulation studies and
illustrative applications on real data are presented and discussed in Sect. 4. The proofs of the
main results are collected in Sect. 6.

In all this work, we shall use the matrix norm defined by ‖A‖ = sup‖x‖≤1 ‖Ax‖ =
ρ1/2(A

′
A), when A is a R

k1×k2 matrix, ‖x‖2 = x ′x is the Euclidean norm of the vector
x ∈ R

k2 , and ρ(·) denotes the spectral radius.

2 Least squares estimation

In this section we present the parametrization and the assumptions that are used in the sequel.
Then we state the asymptotic properties of the LSE of weak FARIMA models.

2.1 Notations and assumptions

We make the following standard assumption on the roots of the AR and MA polynomials in
(1).

(A1): The polynomials a0(z) and b0(z) have all their roots outside of the unit disk with no
common factors.

Let Θ∗ be the space

Θ∗ :=
{
(θ1, θ2, . . . , θp+q) ∈ R

p+q , where aθ (z) = 1 −
p∑

i=1

θi z
i and bθ (z) = 1 −

q∑

j=1

θp+ j z
j

have all their zeros outside the unit disk
}

.

Denote by Θ the Cartesian product Θ∗ × [d1, d2], where [d1, d2] ⊂ ]−1/2, 1/2[ with d1 −
d0 > −1/2.Theunknownparameter of interest θ0 = (a01, a02, . . . , a0p, b01, b02, . . . , b0q , d0)′
is supposed to belong to the parameter space Θ .
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The fractional difference operator (1 − L)d0 is defined, using the generalized binomial
series, by

(1 − L)d0 =
∑

j≥0

α j (d0)L
j ,

where for all j ≥ 0, α j (d0) = Γ ( j − d0)/ {Γ ( j + 1)Γ (−d0)} and Γ (·) is the Gamma
function. Using the Stirling formula we obtain that for large j , α j (d0) ∼ j−d0−1/Γ (−d0)
(one refers to Beran et al. (2013) for further details).

For all θ ∈ Θ we define (εt (θ))t∈Z as the second order stationary process which is the
solution of

εt (θ) =
∑

j≥0

α j (d)Xt− j −
p∑

i=1

θi
∑

j≥0

α j (d)Xt−i− j +
q∑

j=1

θp+ jεt− j (θ). (2)

Observe that, for all t ∈ Z, εt (θ0) = εt a.s. Given a realization X1, . . . , Xn of length n, εt (θ)

can be approximated, for 0 < t ≤ n, by ε̃t (θ) defined recursively by

ε̃t (θ) =
t−1∑

j=0

α j (d)Xt− j −
p∑

i=1

θi

t−i−1∑

j=0

α j (d)Xt−i− j +
q∑

j=1

θp+ j ε̃t− j (θ), (3)

with ε̃t (θ) = Xt = 0 if t ≤ 0. It will be shown that these initial values are asymptotically
negligible and, in particular, that εt (θ) − ε̃t (θ) → 0 in L

2 as t → ∞ (see Remark 12
hereafter). Thus the choice of the initial values has no influence on the asymptotic properties
of the model parameters estimator.

Let Θ∗
δ denote the compact set

Θ∗
δ = {

θ ∈ R
p+q ; the roots of the polynomials aθ (z) and bθ (z) have modulus ≥ 1 + δ

}
.

We define the set Θδ as the Cartesian product of Θ∗
δ by [d1, d2], i.e. Θδ = Θ∗

δ × [d1, d2],
where δ is a positive constant chosen such that θ0 belongs to Θδ .

The random variable θ̂n is called least squares estimator if it satisfies, almost surely,

θ̂n = argmin
θ∈Θδ

Qn(θ), where Qn(θ) = 1

n

n∑

t=1

ε̃2t (θ). (4)

Our main results are proven under the following assumptions:

(A2): The process (εt )t∈Z is strictly stationary and ergodic.

The consistency of the least squares estimator will be proved under the three above assump-
tions ((A0), (A1) and (A2)). For the asymptotic normality of the LSE, additional assumptions
are required. It is necessary to assume that θ0 is not on the boundary of the parameter space
Θδ .

(A3): We have θ0 ∈ ◦
Θδ , where

◦
Θδ denotes the interior of Θδ .

The stationary process ε is not supposed to be an independent sequence. So one needs to
control its dependency by means of its strong mixing coefficients {αε(h)}h≥0 defined by

αε (h) = sup
A∈F t−∞,B∈F+∞

t+h

|P (A ∩ B) − P(A)P(B)| ,

where F t−∞ = σ(εu, u ≤ t) and F+∞
t+h = σ(εu, u ≥ t + h).

We shall need an integrability assumption on themoments of the noise ε and a summability
condition on the strong mixing coefficients (αε(h))h≥0.
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(A4): There exists an integer τ ≥ 2 such that for some ν ∈]0, 1], we have E|εt |τ+ν < ∞
and

∑∞
h=0(h + 1)k−2 {αε(h)} ν

k+ν < ∞ for k = 1, . . . , τ .

Note that (A4) implies the following weak assumption on the joint cumulants of the
innovation process ε (see Doukhan and León (1989), for more details).

(A4’): There exists an integer τ ≥ 2 such that Cτ := ∑
i1,...,iτ−1∈Z |cum(ε0, εi1 , . . . , εiτ−1)|

< ∞ .

In the above expression, cum(ε0, εi1 , . . . , εiτ−1) denotes the τ−th order cumulant of the
stationary process. Due to the fact that the εt ’s are centered, we notice that for fixed (i, j, k)

cum(ε0, εi , ε j , εk) = E
[
ε0εiε jεk

]− E [ε0εi ]E
[
ε jεk

]− E
[
ε0ε j

]
E [εiεk] − E [ε0εk]E

[
εiε j

]
.

Assumption (A4) is a usual technical hypothesis which is useful when one proves the asymp-
totic normality (see Francq and Zakoïan (1998) for example). Let us notice however that we
impose a stronger convergence speed for the mixing coefficients than in the works on weak
ARMA processes. This is due to the fact that the coefficients in the AR or MA representation
of εt (θ) have no more exponential decay because of the fractional operator (see Sect. 6.1 for
details and comments).

As mentioned before, Hypothesis (A4) implies (A4’)which is also a technical assumption
usually used in the fractionally integrated ARMA processes framework (see for instance
Shao (2010c)) or even in an ARMA context (see Francq and Zakoïan (2007); Zhu and Li
(2015)). One remarks that in Shao (2010b), the author emphasized that a geometric moment
contraction implies (A4’). This provides an alternative to strong mixing assumptions but, to
our knowledge, there is no relation between this two kinds of hypotheses.

2.2 Asymptotic properties

The asymptotic properties of the LSE of the weak FARIMAmodel are stated in the following
two theorems.

Theorem 1 (Consistency) Assume that (εt )t∈Z satisfies (1) and belongs to L
2. Let (θ̂n)n≥1

be a sequence of least squares estimators. Under Assumptions (A0), (A1) and (A2), we have

θ̂n
P−−−→

n→∞ θ0.

The proof of this theorem is given in Sect. 6.2.
In order to state our asymptotic normality result, we define the function

On(θ) = 1

n

n∑

t=1

ε2t (θ), (5)

where the sequence (εt (θ))t∈Z is given by (2). We consider the following information matri-
ces

I (θ) = lim
n→∞ Var

{√
n

∂

∂θ
On(θ)

}

and J (θ) = lim
n→∞

[
∂2

∂θi∂θ j
On(θ)

]

a.s.

The existence of these matrices are proved when one demonstrates the following result.

Theorem 2 (Asymptotic normality) We assume that (εt )t∈Z satisfies (1). Under (A0)–(A3)
and Assumption (A4) with τ = 4, the sequence (

√
n(θ̂n − θ0))n≥1 has a limiting centered

normal distribution with covariance matrix Ω := J−1(θ0)I (θ0)J−1(θ0).
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The proof of this theorem is given in Sect. 6.3.

Remark 3 Hereafter (see more precisely (55)), we will be able to prove that

J (θ0) = 2E

[
∂

∂θ
εt (θ0)

∂

∂θ ′ εt (θ0)
]

a.s.

Thus the matrix J (θ0) has the same expression in the strong and weak FARIMA cases (see
Theorem 1 of Beran (1995)). On the contrary, the matrix I (θ0) is in general much more
complicated in the weak case than in the strong case.

Remark 4 In the standard strong FARIMA case, i.e.when (A2) is replaced by the assumption
that (εt )t∈Z is iid, we have I (θ0) = 2σ 2

ε J (θ0). Thus the asymptotic covariance matrix is then
reduced as ΩS := 2σ 2

ε J
−1(θ0). Generally, when the noise is not an independent sequence,

this simplification can not be made and we have I (θ0) �= 2σ 2
ε J (θ0). The true asymptotic

covariancematrixΩ = J−1(θ0)I (θ0)J−1(θ0) obtained in theweak FARIMA framework can
be very different from ΩS . As a consequence, for the statistical inference on the parameter,
the ready-made softwares used to fit FARIMA do not provide a correct estimation of Ω for
weak FARIMA processes because the standard time series analysis softwares use empirical
estimators of ΩS . The problem also holds in the weak ARMA case (see Francq and Zakoïan
(2007) and the references therein).This is why it is interesting to find an estimator ofΩ which
is consistent for both weak and (semi-)strong FARIMA cases.

Based on the above remark, the next section deals with two different methods in order to find
an estimator of Ω .

3 Estimating the asymptotic variancematrix

For statistical inference problem, the asymptotic varianceΩ has to be estimated. In particular
Theorem2 can be used to obtain confidence intervals and significance tests for the parameters.

First of all, the matrix J (θ0) can be estimated empirically by the square matrix Ĵn of order
p + q + 1 defined by:

Ĵn = 2

n

n∑

t=1

{
∂

∂θ
ε̃t

(
θ̂n

)}{ ∂

∂θ
′ ε̃t
(
θ̂n

)}

. (6)

The convergence of Ĵn to J (θ0) is classical (see Lemma 17 in Sect. 6.3 for details).
In the standard strong FARIMA case, in view of remark 4, we have Ω̂S := 2σ̂ 2

ε Ĵ
−1
n with

σ̂ 2
ε = Qn(θ̂n). Thus Ω̂S is a consistent estimator of ΩS . In the general weak FARIMA case,

this estimator is not consistent when I (θ0) �= 2σ 2
ε J (θ0). So we need a consistent estimator

of I (θ0).

3.1 Estimation of the asymptotic matrix I(�0)

For all t ∈ Z, let

Ht (θ0) = 2εt (θ0)
∂

∂θ
εt (θ0) =

(

2εt (θ0)
∂

∂θ1
εt (θ0), . . . , 2εt (θ0)

∂

∂θp+q+1
εt (θ0)

)′

. (7)
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We shall see in the proof of Lemma 18 that

I (θ0) = lim
n→∞Var

(
1√
n

n∑

t=1

Ht (θ0)

)

=
+∞∑

h=−∞
Cov (Ht (θ0), Ht−h(θ0)) .

Following the arguments developed in Boubacar Mainassara et al. (2012), the matrix I (θ0)
can be estimated using Berk’s approach (see Berk (1974)). More precisely, by interpreting
I (θ0)/2π as the spectral density of the stationary process (Ht (θ0))t∈Z evaluated at frequency
0, we can use a parametric autoregressive estimate of the spectral density of (Ht (θ0))t∈Z in
order to estimate the matrix I (θ0).

For any θ ∈ Θ , Ht (θ) is a measurable function of {εs, s ≤ t}. The stationary process
(Ht (θ0))t∈Z admits the following Wold decomposition Ht (θ0) = ut +∑∞

k=1 ψkut−k , where
(ut )t∈Z is a (p + q + 1)−variate weak white noise with variance matrix Σu .

Assume that Σu is non-singular, that
∑∞

k=1 ‖ψk‖ < ∞, and that det(Ip+q+1 +∑∞
k=1 ψk zk) �= 0 if |z| ≤ 1. Then (Ht (θ0))t∈Z admits a weak multivariate AR(∞) rep-

resentation (see Akutowicz (1957)) of the form

Φ(L)Ht (θ0) := Ht (θ0) −
∞∑

k=1

Φk Ht−k(θ0) = ut , (8)

such that
∑∞

k=1 ‖Φk‖ < ∞ and det {Φ(z)} �= 0 if |z| ≤ 1.
Thanks to the previous remarks, the estimation of I (θ0) is therefore based on the following

expression

I (θ0) = Φ−1(1)ΣuΦ
−1(1).

Consider the regression of Ht (θ0) on Ht−1(θ0), . . . , Ht−r (θ0) defined by

Ht (θ0) =
r∑

k=1

Φr ,k Ht−k(θ0) + ur ,t , (9)

where ur ,t is uncorrelated with Ht−1(θ0), . . . , Ht−r (θ0). Since Ht (θ0) is not observable, we
introduce Ĥt ∈ R

p+q+1 obtained by replacing εt (·) by ε̃t (·) and θ0 by θ̂n in (7):

Ĥt = 2ε̃t (θ̂n)
∂

∂θ
ε̂t (θn) . (10)

Let Φ̂r (z) = Ip+q+1 − ∑r
k=1 Φ̂r ,k zk , where Φ̂r ,1, . . . , Φ̂r ,r denote the coefficients of the

LS regression of Ĥt on Ĥt−1, . . . , Ĥt−r . Let ûr ,t be the residuals of this regression and
let Σ̂ûr be the empirical variance (defined in (11) below) of ûr ,1, . . . , ûr ,r . The LSE of
Φr = (

Φr ,1, . . . , Φr ,r
)
and Σur = Var(ur ,t ) are given by

Φ̂r = Σ̂Ĥ ,Ĥr
Σ̂−1

Ĥr
and Σ̂ûr = 1

n

n∑

t=1

(
Ĥt − Φ̂r Ĥr ,t

) (
Ĥt − Φ̂r Ĥr ,t

)′
, (11)

where

Ĥr ,t = (Ĥ
′
t−1, . . . , Ĥ

′
t−r )

′
, Σ̂Ĥ ,Ĥr

= 1

n

n∑

t=1

Ĥt Ĥ
′
r ,t and Σ̂Ĥr

= 1

n

n∑

t=1

Ĥr ,t Ĥ
′
r ,t ,

with by convention Ĥt = 0 when t ≤ 0. We assume that Σ̂Ĥr
is non-singular (which holds

true asymptotically).
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In the case of linear processes with independent innovations, Berk (see Berk (1974)) has
shown that the spectral density can be consistently estimated by fitting autoregressive models
of order r = r(n), whenever r tends to infinity and r3/n tends to 0 as n tends to infinity. There
are differences with Berk (1974): (Ht (θ0))t∈Z is multivariate, is not directly observed and is
replaced by (Ĥt )t∈Z. It is shown that this result remains valid for the multivariate linear pro-
cess (Ht (θ0))t∈Z with non-independent innovations (see Boubacar Mainassara et al. (2012);
Boubacar Mainassara and Francq (2011), for references in weak (multivariate) ARMAmod-
els). We will extend the results of Boubacar Mainassara et al. (2012) to weak FARIMA
models.

The asymptotic study of the estimator of I (θ0) using the spectral density method is given
in the following theorem.

Theorem 5 We assume (A0)-(A3) and Assumption (A4’) with τ = 8. In addition, we assume
that the innovation process (εt )t∈Z of the FARIMA(p, d0, q)model (1) is such that the process
(Ht (θ0))t∈Z defined in (7) admits a multivariate AR(∞) representation (8), where ‖Φk‖ =
o(k−2) as k → ∞, the roots of det(Φ(z)) = 0 are outside the unit disk, and Σu = Var(ut )
is non-singular. Then, the spectral estimator of I (θ0)

Î SPn := Φ̂−1
r (1)Σ̂ûr Φ̂

′−1
r (1) −→ I (θ0) = Φ−1(1)ΣuΦ

−1(1)

in probability when r = r(n) → ∞ and r5(n)/n1−2(d0−d1) → 0 as n → ∞ (remind that
d0 ∈ [d1,d2] ⊂] − 1/2,1/2[).
The proof of this theorem is given in Sect. 6.4.

A second method to estimate the asymptotic matrix (or rather avoiding estimate it) is
proposed in the next subsection.

3.2 A self-normalized approach to confidence interval construction in weak FARIMA
models

We have seen previously that we may obtain confidence intervals for weak FARIMA model
parameters as soon as we can construct a convergent estimator of the variance matrix I (θ0)
(see Theorems 2 and 5 ). The parametric approach based on an autoregressive estimate of
the spectral density of (Ht (θ0))t∈Z that we used before has the drawback of choosing the
truncation parameter r in (9). This choice of the order truncation is often crucial and difficult.
So the aim of this section is to avoid such a difficulty.

This section is also of interest because, to our knowledge, it has not been studied for
weak FARIMA models. Notable exception is Shao (2012) who studied this problem in a
short memory case (see Assumption 1 in Shao (2012) that implies that the process X is
short-range dependent).

Wepropose an alternativemethod to obtain confidence intervals forweakFARIMAmodels
by avoiding the estimation of the asymptotic covariance matrix I (θ0). It is based on a self-
normalization approach used to build a statistic which depends on the true parameter θ0 and
which is asymptotically distribution-free (see Theorem 1 of Shao (2012) for a reference in
weak ARMA case). The idea comes from Lobato (2001) and has been already extended by
Boubacar Maïnassara and Saussereau (2018); Kuan and Lee (2006); Shao (2010c); Shao
(2010a); Shao (2012) to more general frameworks. See also Shao (2015) for a review on
some recent developments on the inference of time series data using the self-normalized
approach.

Let us briefly explain the idea of the self-normalization.
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By a Taylor expansion of the function ∂Qn(·)/∂θ around θ0, under (A3), we have

0 = √
n

∂

∂θ
Qn(θ̂n) = √

n
∂

∂θ
Qn(θ0) +

[
∂2

∂θi∂θ j
Qn

(
θ∗
n,i, j

)]√
n
(
θ̂n − θ0

)
, (12)

where the θ∗
n,i, j ’s are between θ̂n and θ0. Using the following equation

√
n

(
∂

∂θ
On(θ0) − ∂

∂θ
Qn(θ0)

)

= √
n

∂

∂θ
On(θ0)

+
{[

∂2

∂θi∂θ j
Qn(θ

∗
n,i, j )

]

− J (θ0) + J (θ0)

}√
n(θ̂n − θ0),

we shall be able to prove that (12) implies that

√
n

∂

∂θ
On(θ0) + J (θ0)

√
n(θ̂n − θ0) = oP (1) . (13)

This is due to the following technical properties:

• the convergence in probability of
√
n∂Qn(θ0)/∂θ −√

n∂On(θ0)/∂θ to 0 (see Lemma 15
hereafter),

• the convergence in probability of [∂2Qn(θ
∗
n,i, j )/∂θi∂θ j ] to J (θ0) (see Lemma 17 here-

after),
• the tightness of the sequence (

√
n(θ̂n − θ0))n≥1 (see Theorem 2) and

• the existence and invertibility of the matrix J (θ0) (see Lemma 16 hereafter).

Thus we obtain from (13) that

√
n(θ̂n − θ0) = 1√

n

n∑

t=1

Ut + oP (1) ,

where (remind (7))

Ut = −J−1(θ0)Ht (θ0).

At this stage, we do not rely on the classical method that would consist in estimating the
asymptotic covariance matrix I (θ0). We rather try to apply Lemma 1 in Lobato (2001). So
we need to check that a functional central limit theorem holds for the processU := (Ut )t≥1.
For that sake, we define the normalization matrix Pp+q+1,n of R

(p+q+1)×(p+q+1) by

Pp+q+1,n = 1

n2

n∑

t=1

⎛

⎝
t∑

j=1

(Uj − Ūn)

⎞

⎠

⎛

⎝
t∑

j=1

(Uj − Ūn)

⎞

⎠

′

, (14)

where Ūn = (1/n)
∑n

i=1Ui . To ensure the invertibility of the normalizationmatrix Pp+q+1,n

(it is the result stated in the next proposition), we need the following technical assumption
on the distribution of εt .

(A5): The process (εt )t∈Z has a positive density on some neighborhood of zero.

Proposition 6 Under the assumptions of Theorem 2 and (A5), the matrix Pp+q+1,n is almost
surely non singular.
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The proof of this proposition is given in Sect. 6.5.
Let (Bm(r))r≥0 be a m-dimensional Brownian motion starting from 0. For m ≥ 1, we

denote by Um the random variable defined by:

Um = B
′
m(1)V−1

m Bm(1), (15)

where

Vm =
∫ 1

0
(Bm(r) − r Bm(1)) (Bm(r) − r Bm(1))

′
dr . (16)

The critical values of Um have been tabulated by Lobato (2001).
The following theorem states the self-normalized asymptotic distribution of the random

vector
√
n(θ̂n − θ0).

Theorem 7 Under the assumptions of Theorem 2 and (A5), we have

n(θ̂n − θ0)
′
P−1
p+q+1,n(θ̂n − θ0)

in law−−−→
n→∞ Up+q+1.

The proof of this theorem is given in Sect. 6.6.
Of course, the above theorem is useless for practical purpose because the normalization

matrix Pp+q+1,n is not observable. This gap will be fixed belowwhen one replaces the matrix
Pp+q+1,n by its empirical or observable counterpart

P̂p+q+1,n = 1

n2

n∑

t=1

⎛

⎝
t∑

j=1

(Û j − 1

n

n∑

k=1

Ûk)

⎞

⎠

⎛

⎝
t∑

j=1

(Û j − 1

n

n∑

k=1

Ûk)

⎞

⎠

′

where Û j = − Ĵ−1
n Ĥ j .

(17)

The above quantity is observable andwe are able to state our Theoremwhich is the applicable
version of Theorem 7.

Theorem 8 Under the assumptions of Theorem 2 and (A5), we have

n(θ̂n − θ0)
′
P̂−1
p+q+1,n(θ̂n − θ0)

in law−−−→
n→∞ Up+q+1.

The proof of this theorem is given in Sect. 6.7.
At the asymptotic level α, a joint 100(1 − α)% confidence region for the elements of θ0

is then given by the set of values of the vector θ which satisfy the following inequality:

n(θ̂n − θ)
′
P̂−1
p+q+1,n(θ̂n − θ) ≤ Up+q+1,α,

where Up+q+1,α is the quantile of order 1 − α for the distribution of Up+q+1.

Corollary 9 For any 1 ≤ i ≤ p + q + 1, a 100(1− α)% confidence region for θ0(i) is given
by the following set:

{
x ∈ R ; n(θ̂n(i) − x

)2
P̂−1
p+q+1,n(i, i) ≤ U1,α

}
,

where U1,α denotes the quantile of order 1 − α of the distribution for U1.
The proof of this corollary is similar to that of Theorem 8 when one restricts ourselves to

a one dimensional case.
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4 Numerical illustrations

In this section, we investigate the finite sample properties of the asymptotic results that
we introduced in this work. For that sake we use Monte Carlo experiments. The numerical
illustrations of this section are made with the open source statistical software R (see R
Development Core Team, 2017) or (see http://cran.r-project.org/).

4.1 Simulation studies and empirical sizes for confidence intervals

We study numerically the behavior of the LSE for FARIMA models of the form

(1 − L)d (Xt − aXt−1) = εt − bεt−1, (18)

where the unknown parameter is taken as θ0 = (a, b, d) = (−0.7,−0.2, 0.4). First we
assume that in (18) the innovation process (εt )t∈Z is an iid centered Gaussian process with
common variance 1 which corresponds to the strong FARIMA case. In two other experiments
we consider that in (18) the innovation processes (εt )t∈Z are defined respectively by

{
εt = σtηt
σ 2
t = 0.04 + 0.12ε2t−1 + 0.85σ 2

t−1
(19)

and

εt = η2t ηt−1, (20)

where (ηt )t≥1 is a sequence of iid centered Gaussian random variables with variance 1. Note
that the innovation process in (20) is not a martingale difference whereas it is the case of the
noise defined in (19). The noise defined by (20) is an extension of a noise process in Romano
and Thombs (1996).

We simulated N = 1, 000 independent trajectories of size n = 2, 000 of Model (18) in
the three following case: the strong Gaussian noise, the semi-strong noise (19) and the weak
noise (20).

Figures 1, 2 and 3 compare the empirical distribution of the LSE in these three contexts.
The empirical distributions of d̂n are similar in the three cases whereas the LSE ân of a is
more accurate in the weak case than in the strong and semi-strong cases. This last remark
on the empirical distribution of ân is in accordance with the results of Romano and Thombs
(1996) who showed that, with weak white noises similar to (20), the asymptotic variance of
the sample autocorrelations can be greater or less than 1 as well (1 is the asymptotic variance
for strong white noises). The empirical distributions of b̂n are more accurate in the strong
case than in the weak case. Remark that in the weak case the empirical distributions of b̂n
are more accurate than the semi-strong ones.

Figure 4 compares standard estimator Ω̂S = 2σ̂ 2
ε Ĵ

−1
n and the sandwich estimator Ω̂ =

Ĵ−1
n Î SPn Ĵ−1

n of the LSE asymptotic variance Ω . We used the spectral estimator Î SPn defined
in Theorem 5. The multivariate AR order r (see (9)) is automatically selected by AIC (we use
the function VARselect() of the vars R package). In the strong FARIMA case we know
that the two estimators are consistent. In view of the two upper subfigures of Fig. 4, it seems
that the sandwich estimator is less accurate in the strong case. This is not surprising because
the sandwich estimator is more robust, in the sense that this estimator remains consistent in
the semi-strong and weak FARIMA cases, contrary to the standard estimator (see the middle
and bottom subfigures of Fig. 4). The estimated asymptotic standard errors obtained from
Theorem 2 of the estimated parameters are given by: 0.0308 in the strong case, 0.0465 in the
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Fig. 1 LSE of N = 1, 000 independent simulations of the FARIMA(1, d, 1) model (18) with size n = 2, 000
and unknown parameter θ0 = (a, b, d) = (−0.7, −0.2, 0.4), when the noise is strong (left panel), when the
noise is semi-strong (19) (middle panel) and when the noise is weak of the form (20) (right panel). Points
(a)-(c), in the box-plots, display the distribution of the estimation error θ̂n(i) − θ0(i) for i = 1, 2, 3

semi-strong case and 0.0300 in the weak case for ân , 0.0539 in the strong case, 0.0753 in the
semi-strong case and 0.0666 in the weak case for b̂n and 0.0253 in the strong case, 0.0364
in the semi-strong case and 0.0264 in the weak case for d̂n .

Figure 5 (resp. Fig. 6) presents a zoom of the left(right)-middle and left(right)-bottom
panels of Fig. 4. It is clear that in the semi-strong or weak case n(ân − a)2, n(b̂n − b)2 and
n(d̂n − d)2 are, respectively, better estimated by Ĵ−1

n Î SPn Ĵ−1
n (1, 1), Ĵ−1

n Î SPn Ĵ−1
n (2, 2) and

Ĵ−1
n Î SPn Ĵ−1

n (3, 3) (see Fig. 6) than by 2σ̂ 2
ε Ĵ

−1
n (1, 1), 2σ̂ 2

ε Ĵ
−1
n (2, 2) and 2σ̂ 2

ε Ĵ
−1
n (3, 3) (see

Fig. 5). The failure of the standard estimator of Ω in the weak FARIMA framework may
have important consequences in terms of identification or hypothesis testing and validation.

Nowwe are interested in standard confidence interval and the modified versions proposed
in Sects. 3.1 and 3.2 . Table 1 displays the empirical sizes in the three previous different
FARIMA cases. For the nominal level α = 5%, the empirical size over the N = 1, 000
independent replications should vary between the significant limits 3.6% and 6.4% with
probability 95%. For the nominal level α = 1%, the significant limits are 0.3% and 1.7%,
and for the nominal level α = 10%, they are 8.1% and 11.9%. When the relative rejection
frequencies are outside the significant limits, they are displayed in bold type in Table 1. For
the strong FARIMA model, all the relative rejection frequencies are inside the significant
limits for n large. For the semi-strong FARIMA model, the relative rejection frequencies of
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Fig. 2 LSE of N = 1, 000 independent simulations of the FARIMA(1, d, 1) model (18) with size n = 2, 000
and unknown parameter θ0 = (a, b, d) = (−0.7,−0.2, 0.4). The top panels present respectively, from left to
right, the Q-Q plot of the estimates ân , b̂n and d̂n of a, b and d in the strong case. Similarly the middle and
the bottom panels present respectively, from left to right, the Q-Q plot of the estimates ân , b̂n and d̂n of a, b
and d in the semi-strong and weak cases

the standard confidence interval are definitely outside the significant limits, contrary to the
modified versions proposed. For the weak FARIMA model, only the standard confidence
interval of b̂n is outside the significant limits when n increases. As a conclusion, Table 1
confirms the comments done concerning Fig. 4.

4.2 Application to real data

We now consider an application to the daily returns of four stock market indices (CAC 40,
DAX, Nikkei and S&P 500). The returns are defined by rt = log(pt/pt−1)where pt denotes
the price index of the stock market indices at time t . The observations cover the period from
the starting date (March 1st 1990 for CAC 40, December 30th 1987 for DAX, January 5th
1965 for Nikkei and January 3rd 1950 for S&P 500) of each index to February 13th 2019.
The sample size is 7,341 for CAC 40; 7,860 for DAX; 13,318 for Nikkei and 17,390 for S&P
500.

In Financial Econometrics the returns are often assumed to be a white noise. In view of
the so-called volatility clustering, it is well known that the strong white noise model is not
adequate for these series (see for instance Francq and Zakoïan (2019); Lobato et al. (2001);
Boubacar Mainassara et al. (2012); Boubacar Maïnassara and Saussereau (2018)). A long-
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Fig. 3 LSE of N = 1, 000 independent simulations of the FARIMA(1, d, 1) model (18) with size n = 2, 000
and unknown parameter θ0 = (a, b, d) = (−0.7,−0.2, 0.4). The top panels present respectively, from left to
right, the empirical distribution of the estimates ân , b̂n and d̂n of a, b and d in the strong case. Similarly the
middle and the bottom panels present respectively, from left to right, the empirical distribution of the estimates
ân , b̂n and d̂n of a, b and d in the semi-strong and weak cases. The kernel density estimate is displayed in full
line, and the centered Gaussian density with the same variance is plotted in dotted line

Fig. 4 Comparison of standard
and modified estimates of the
asymptotic variance Ω of the
LSE, on the simulated models
presented in Fig. 1. The diamond
symbols represent the mean, over
N = 1, 000 replications, of the
standardized errors n(ân + 0.7)2

for (a) (1.90 in the strong case
and 4.32 (resp. 1.80) in the
semi-strong case (resp. in the
weak case)), n(b̂n + 0.2)2 for (b)
(5.81 in the strong case and 11.33
(resp. 8.88) in the semi-strong
case (resp. in the weak case)) and
n(d̂n − 0.4)2 for (c) (1.28 in the
strong case and 2.65 (resp. 1.40)
in the semi-strong case (resp. in
the weak case))
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Fig. 5 A zoom of the left-middle
and left-bottom panels of Fig. 4

Fig. 6 A zoom of the
right-middle and right-bottom
panels of Fig. 4

range memory property of the stock market returns series was largely investigated by Ding
et al. (1993) which shows that there are more correlation between power transformation
of the absolute return |rt |v (v > 0) than returns themselves (see also Beran et al. (2013),
Palma (2007), Baillie et al. (1996) and Ling and Li (1997)). We choose here the case where
v = 2which corresponds to the squared returns (r2t )t≥1 process. This process have significant
positive autocorrelations at least up to lag 100 (see Fig. 9) which confirm the claim that stock
market returns have long-term memory (see Ding et al. (1993)).

We fit a FARIMA(1, d, 1) model to the squares of the 4 daily returns. As in Ling (2003),
we denote by (Xt )t≥1 the mean corrected series of the squared returns and we adjust the
following model

(1 − L)d (Xt − aXt−1) = εt − bεt−1.
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Table 1 Empirical size of standard and modified confidence interval: relative frequencies (in %) of rejection

Model Length n Level Standard Modified Modified SN
ân b̂n d̂n ân b̂n d̂n ân b̂n d̂n

α = 1% 2.8 2.7 2.1 3.7 3.1 2.5 2.5 2.5 2.0

Strong FARIMA n = 200 α = 5% 7.1 7.3 5.2 8.2 8.0 5.4 8.4 6.9 5.6

α = 10% 11.8 11.2 8.3 12.8 12.4 9.5 14.5 11.5 10.6

α = 1% 1.1 1.6 0.7 1.3 1.6 1.0 1.6 1.0 0.8

Strong FARIMA n = 2, 000 α = 5% 5.8 6.9 5.1 6.1 6.8 5.3 5.6 6.4 3.8

α = 10% 10.9 13.0 9.5 11.4 12.8 9.5 10.3 12.4 9.0

α = 1% 1.3 1.2 0.7 1.2 1.2 0.8 0.8 1.3 1.2

Strong FARIMA n = 5, 000 α = 5% 5.3 4.9 5.2 5.7 5.1 5.4 5.1 4.9 5.3

α = 10% 10.6 10.3 11.4 10.7 10.2 11.7 11.8 10.8 11.4

α = 1% 5.3 3.7 2.3 4.8 3.4 3.2 4.0 2.8 1.4

Semi-strong FARIMA n = 200 α = 5% 11.2 9.5 6.1 10.7 9.1 5.9 11.1 8.5 5.7

α = 10% 16.8 14.5 8.6 16.7 14.7 10.0 17.1 13.9 10.9

α = 1% 6.8 7.7 7.8 1.7 0.9 1.4 2.3 2.0 0.8

Semi-strong FARIMA n = 2, 000 α = 5% 19.5 17.7 14.9 6.5 5.8 5.5 8.1 6.8 6.5

α = 10% 26.5 26.7 21.5 13.5 11.0 9.9 14.6 12.8 12.5

α = 1% 11.2 9.8 9.4 1.6 1.5 1.1 1.6 1.3 1.2

Semi-strong FARIMA n = 5, 000 α = 5% 20.8 20.2 20.9 6.4 5.7 5.3 5.7 6.2 7.2

α = 10% 28.2 28.4 28.4 12.2 9.8 11.3 12.0 13.0 13.9

α = 1% 2.6 4.4 1.2 6.2 bf 6.9 4.3 4.1 4.2 2.6

Weak FARIMA n = 200 α = 5% 6.6 11.3 4.3 13.8 14.6 10.2 12.0 10.5 8.9

α = 10% 10.9 18.8 7.1 20.3 21.9 16.3 17.7 17.4 15.4

α = 1% 1.1 5.3 1.3 1.5 1.2 1.6 1.2 1.1 0.9

Weak FARIMA n = 2, 000 α = 5% 5.4 13.4 5.8 7.0 6.8 5.5 5.7 6.5 6.4

α = 10% 11.4 21.2 9.6 12.8 12.0 11.2 11.3 11.9 12.2

α = 1% 1.3 4.6 1.7 1.2 1.3 1.2 1.3 1.4 0.9

Weak FARIMA n = 5, 000 α = 5% 6.3 14.4 6.0 6.7 6.3 5.9 6.2 6.2 5.0

α = 10% 11.5 22.3 11.6 12.1 12.3 10.8 10.6 10.9 10.0

Modified SN stands for the self-normalized approach. In Modified we use the sandwich estimator of the
asymptotic variance Ω of the LSE while in Standard we use Ω̂S . The number of replications is N = 1000.
When the relative rejection frequencies are outside the significant limits, they are displayed in bold type

Figure 7 (resp. Fig. 8) plots the closing prices (resp. the returns) of the four stock market
indices. Figure 9 shows that squared returns (Xt )t≥1 are generally strongly autocorrelated.
Table 2 displays the LSE of the parameter θ = (a, b, d) of each squared of daily returns.
The p-values of the corresponding LSE, θ̂n = (ân, b̂n, d̂n) are given in parentheses. The
last column presents the estimated residual variance. Note that for all series, the estimated
coefficients |ân | and |b̂n | are smaller than one and this is in accordance with our Assumption
(A1). We also observe that for all series the estimated long-range dependence coefficients
d̂n are significant for any reasonable asymptotic level and are inside ] − 0.5,0.5[. We thus
think that the assumption (A3) is satisfied and thus our asymptotic normality theorem can
be applied. Table 3 then presents for each series the modified confidence interval at the
asymptotic level α = 5% for the parameters estimated in Table 2.
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Fig. 7 Closing prices of the four
stock market indices from the
starting date of each index to
February 13th 2019

Fig. 8 Returns of the four stock
market indices from the starting
date of each index to February
13th 2019

5 Conclusion

Taking into account the possible lack of independence of the error terms, we show in this
paper that we can fit FARIMA representations of a wide class of nonlinear long memory
times series. This is possible thanks to our theoretical results and it is illustrated in our real
cases and simulations studies.

This standard methodology (when the noise is supposed to be iid), in particular the signif-
icance tests on the parameters, needs however to be adapted to take into account the possible
lack of independence of the errors terms. A first step has been done thanks to our results on the
confidence intervals. In future works, we intent to study how the existing identification (see
Boubacar Maïnassara (2012), Boubacar Maïnassara and Kokonendji (2016)) and diagnostic
checking (see Boubacar Maïnassara and Saussereau (2018), Francq et al. (2005)) procedures
should be adapted in the presence of long-range dependence framework and dependent noise.
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Fig. 9 Sample autocorrelations of
squared returns of the four stock
market indices

It would also be interesting to study the adaptation of the exact maximum likelihood
method of Sowell (1992) or the self-weighted LSE considered in Zhu and Ling (2011) to the
case of weak FARIMA models.

6 Proofs

In all our proofs, K is a positive constant that may vary from line to line.

6.1 Preliminary results

In this subsection, we shall give some results on estimations of the coefficient of formal
power series that will arise in our study. Some of them are well know and some others are
new to our knowledge. We will make some precise comments hereafter.

We begin by recalling the following properties on power series. If for |z| ≤ R, the
power series f (z) = ∑

i≥0 ai z
i and g(z) = ∑

i≥0 bi z
i are well defined, then one has

( f g)(z) = ∑
i≥0 ci z

i is also well defined for |z| ≤ R with the sequence (ci )i≥0 which is
given by c = a ∗ b where ∗ denotes the convolution product between a and b defined by
ci = ∑i

k=0 akbi−k = ∑i
k=0 ai−kbk . We will make use of the Young inequality that states

that if the sequence a ∈ �r1 and b ∈ �r2 are such that 1
r1

+ 1
r2

= 1+ 1
r with 1 ≤ r1, r2, r ≤ ∞,

then

‖a ∗ b‖�r ≤ ‖a‖�r1 × ‖b‖�r2 .

Now we come back to the power series that arise in our context. Remind that for the true
value of the parameter,

aθ0(L)(1 − L)d0 Xt = bθ0(L)εt . (21)

Thanks to the assumptions on the moving average polynomials bθ and the autoregressive
polynomials aθ , the power series a

−1
θ and b−1

θ are well defined.
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Thus the functions εt (θ) defined in (2) can be written as

εt (θ) = b−1
θ (L)aθ (L)(1 − L)d Xt (22)

= b−1
θ (L)aθ (L)(1 − L)d−d0a−1

θ0
(L)bθ0(L)εt (23)

and if we denote γ (θ) = (γi (θ))i≥0 the sequence of coefficients of the power series
b−1
θ (z)aθ (z)(1 − z)d , we may write for all t ∈ Z:

εt (θ) =
∑

i≥0

γi (θ)Xt−i . (24)

In the same way, by (22) one has

Xt = (1 − L)−da−1
θ (L)bθ (L)εt (θ)

and if we denote η(θ) = (ηi (θ))i≥0 the coefficients of the power series (1−z)−da−1
θ (z)bθ (z)

one has

Xt =
∑

i≥0

ηi (θ)εt−i (θ) . (25)

We strength the fact that γ0(θ) = η0(θ) = 1 for all θ .
For large j , Hallin et al. (1999) have shown that uniformly in θ the sequences γ (θ) and

η(θ) satisfy

∂kγ j (θ)

∂θi1 · · · ∂θik
= O

(
j−1−d {log( j)}k

)
, for k = 0, 1, 2, 3, (26)

and

∂kη j (θ)

∂θi1 · · · ∂θik
= O

(
j−1+d {log( j)}k

)
, for k = 0, 1, 2, 3. (27)

One difficulty that has to be addressed is that (24) includes the infinite past (Xt−i )i≥0

whereas only a finite number of observations (Xt )1≤t≤n are available to compute the estima-
tors defined in (4). The simplest solution is truncationwhich amounts to setting all unobserved
values equal to zero. Thus, for all θ ∈ Θ and 1 ≤ t ≤ n one defines

ε̃t (θ) =
t−1∑

i=0

γi (θ)Xt−i =
∑

i≥0

γ t
i (θ)Xt−i (28)

where the truncated sequence γ t (θ) = (γ t
i (θ))i≥0 is defined by

γ t
i (θ) =

{
γi (θ) if 0 ≤ i ≤ t − 1 ,

0 otherwise.

Since our assumptions are made on the noise in (1), it will be useful to express the random
variables εt (θ) and its partial derivatives with respect to θ , as a function of (εt−i )i≥0.

From (23), there exists a sequence λ(θ) = (λi (θ))i≥0 such that

εt (θ) =
∞∑

i=0

λi (θ) εt−i (29)
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where the sequence λ(θ) is given by the sequence of the coefficients of the power series
b−1
θ (z)aθ (z)(1 − z)d−d0a−1

θ0
(z)bθ0(z). Consequently λ(θ) = γ (θ) ∗ η(θ0) or, equivalently,

λi (θ) =
i∑

j=0

γ j (θ)ηi− j (θ0). (30)

As in Hualde and Robinson (2011), it can be shown using Stirling’s approximation that there
exists a positive constant K such that

sup
θ∈Θδ

|λi (θ)| ≤ K sup
d∈[d1,d2]

i−1−(d−d0) ≤ Ki−1−(d1−d0) . (31)

Equations (29) and (31) imply that for all θ ∈ Θ the random variable εt (θ) belongs to L
2,

that the sequence (εt (θ))t is an ergodic sequence and that for all t ∈ Z the function εt (·)
is a continuous function. We proceed in the same way as regard to the derivatives of εt (θ).
More precisely, for any θ ∈ Θ , t ∈ Z and 1 ≤ k, l ≤ p + q + 1 there exists sequences
.
λk(θ) = (

.
λi,k(θ))i≥1 and

..
λk,l(θ) = (

..
λi,k,l(θ))i≥1 such that

∂εt (θ)

∂θk
=

∞∑

i=1

.
λi,k (θ) εt−i (32)

∂2εt (θ)

∂θk∂θl
=

∞∑

i=1

..
λi,k,l (θ) εt−i . (33)

Of course it holds that
.
λk(θ) = ∂γ (θ)

∂θk
∗ η(θ0) and

..
λk,l(θ) = ∂2γ (θ)

∂θk∂θl
∗ η(θ0).

Similarly we have

ε̃t (θ) =
∞∑

i=0

λti (θ) εt−i , (34)

∂ε̃t (θ)

∂θk
=

∞∑

i=1

.
λ
t

i,k (θ) εt−i , (35)

∂2ε̃t (θ)

∂θk∂θl
=

∞∑

i=1

..
λ
t

i,k,l (θ) εt−i , (36)

where λt (θ) = γ t (θ) ∗ η(θ0),
.
λ
t

k(θ) = ∂γ t (θ)
∂θk

∗ η(θ0) and
..
λ
t

k,l(θ) = ∂2γ t (θ)
∂θk∂θl

∗ η(θ0).
In order to handle the truncation error εt (θ)−ε̃t (θ), one needs information on the sequence

λ(θ) − λt (θ). This is the purpose of the following lemma.

Lemma 10 For 2 ≤ r ≤ ∞ and 1 ≤ k, l ≤ p + q + 1, we have

‖ λ (θ) − λt (θ) ‖�r = O
(
t−1+ 1

r −(d−max(d0,0))
)

,

‖ .
λk (θ) − .

λ
t

k (θ) ‖�r = O
(
t−1+ 1

r −(d−max(d0,0))
)

and

‖ ..
λk,l (θ) − ..

λ
t

k,l (θ) ‖�r = O
(
t−1+ 1

r −(d−max(d0,0))
)

for any θ ∈ Θδ if d0 ≤ 0 and for θ with non-negative memory parameter d if d0 > 0.
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Proof In view of (27), η(θ0) ∈ �r2 for r2 ≥ 1 when d0 < 0. If d0 = 0, η(θ0) is the sequence
of coefficients of the power series a−1

θ0
(z)bθ0(z), so it belongs to �r2 for all r2 ≥ 1 since in

this case |η j (θ0)| = O(ρ j ) for some 0 < ρ < 1 (see Francq and Zakoïan (1998)). Thanks to
(26), when d0 ≤ 0, Young’s inequality for convolution yields that for all r ≥ 2

‖ λ (θ) − λt (θ) ‖�r ≤ K ‖ γ (θ) − γ t (θ) ‖�r

≤ K

( ∞∑

i=t

|γi (θ)|r
)1/r

≤ K

( ∞∑

i=t

1

ir+rd

)1/r

≤ K

(∫ ∞

t

1

xr+rd
dx + 1

tr+rd

)1/r

≤ K

t1− 1
r +d

.

If d0 > 0, the sequence η(θ0) belongs to �r2 for any r2 > 1/(1− d0). Young’s inequality
for convolution implies in this case that for all r ≥ 2

‖ λ (θ) − λt (θ) ‖�r ≤‖ γ (θ) − γ t (θ) ‖�r1 ‖ η(θ0) ‖�r2 (37)

with r2 = (1 − (d0 + β))−1 > 1/(1 − d0) and r1 = r/(1 + r(d0 + β)), for some β > 0
sufficiently small. Thus there exists K such that ‖ η(θ0) ‖�r2 ≤ K . Similarly as before, we
deduce when d ≥ 0 that

‖ λ (θ) − λt (θ) ‖�r ≤ K ‖ γ (θ) − γ t (θ) ‖�r1

≤ K

( ∞∑

i=t

1

ir1+r1d

)1/r1

≤ K

t
1− 1

r1
+d

= K

t1− 1
r +(d−d0)−β

,

the conclusion follows by tending β to 0. The second and third points of the lemma are
shown in the same way as the first. This is because from (26), the coefficients ∂γ j (θ)/∂θk
and ∂2γ j (θ)/∂θk∂θl are O( j−1−d+ζ ) for any small enough ζ > 0. The proof of the lemma
is then complete.

��
Remark 11 The above lemma implies that the sequence

.
λk (θ0) −

.
λt k (θ0) is bounded and

more precisely there exists K such that

sup
j≥1

∣
∣
∣
∣
.
λ j,k (θ0) −

.
λt j,k (θ0)

∣
∣
∣
∣ ≤ K

t1+min(d0,0)
(38)

for any t ≥ 1 and any 1 ≤ k ≤ p + q + 1.

Remark 12 In order to prove our asymptotic results, it will be convenient to give an upper
bound for the norms of the sequences introduced in Lemma 10 valid for any θ ∈ Θδ . Since
d1 − d0 > −1/2, Estimation (31) entails that for any r ≥ 2,

‖ λ (θ) − λt (θ) ‖�r = O
(
t−1+ 1

r −(d1−d0)
)

, ∀θ ∈ Θδ.
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This can easily be seen since ‖ λ(θ) − λt (θ) ‖�r ≤ K (
∑

i≥t i
−r−r(d1−d0))1/r ≤

Kt−1+1/r−(d1−d0). As in Hallin et al. (1999), the coefficients
.
λ j,k(θ) and

..
λ j,k,l(θ) are

O( j−1−(d−d0)+ζ ) for any small enough ζ > 0, so we have

‖ .
λk (θ) − .

λ
t

k (θ) ‖�r = O
(
t−1+ 1

r −(d1−d0)+ζ
)

and

‖ ..
λk,l (θ) − ..

λ
t

k,l (θ) ‖�r = O
(
t−1+ 1

r −(d1−d0)+ζ
)

for any r ≥ 2, any 1 ≤ k, l ≤ p + q + 1 and all θ ∈ Θδ .

One shall also need the following lemmas.

Lemma 13 For any 2 ≤ r ≤ ∞, 1 ≤ k ≤ p + q + 1 and θ ∈ Θ , there exists a constant K
such that we have

‖ .
λ
t

k (θ) ‖�r ≤ K .

Proof The proof follows the same arguments as those developed in Remark 12.
��

Lemma 14 There exists a constant K such that we have
∣
∣
∣
.
λi,k (θ0)

∣
∣
∣ ≤ K

i
. (39)

Proof For 1 ≤ k ≤ p + q + 1, the sequence
.
λk(θ) = (

.
λi,k(θ))i≥1 is in fact the sequence of

the coefficients in the power series of

∂

∂θk

(
b−1
θ (z)aθ (z)(1 − z)d−d0a−1

θ0
(z)bθ0(z)

)
.

Thus
.
λi,k (θ0) is the i−th coefficient taken in θ = θ0. There are three cases.

� k = 1, . . . , p: Since

∂

∂θk

(
b−1
θ (z)aθ (z)(1 − z)d−d0a−1

θ0
(z)bθ0(z)

)
= −b−1

θ (z)zk(1 − z)d−d0a−1
θ0

(z)bθ0(z) ,

we deduce that
.
λi,k (θ0) is the i−th coefficient of −zka−1

θ0
(z) which satisfies

.
λi,k (θ0) ≤

Kρi for some 0 < ρ < 1 (see Francq and Zakoïan (1998) for example).
� k = p + 1, . . . , p + q: We have

∂

∂θk

(
b−1
θ (z)aθ (z)(1 − z)d−d0aθ0 (z)bθ0 (z)

)
=
(

∂

∂θk
b−1
θ (z)

)

aθ (z)(1 − z)d−d0a−1
θ0

(z)bθ0 (z)

and consequently
.
λi,k (θ0) is the i−th coefficient of ( ∂

∂θk
b−1
θ0

(z))bθ0(z) which also sat-

isfies
.
λi,k (θ0) ≤ Kρi (see Francq and Zakoïan (1998)).

The last case will not be a consequence of the usual works on ARMA processes.
� k = p + q + 1: In this case, θk = d and so we have

∂

∂θk

(
b−1
θ (z)aθ (z)(1 − z)d−d0a−1

θ0
(z)bθ0 (z)

)
= b−1

θ (z)aθ (z)ln(1 − z)(1 − z)d−d0a−1
θ0

(z)bθ0 (z)

and consequently
.
λi,k (θ0) is the i−th coefficient of ln(1 − z) which is equal to −1/i .

The three above cases imply the expected result. ��
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6.2 Proof of Theorem 1

Consider the random variable Wn(θ) defined for any θ ∈ Θ by

Wn(θ) = V(θ) + Qn(θ0) − Qn(θ),

where V (θ)=E[On(θ)] − E[On(θ0)]. For β > 0, let Sβ = {θ : ‖θ − θ0‖ ≤ β}, Sβ = {θ ∈
Θδ : θ /∈ Sβ}. It can readily be shown that

P

(∥
∥
∥θ̂n − θ0

∥
∥
∥ > β

)
≤ P

(
θ̂n ∈ Sβ

)

≤ P

(

inf
θ∈Sβ

{Qn(θ) − Qn(θ0)} ≤ 0

)

≤ P

(

sup
θ∈Θδ

|Wn(θ)| ≥ inf
θ∈Sβ

V(θ)

)

≤ P

(

sup
θ∈Θδ

|Qn(θ) − E [On(θ)]| ≥ 1

2
inf

θ∈Sβ

V(θ)

)

. (40)

Since d1 − d0 > −1/2, one has

sup
θ∈Θδ

E
[
ε2t (θ)

] = sup
θ∈Θδ

∞∑

i=0

∞∑

j=0

λi (θ)λ j (θ)E
[
εt−iεt− j

] = σ 2
ε sup

θ∈Θδ

∞∑

i=0

λ2i (θ)

≤ σ 2
ε + Kσ 2

ε

∞∑

i=1

i−2−2(d1−d0) < ∞. (41)

We can therefore use the same arguments as those of Francq and Zakoïan (1998) to prove
under (A1) and (A2) that for any θ ∈ Θδ \ {θ0}, there exists a neighbourhood N(θ) of θ such
that N(θ) ⊂ Θδ and

lim inf
n→∞ inf

θ∈N(θ)

On(θ) > σ 2
ε , a.s. (42)

Note that E[On(θ0)] = σ 2
ε . It follows from (42) that

inf
θ∈Sβ

V(θ) > K

for some positive constant K .
In view of (40), it is then sufficient to show that the random variable supθ∈Θδ

|Qn(θ) −
E[On(θ)]| converges in probability to zero to prove Theorem 1. We use Corollary 2.2 of
Newey (1991) to obtain this uniform convergence in probability. The set Θδ is compact and
(E[On(θ)])n≥1 is a uniformly convergent sequence of continuous functions on a compact set
so it is equicontinuous. We consequently need to show the following two points to complete
the proof of the theorem:

• For each θ ∈ Θδ , Qn(θ) − E[On(θ)] = oP(1).
• There is Bn and h : [0,∞) → [0,∞) with h(0) = 0 and h continuous at zero such that

Bn = OP(1) and for all θ1, θ2 ∈ Θδ , |Qn(θ1) − Qn(θ2)| ≤ Bnh(‖θ1 − θ2‖).
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6.2.1 Pointwise convergence in probability of Qn(�)− E[On(�)] to zero

For any θ ∈ Θδ , Remark 12, the Cauchy–Schwarz inequality and (41) yield that

E |Qn(θ) − On(θ)| ≤ 1

n

n∑

t=1

E
∣
∣ε̃2t (θ) − ε2t (θ)

∣
∣

≤ 1

n

n∑

t=1

E (εt (θ) − ε̃t (θ))2 + 2

n

n∑

t=1

E |εt (θ) − ε̃t (θ)| |εt (θ)|

≤ σ 2
ε

n

n∑

t=1

∥
∥λi (θ) − λti (θ)

∥
∥2

�2
+ 2σε

n

n∑

t=1

∥
∥λi (θ) − λti (θ)

∥
∥

�2

√
E
[
ε2t (θ)

]

≤ σ 2
ε

n

n∑

t=1

t−1−2(d1−d0) + 2Kσε

n

n∑

t=1

t−1/2−(d1−d0) −−−→
n→∞ 0. (43)

We use the ergodic theorem and the continuous mapping theorem to obtain

|On(θ) − E [On(θ)]| a.s.−−−→
n→∞ 0. (44)

Combining the results in (43) and (44), we deduce that for all θ ∈ Θδ ,

Qn(θ) − E [On(θ)]
P−−−→

n→∞ 0.

6.2.2 Tightness characterization

Observe that for any θ1, θ2 ∈ Θδ , there exists θ� between θ1 and θ2 such that

|Qn(θ1) − Qn(θ2)| ≤
(
1

n

n∑

t=1

∥
∥
∥
∥
∂ε̃2t (θ

�)

∂θ

∥
∥
∥
∥

)

‖θ1 − θ2‖ .

As before, the uncorrelatedness of the innovation process (εt )t∈Z and Remark 12 entail that

E

[
1

n

n∑

t=1

∥
∥
∥
∥
∂ε̃2t (θ

�)

∂θ

∥
∥
∥
∥

]

≤ E

⎡

⎣2

n

n∑

t=1

p+q+1∑

i=1

∣
∣
∣
∣ε̃t (θ

�)
∂ε̃t (θ

�)

∂θi

∣
∣
∣
∣

⎤

⎦ < ∞.

Thanks to Markov’s inequality, we conclude that

1

n

n∑

t=1

∥
∥
∥
∥
∂ε̃2t (θ

�)

∂θ

∥
∥
∥
∥ = OP(1).

The proof of Theorem 1 is then complete.

6.3 Proof of Theorem 2

By a Taylor expansion of the function ∂Qn(·)/∂θ around θ0 and under (A3), we have

0 = √
n

∂

∂θ
Qn(θ̂n) = √

n
∂

∂θ
Qn(θ0) +

[
∂2

∂θi∂θ j
Qn

(
θ∗
n,i, j

)]√
n
(
θ̂n − θ0

)
, (45)
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where the θ∗
n,i, j ’s are between θ̂n and θ0. The Eq. (45) can be rewritten in the form:

√
n

∂

∂θ
On(θ0) − √

n
∂

∂θ
Qn(θ0) = √

n
∂

∂θ
On(θ0) +

[
∂2

∂θi∂θ j
Qn

(
θ∗
n,i, j

)]√
n
(
θ̂n − θ0

)
.

(46)

Under the assumptions of Theorem 2, it will be shown respectively in Lemmas 15 and 17
that

√
n

∂

∂θ
On(θ0) − √

n
∂

∂θ
Qn(θ0) = oP(1),

and
[

∂2

∂θi∂θ j
Qn

(
θ∗
n,i, j

)]

− J (θ0) = oP(1).

As a consequence, the asymptotic normality of
√
n(θ̂n − θ0) will be a consequence of the

one of
√
n∂/∂θOn(θ0).

Lemma 15 For 1 ≤ k ≤ p + q + 1, under the assumptions of Theorem 2, we have

√
n

(
∂

∂θk
Qn(θ0) − ∂

∂θk
On(θ0)

)

= oP(1). (47)

Proof Throughout this proof, θ = (θ1, . . . , θp+q , d)′ ∈ Θδ is such that max(d0, 0) < d ≤ d2
where d2 is the upper bound of the support of the long-range dependence parameter d0.

The proof is quite long so we divide it in several steps.
� Step 1: preliminaries

For 1 ≤ k ≤ p + q + 1 we have

√
n

∂

∂θk
Qn(θ0) = 2√

n

n∑

t=1

ε̃t (θ0)
∂

∂θk
ε̃t (θ0)

= 2√
n

n∑

t=1

(ε̃t (θ0) − ε̃t (θ))
∂

∂θk
ε̃t (θ0) + 2√

n

n∑

t=1

(ε̃t (θ) − εt (θ))
∂

∂θk
ε̃t (θ0)

+ 2√
n

n∑

t=1

(εt (θ) − εt (θ0))
∂

∂θk
ε̃t (θ0) + 2√

n

n∑

t=1

εt (θ0)

(
∂

∂θk
ε̃t (θ0) − ∂

∂θk
εt (θ0)

)

+ 2√
n

n∑

t=1

εt (θ0)
∂

∂θk
εt (θ0)

= Δk
n,1(θ) + Δk

n,2(θ) + Δk
n,3(θ) + Δk

n,4(θ0) + √
n

∂

∂θk
On(θ0), (48)

where

Δk
n,1(θ) = 2√

n

n∑

t=1

(ε̃t (θ0) − ε̃t (θ))
∂

∂θk
ε̃t (θ0),

Δk
n,2(θ) = 2√

n

n∑

t=1

(ε̃t (θ) − εt (θ))
∂

∂θk
ε̃t (θ0),
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Δk
n,3(θ) = 2√

n

n∑

t=1

(εt (θ) − εt (θ0))
∂

∂θk
ε̃t (θ0)

and

Δk
n,4(θ0) = 2√

n

n∑

t=1

εt (θ0)

(
∂

∂θk
ε̃t (θ0) − ∂

∂θk
εt (θ0)

)

.

Using (32) and (35), the fourth term Δk
n,4(θ0) can be rewritten in the form:

Δk
n,4(θ0) = 2√

n

n∑

t=1

∞∑

j=1

{ .
λ
t

j,k (θ0) − .
λ j,k (θ0)

}
εtεt− j . (49)

Therefore, if we prove that the three sequences of random variables (Δk
n,1(θ)+Δk

n,3(θ))n≥1,

(Δk
n,2(θ))n≥1 and (Δk

n,4(θ0))n≥1 converge in probability to 0, then (47) will be true.

� Step 2: convergence in probability of (Δk
n,4(θ0))n≥1 to 0

For simplicity, we denote in the sequel by
.
λ j,k the coefficient

.
λ j,k(θ0) and by

.
λ
t

j,k the

coefficient
.
λ
t

j,k(θ0). Let �(·, ·) be the function defined for 1 ≤ t, s ≤ n by

�(t, s) =
∞∑

j1=1

∞∑

j2=1

{ .
λ j1,k − .

λ
t

j1,k

} { .
λ j2,k − .

λ
s

j2,k

}
E
[
εtεt− j1εsεs− j2

]
.

For all β > 0, using the symmetry of the function �(t, s), we obtain that

P

(∣
∣
∣Δk

n,4(θ0)

∣
∣
∣ ≥ β

)
≤ 4

nβ2 E

⎡

⎢
⎣

⎛

⎝
n∑

t=1

∞∑

j=1

{ .
λ j,k − .

λ
t

j,k

}
εtεt− j

⎞

⎠

2
⎤

⎥
⎦

≤ 4

nβ2

n∑

t=1

n∑

s=1

∞∑

j1=1

∞∑

j2=1

{ .
λ j1,k − .

λ
t

j1,k

} { .
λ j2,k − .

λ
s

j2,k

}
E
[
εtεt− j1εsεs− j2

]

≤ 8

nβ2

n∑

t=1

t∑

s=1

∞∑

j1=1

∞∑

j2=1

{ .
λ j1,k − .

λ
t

j1,k

} { .
λ j2,k − .

λ
s

j2,k

}
E
[
εtεt− j1εsεs− j2

]
.

By the stationarity of (εt )t∈Z which is assumed in (A2), we have

E
[
εtεt− j1εsεs− j2

] = cum
(
ε0, ε− j1 , εs−t , εs−t− j2

)+ E
[
ε0ε− j1

]
E
[
εs−tεs−t− j2

]

+ E
[
ε0εs−t

]
E
[
ε− j1εs−t− j2

]

+ E
[
ε0εs−t− j2

]
E
[
ε− j1εs−t

]
.
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Since the noise is not correlated, we deduce that E
[
ε0ε− j1

] = 0 and E
[
ε0εs−t− j2

] = 0 for
1 ≤ j1, j2 and s ≤ t . Consequently we obtain

P

(∣
∣
∣Δk

n,4(θ0)

∣
∣
∣ ≥ β

)
≤ 8

nβ2

n∑

t=1

t∑

s=1

∞∑

j1=1

∞∑

j2=1

sup
j1≥1

∣
∣
∣
.
λ j1,k − .

λ
t

j1,k

∣
∣
∣
∣
∣
∣
.
λ j2,k − .

λ
s

j2,k

∣
∣
∣

∣
∣cum

(
ε0, ε− j1 , εs−t , εs−t− j2

)∣
∣

+ 8

nβ2

n∑

t=1

t∑

s=1

∞∑

j1=1

∞∑

j2=1

∣
∣
∣
.
λ j1,k − .

λ
t

j1,k

∣
∣
∣
∣
∣
∣
.
λ j2,k − .

λ
s

j2,k

∣
∣
∣

∣
∣E
[
ε0εs−t

]
E
[
ε− j1εs−t− j2

]∣
∣ . (50)

If

t∑

s=1

∞∑

j1=1

∞∑

j2=1

sup
j1≥1

∣
∣
∣
.
λ j1,k − .

λ
t

j1,k

∣
∣
∣
∣
∣
∣
.
λ j2,k − .

λ
s

j2,k

∣
∣
∣
∣
∣cum

(
ε0, ε− j1 , εs−t , εs−t− j2

)∣
∣ −−−→

t→∞ 0,

(51)

Cesàro’s Lemma implies that the first term in the right hand side of (50) tends to 0. Thanks
to Lemma 10 applied with r = ∞ (or see Remark 11) and Assumption (A4’) with τ = 4,
we obtain that

t∑

s=1

∞∑

j1=1

∞∑

j2=1

sup
j1≥1

∣
∣
∣
.
λ j1,k − .

λ
t

j1,k

∣
∣
∣
∣
∣
∣
.
λ j2,k − .

λ
s

j2,k

∣
∣
∣
∣
∣cum

(
ε0, ε− j1 , εs−t , εs−t− j2

)∣
∣

≤ K

t1+min(d0,0)

t∑

s=1

∞∑

j1=1

∞∑

j2=1

∣
∣cum

(
ε0, ε− j1 , εs−t , εs−t− j2

)∣
∣

≤ K

t1+min(d0,0)

∞∑

s=−∞

∞∑

j1=−∞

∞∑

j2=−∞

∣
∣cum

(
ε0, εs , ε j1 , ε j2

)∣
∣ −−−→

t→∞ 0 ,

hence (51) holds true. Concerning the second term of right hand side of the inequality (50),
we have

8

nβ2

n∑

t=1

t∑

s=1

∞∑

j1=1

∞∑

j2=1

∣
∣
∣
.
λ j1,k − .

λ
t

j1,k

∣
∣
∣
∣
∣
∣
.
λ j2,k − .

λ
s

j2,k

∣
∣
∣
∣
∣E
[
ε0εs−t

]
E
[
ε− j1εs−t− j2

]∣
∣

= 8σ 2
ε

nβ2

n∑

t=1

∞∑

j1=1

∞∑

j2=1

∣
∣
∣
.
λ j1,k − .

λ
t

j1,k

∣
∣
∣
∣
∣
∣
.
λ j2,k − .

λ
t

j2,k

∣
∣
∣
∣
∣E
[
ε− j1ε− j2

]∣
∣

= 8σ 4
ε

nβ2

n∑

t=1

∞∑

j1=1

∣
∣
∣
.
λ j1,k − .

λ
t

j1,k

∣
∣
∣
2

= 8σ 4
ε

nβ2

n∑

t=1

∥
∥
∥
.
λk − .

λ
t

k

∥
∥
∥
2

�2

≤ K

β2

1

n

n∑

t=1

1

t1+2min(d0,0)
−−−→
n→∞ 0
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where we have used the fact that the noise is not correlated, Lemma 10 with r = 2 and
Cesàro’s Lemma. This ends Step 2.
� Step 3: (Δk

n,2(θ))n≥1 converges in probability to 0
For all β > 0, we have

P

(∣
∣
∣Δk

n,2(θ)

∣
∣
∣ ≥ β

)
≤ 2

β
√
n

n∑

t=1

‖ε̃t (θ) − εt (θ)‖L2

∥
∥
∥
∥

∂

∂θk
ε̃t (θ0)

∥
∥
∥
∥
L2

.

First, using Lemma 13, we have

∥
∥
∥
∥

∂

∂θk
ε̃t (θ0)

∥
∥
∥
∥

2

L2
= E

⎡

⎣

( ∞∑

i=1

.
λ
t

i,k (θ0) εt−i

)2
⎤

⎦

=
∞∑

i=1

∞∑

j=1

.
λ
t

i,k (θ0)
.
λ
t

j,k (θ0) E
[
εt−iεt− j

]

= σ 2
ε

∞∑

i=1

{ .
λ
t

i,k (θ0)
}2

≤ K . (52)

In view of (29), (34) and (52), we may write

P

(∣
∣
∣Δk

n,2(θ)

∣
∣
∣ ≥ β

)
≤ K

β
√
n

n∑

t=1

(
E

[
(ε̃t (θ) − εt (θ))2

])1/2

≤ K

β
√
n

n∑

t=1

⎛

⎝
∑

i≥0

∑

j≥0

(
λti (θ) − λi (θ)

) (
λtj (θ) − λ j (θ)

)
E
[
εt−iεt− j

]
⎞

⎠

1/2

≤ σεK

β
√
n

n∑

t=1

⎛

⎝
∑

i≥0

(
λti (θ) − λi (θ)

)2

⎞

⎠

1/2

≤ σεK

β
√
n

n∑

t=1

∥
∥λ(θ) − λt (θ)

∥
∥

�2
.

We use Lemma 10, the fact that d > max(d0, 0) and the fractional version of Cesàro’s
Lemma2 to obtain

P

(∣
∣
∣Δk

n,2(θ)

∣
∣
∣ ≥ β

)
≤ σεK

β

1√
n

n∑

t=1

1

t1/2+(d−max(d0,0))
−−−→
n→∞ 0.

This proves the expected convergence in probability.
� Step 4: convergence in probability of (Δk

n,1(θ) + Δk
n,3(θ))n≥1 to 0

2 Recall that the fractional version of Cesàro’s Lemma states that for (ht )t a sequence of positive reals, κ > 0
and c ≥ 0 we have

lim
t→∞ ht t

1−κ = |κ| c ⇒ lim
n→∞

1

nκ

n∑

t=0

ht = c.
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Note that, for all n ≥ 1, we have

Δk
n,1(θ) + Δk

n,3(θ) = 2√
n

n∑

t=1

{
(εt (θ) − ε̃t (θ)) − (εt (θ0) − ε̃t (θ0))

} ∂

∂θk
ε̃t (θ0).

A Taylor expansion of the function (εt − ε̃t )(·) around θ0 gives

∣
∣
∣(εt (θ) − ε̃t (θ)) − (εt (θ0) − ε̃t (θ0))

∣
∣
∣ ≤

∥
∥
∥
∥
∂(εt − ε̃t )

∂θ
(θ�)

∥
∥
∥
∥
Rp+q+1

‖θ − θ0‖Rp+q+1 , (53)

where θ� is between θ0 and θ . Following the same method as in the previous step we obtain

E

∣
∣
∣ (εt (θ) − ε̃t (θ)) − (εt (θ0) − ε̃t (θ0))

∣
∣
∣
2 ≤ K‖θ − θ0‖2Rp+q+1

p+q+1∑

k=1

E

[∣
∣
∣
∣
∂(εt − ε̃t )

∂θk
(θ�)

∣
∣
∣
∣

2
]

≤ K‖θ − θ0‖2Rp+q+1

p+q+1∑

k=1

σ 2
ε

∥
∥
∥(

.
λk − .

λk
t
)(θ�)

∥
∥
∥
2

�2
.

As in Hallin et al. (1999), it can be shown using Stirling’s approximation and the fact that
d� > d0 that

∥
∥
∥(

.
λk − .

λk
t
)(θ�)

∥
∥
∥

�2
≤ K

1

t1/2+(d�−d0)−ζ

for any small enough ζ > 0. We then deduce that
∥
∥
∥ (εt (θ) − ε̃t (θ)) − (εt (θ0) − ε̃t (θ0))

∥
∥
∥
L2

≤ K‖θ − θ0‖Rp+q+1
1

t1/2+(d�−d0)−ζ
. (54)

The expected convergence in probability follows from (52), (54) and the fractional version
of Cesàro’s Lemma.

��
We show in the following lemma the existence and invertibility of J (θ0).

Lemma 16 Under Assumptions of Theorem 2, the matrix

J (θ0) = lim
n→∞

[
∂2

∂θi∂θ j
On(θ0)

]

exists almost surely and is invertible.

Proof For all 1 ≤ i, j ≤ p + q + 1, we have

∂2

∂θi∂θ j
On(θ0) = 1

n

n∑

t=1

∂2

∂θi∂θ j
ε2t (θ0) = 2

n

n∑

t=1

{
∂

∂θi
εt (θ0)

∂

∂θ j
εt (θ0) + εt (θ0)

∂2

∂θi∂θ j
εt (θ0)

}

.

Note that in view of (32), (33) and Remark 12, the first and second order derivatives of εt (·)
belong to L

2. By using the ergodicity of (εt )t∈Z assumed in Assumption (A2), we deduce
that

∂2

∂θi∂θ j
On(θ0)

a.s.−→
n→∞ 2E

[
∂

∂θi
εt (θ0)

∂

∂θ j
εt (θ0)

]

+ 2E

[

εt (θ0)
∂2

∂θi∂θ j
εt (θ0)

]

.
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By (29) and (32), εt and ∂εt (θ0)/∂θ are non correlated as well as εt and ∂2εt (θ0)/∂θ∂θ . Thus
we have

∂2

∂θi∂θ j
On(θ0)

a.s.−→
n→∞ J (θ0)(i, j) := 2E

[
∂

∂θi
εt (θ0)

∂

∂θ j
εt (θ0)

]

. (55)

From (29) and (39) we obtain that

E

[
∂

∂θi
εt (θ0)

∂

∂θ j
εt (θ0)

]

= E

⎡

⎣

⎛

⎝
∑

k1≥1

.
λk1,i (θ0) εt−k1

⎞

⎠

⎛

⎝
∑

k2≥1

.
λk2, j (θ0) εt−k2

⎞

⎠

⎤

⎦

=
∑

k1≥1

∑

k2≥1

.
λk1,i (θ0)

.
λk2, j (θ0) E

[
εt−k1εt−k2

]

≤ K σ 2
ε

∑

k1≥1

(
1

k1

)2

< ∞.

Therefore J (θ0) exists almost surely.
If the matrix J (θ0) is not invertible, there exists some real constants c1, . . . , cp+q+1

not all equal to zero such that c
′
J (θ0)c = ∑p+q+1

i=1

∑p+q+1
j=1 c j J (θ0)( j, i)ci = 0, where

c = (c1, . . . , cp+q+1)
′
. In view of (55) we obtain that

p+q+1∑

i=1

p+q+1∑

j=1

E

[(

c j
∂εt (θ0)

∂θ j

)(

ci
∂εt (θ0)

∂θi

)]

= E

⎡

⎢
⎣

⎛

⎝
p+q+1∑

k=1

ck
∂εt (θ0)

∂θk

⎞

⎠

2
⎤

⎥
⎦ = 0,

which implies that

p+q+1∑

k=1

ck
∂εt (θ0)

∂θk
= 0 a.s. or equivalenty c′ ∂εt (θ0)

∂θ
= 0 a.s. (56)

Differentiating the Eq. (1), we obtain that

c′ ∂

∂θ

{
aθ0(L)(1 − L)d0

}
Xt = c′

{
∂

∂θ
bθ0(L)

}

εt + bθ0(L)c′ ∂

∂θ
εt (θ0).

and by (56) we may write that

c
′
(

∂

∂θ

{
aθ0(L)(1 − L)d0

}
Xt −

{
∂

∂θ
bθ0(L)

}

εt

)

= 0 a.s.

It follows that (1) can therefore be rewritten in the form:
(

aθ0(L)(1 − L)d0 + c
′ ∂

∂θ

{
aθ0(L)(1 − L)d0

})

Xt =
(

bθ0(L) + c
′ ∂

∂θ
bθ0(L)

)

εt , a.s.

Under Assumption (A1) the representation in (1) is unique (see Hosking (1981)) so

c
′ ∂

∂θ

{
aθ0(L)(1 − L)d0

}
= 0 (57)

and

c
′ ∂

∂θ
bθ0(L) = 0. (58)
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First, (58) implies that

p+q∑

k=p+1

ck
∂

∂θk
bθ0(L) =

p+q∑

k=p+1

−ck L
k = 0

and thus ck = 0 for p + 1 ≤ k ≤ p + q .
Similarly, (57) yields that

p∑

k=1

ck
∂

∂θk
aθ0(L)(1 − L)d0 + cp+q+1aθ0(L)

∂(1 − L)d

∂d
(d0) = 0 .

Since ∂(1 − L)d/∂d = (1 − L)d ln(1 − L), it follows that

−
p∑

k=1

ck L
k + cp+q+1

∑

k≥0

ek L
k = 0 ,

where the sequence (ek)k≥1 is given by the coefficients of the power series aθ0(L)ln(1− L).
Since e0 = 0 and e1 = −1, we obtain that

c1 = −cp+q+1

ck = ekcp+q+1 for k = 2, . . . , p

0 = ekcp+q+1 for k ≥ p + 1.

Since the polynomial aθ0 is not the null polynomial, this implies that cp+q+1 = 0 and then
ck for 1 ≤ k ≤ p. Thus c = 0 which leads us to a contradiction. Hence J (θ0) is invertible.

��
Lemma 17 For any 1 ≤ i, j ≤ p+q +1 and under the assumptions of Theorem 1, we have

∂2

∂θi∂θ j
Qn

(
θ∗
n,i, j

)
− J (θ0)(i, j) = oP(1), (59)

where θ∗
n,i, j is defined in (45).

Proof For any θ ∈ Θδ , let

Jn(θ) = ∂2

∂θ∂θ
′ Qn (θ) = 2

n

n∑

t=1

{
∂

∂θ
ε̃t (θ)

}{
∂

∂θ
′ ε̃t (θ)

}

+ 2

n

n∑

t=1

ε̃t (θ)
∂2

∂θ∂θ
′ ε̃t (θ)

and

J ∗
n (θ) = ∂2

∂θ∂θ
′ On (θ) = 2

n

n∑

t=1

{
∂

∂θ
εt (θ)

}{
∂

∂θ
′ εt (θ)

}

+ 2

n

n∑

t=1

εt (θ)
∂2

∂θ∂θ
′ εt (θ).

We have
∣
∣
∣
∣

∂2

∂θi∂θ j
Qn

(
θ∗
n,i, j

)
− J (θ0)(i, j)

∣
∣
∣
∣ ≤

∣
∣
∣Jn(θ

∗
n,i, j )(i, j) − J ∗

n (θ∗
n,i, j )(i, j)

∣
∣
∣

+
∣
∣
∣J ∗

n (θ∗
n,i, j )(i, j) − J ∗

n (θ0)(i, j)
∣
∣
∣

+ ∣
∣J ∗

n (θ0)(i, j) − J (θ0)(i, j)
∣
∣ . (60)
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So it is enough to show that the three terms in the right hand side of (60) converge in probability
to 0 when n tends to infinity. Following the same arguments as the proof of Lemma 16 and
applying the ergodic theorem, we obtain that

J ∗
n (θ0)

a.s.−→
n→∞ 2E

[
∂

∂θ
εt (θ0)

∂

∂θ
′ εt (θ0)

]

= J (θ0).

Let us now show that the random variable |Jn(θ∗
n,i, j )(i, j) − J ∗

n (θ∗
n,i, j )(i, j)| converges in

probability to 0. It can easily be seen that

∂εt (θ
∗
n,i, j )

∂θi

∂εt (θ
∗
n,i, j )

∂θ j
− ∂ε̃t (θ

∗
n,i, j )

∂θi

∂ε̃t (θ
∗
n,i, j )

∂θ j

=
(

∂εt (θ
∗
n,i, j )

∂θi
− ∂ε̃t (θ

∗
n,i, j )

∂θi

)
∂εt (θ

∗
n,i, j )

∂θ j

+ ∂ε̃t (θ
∗
n,i, j )

∂θi

(
∂εt (θ

∗
n,i, j )

∂θ j
− ∂ε̃t (θ

∗
n,i, j )

∂θ j

)

.

Hence, by the Cauchy–Schwarz inequality and Remark 12 one has

E

∣
∣
∣
∂εt (θ

∗
n,i, j )

∂θi

∂εt (θ
∗
n,i, j )

∂θ j
− ∂ε̃t (θ

∗
n,i, j )

∂θi

∂ε̃t (θ
∗
n,i, j )

∂θ j

∣
∣
∣

≤
⎛

⎝E

(
∂εt (θ

∗
n,i, j )

∂θi
− ∂ε̃t (θ

∗
n,i, j )

∂θi

)2

E

(
∂εt (θ

∗
n,i, j )

∂θ j

)2
⎞

⎠

1/2

+
⎛

⎝E

(
∂εt (θ

∗
n,i, j )

∂θ j
− ∂ε̃t (θ

∗
n,i, j )

∂θ j

)2

E

(
∂εt (θ

∗
n,i, j )

∂θi

)2
⎞

⎠

1/2

≤
(

sup
θ∈Θδ

E

(
∂εt (θ)

∂θi
− ∂ε̃t (θ)

∂θi

)2

sup
θ∈Θδ

E

(
∂εt (θ)

∂θ j

)2
)1/2

+
(

sup
θ∈Θδ

E

(
∂εt (θ)

∂θ j
− ∂ε̃t (θ)

∂θ j

)2

sup
θ∈Θδ

E

(
∂εt (θ)

∂θi

)2
)1/2

≤ σ 2
ε

⎛

⎝ sup
θ∈Θδ

∥
∥
∥
.
λi (θ) − .

λ
t

i (θ)

∥
∥
∥
2

�2
sup
θ∈Θδ

∑

k≥1

( .
λk, j (θ)

)2
⎞

⎠

1/2

+ σ 2
ε

⎛

⎝ sup
θ∈Θδ

∥
∥
∥
.
λ j (θ) − .

λ
t

j (θ)

∥
∥
∥
2

�2
sup
θ∈Θδ

∑

k≥1

( .
λ
t

k,i (θ)
)2
⎞

⎠

1/2

≤ K
1

t1/2+(d1−d0)−ζ
−−−→
t→∞ 0.

Similar calculation can be done to obtain

E

∣
∣
∣
∣
∣
εt (θ

∗
n,i, j )

∂2εt (θ
∗
n,i, j )

∂θi∂θ j
− ε̃t (θ

∗
n,i, j )

∂2ε̃t (θ
∗
n,i, j )

∂θi∂θ j

∣
∣
∣
∣
∣
−−−→
t→∞ 0.

It follows then using Cesàro’s Lemma that
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E

∣
∣
∣Jn(θ∗

n,i, j )(i, j) − J∗
n (θ∗

n,i, j )(i, j)
∣
∣
∣ ≤ 2

n

n∑

t=1

E

∣
∣
∣
∣
∣

∂εt (θ
∗
n,i, j )

∂θi

∂εt (θ
∗
n,i, j )

∂θ j
−

∂ε̃t (θ
∗
n,i, j )

∂θi

∂ε̃t (θ
∗
n,i, j )

∂θ j

∣
∣
∣
∣
∣

+ 2

n

n∑

t=1

E

∣
∣
∣
∣
∣
εt (θ

∗
n,i, j )

∂2εt (θ
∗
n,i, j )

∂θi ∂θ j
− ε̃t (θ

∗
n,i, j )

∂2 ε̃t (θ
∗
n,i, j )

∂θi ∂θ j

∣
∣
∣
∣
∣

≤ K

n

n∑

t=1

1

t1/2+(d1−d0)−ζ
−−−−→
n→∞ 0,

which entails the expected convergence in probability to 0 of |Jn(θ∗
n,i, j )(i, j) −

J ∗
n (θ∗

n,i, j )(i, j)|.
By a Taylor expansion of J ∗

n (·)(i, j) around θ0, there exists θ∗∗
n,i, j between θ∗

n,i, j and θ0
such that

∣
∣
∣J∗
n (θ∗

n,i, j )(i, j) − J∗
n (θ0)(i, j)

∣
∣
∣ =

∣
∣
∣
∣

∂

∂θ
J∗
n (θ∗∗

n,i, j )(i, j) · (θ∗
n,i, j − θ0)

∣
∣
∣
∣

≤
∥
∥
∥
∥

∂

∂θ
J∗
n (θ∗∗

n,i, j )(i, j)

∥
∥
∥
∥

∥
∥
∥θ∗

n,i, j − θ0

∥
∥
∥

≤ 2

n

n∑

t=1

∥
∥
∥
∥
∥
∥

∂

∂θ

{
∂

∂θi
εt (θ)

∂

∂θ j
εt (θ)

}∣
∣
∣
∣
θ=θ∗∗

n,i, j

∥
∥
∥
∥
∥
∥

∥
∥
∥θ∗

n,i, j − θ0

∥
∥
∥

+ 2

n

n∑

t=1

∥
∥
∥
∥
∥
∥

∂

∂θ

{

εt (θ)
∂2

∂θi∂θ j
εt (θ)

}∣
∣
∣
∣
∣
θ=θ∗∗

n,i, j

∥
∥
∥
∥
∥
∥

∥
∥
∥θ∗

n,i, j − θ0

∥
∥
∥ .

(61)

Since d1 − d0 > 1/2, it can easily be shown as before that

E

∥
∥
∥
∥
∥
∥

∂

∂θ

{
∂

∂θi
εt (θ)

∂

∂θ j
εt (θ)

}∣
∣
∣
∣
θ=θ∗∗

n,i, j

∥
∥
∥
∥
∥
∥

< ∞ (62)

and

E

∥
∥
∥
∥
∥
∥

∂

∂θ

{

εt (θ)
∂2

∂θi∂θ j
εt (θ)

}∣
∣
∣
∣
θ=θ∗∗

n,i, j

∥
∥
∥
∥
∥
∥

< ∞. (63)

We use (61), (62), (63), the ergodic theorem and Theorem 1 to deduce the convergence in
probability of |J ∗

n (θ∗
n,i, j )(i, j) − J ∗

n (θ0)(i, j)| to 0.
The proof of the lemma is then complete. ��

The following lemma states the existence of the matrix I (θ0).

Lemma 18 Under the assumptions of Theorem 2, the matrix

I (θ0) = lim
n→∞ Var

{√
n

∂

∂θ
On(θ0)

}

exists.
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Proof By the stationarity of (Ht (θ0))t∈Z (remind that this process is defined in (7)), we have

Var

{√
n

∂

∂θ
On(θ0)

}

= Var

{
1√
n

n∑

t=1

Ht (θ0)

}

= 1

n

n∑

t=1

n∑

s=1

Cov {Ht (θ0), Hs(θ0)}

= 1

n

n−1∑

h=−n+1

(n − |h|)Cov {Ht (θ0), Ht−h(θ0)} .

By the dominated convergence theorem, the matrix I (θ0) exists and is given by

I (θ0) =
∞∑

h=−∞
Cov {Ht (θ0), Ht−h(θ0)}

whenever

∞∑

h=−∞
‖Cov {Ht (θ0), Ht−h(θ0)} ‖ < ∞. (64)

For s ∈ Z and 1 ≤ k ≤ p + q + 1, we denote Hs,k(θ0) = 2εs(θ0) ∂
∂θk

εs(θ0) the k−th entry
of Hs(θ0). In view of (32) we have

∣
∣Cov

{
Ht,i (θ0), Ht−h, j (θ0)

}∣
∣ = 4

∣
∣
∣
∣
∣
∣
Cov

⎛

⎝
∑

k1≥1

.
λk1,i (θ0) εtεt−k1 ,

∑

k2≥1

.
λk2, j (θ0) εt−hεt−h−k2

⎞

⎠

∣
∣
∣
∣
∣
∣

≤ 4
∑

k1≥1

∑

k2≥1

∣
∣
∣
.
λk1,i (θ0)

∣
∣
∣
∣
∣
∣
.
λk2, j (θ0)

∣
∣
∣
∣
∣E
[
εtεt−k1εt−hεt−h−k2

]∣
∣

≤
∑

k1≥1

∑

k2≥1

K

k1k2

∣
∣E
[
εtεt−k1εt−hεt−h−k2

]∣
∣

where we have used Lemma 14. It follows that

∞∑

h=−∞

∣
∣Cov

{
Ht,i (θ0), Ht−h, j (θ0)

}∣
∣ ≤

∑

h∈Z\{0}

∑

k1≥1

∑

k2≥1

K

k1k2

∣
∣cum

(
εt , εt−k1 , εt−h, εt−h−k2

)∣
∣

+
∑

k1≥1

∑

k2≥1

K

k1k2

∣
∣E
[
εtεt−k1εtεt−k2

]∣
∣ .
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Thanks to the stationarity of (εt )t∈Z and Assumption (A4’) with τ = 4 we deduce that

∞∑

h=−∞

∣
∣Cov

{
Ht,i (θ0), Ht−h, j (θ0)

}∣
∣ ≤

∑

h∈Z\{0}

∑

k1≥1

∑

k2≥1

K

k1k2

∣
∣cum

(
ε0, ε−k1 , ε−h, ε−h−k2

)∣
∣

+
∑

k1≥1

∑

k2≥1

K

k1k2

∣
∣E
[
ε0ε−k1ε0ε−k2

]∣
∣

≤ K
∑

h,k,l∈Z
|cum (ε0, εk, εh, εl)|

+
∑

k1≥1

∑

k2≥1

K

k1k2

( ∣
∣cum

(
ε0, ε−k1 , ε0, ε−k2

)∣
∣

+ σ 2
ε

∣
∣E
[
ε−k1ε−k2

]∣
∣
)

≤K
∑

h,k,l∈Z
|cum (ε0, εk, εh, εl)|+Kσ 4

ε

∑

k1≥1

(
1

k1

)2

≤K

and we obtain the expected result. ��
Lemma 19 Under Assumptions of Theorem 2, the random vector

√
n(∂/∂θ)On(θ0) has a

limiting normal distribution with mean 0 and covariance matrix I (θ0).

Proof Observe that for any t ∈ Z

E

[

εt
∂

∂θ
εt (θ0)

]

= 0 (65)

because ∂εt (θ0)/∂θ belongs to the Hilbert spaceHε(t−1) generated by the family (εs)s≤t−1.
Therefore we have

lim
n→∞ E

[√
n

∂

∂θ
On(θ0)

]

= lim
n→∞

2√
n

n∑

t=1

E

[

εt
∂

∂θ
εt (θ0)

]

= 0.

For i ≥ 1, we denote by Λi (θ0) = (
.
λi,1 (θ0) , . . . ,

.
λi,p+q+1 (θ0))

′ and we introduce for
r ≥ 1

Ht,r (θ0) = 2
r∑

i=1

Λi (θ0) εtεt−i and Gt,r (θ0) = 2
∑

i≥r+1

Λk (θ0) εtεt−i .

From (32) we have

√
n

∂

∂θ
On(θ0) = 1√

n

n∑

t=1

Ht,r (θ0) + 1√
n

n∑

t=1

Gt,r (θ0).

Since Ht,r (θ0) is a function of finite number of values of the process (εt )t∈Z, the stationary
process (Ht,r (θ0))t∈Z satisfies a mixing property (see Theorem 14.1 in Davidson (1994), p.
210) of the form (A4). The central limit theorem for stronglymixing processes (seeHerrndorf
(1984)) implies that (1/

√
n)
∑n

t=1 Ht,r (θ0) has a limiting N (0, Ir (θ0)) distribution with

Ir (θ0) = lim
n→∞ Var

(
1√
n

n∑

t=1

Ht,r (θ0)

)

.
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Since 1√
n

∑n
t=1 Ht,r (θ0) and 1√

n

∑n
t=1 Ht (θ0) have zero expectation, we shall have

lim
r→∞ Var

(
1√
n

n∑

t=1

Ht,r (θ0)

)

= Var

(
1√
n

n∑

t=1

Ht (θ0)

)

= Var

{√
n

∂

∂θ
On(θ0)

}

,

as soon as

lim
r→∞ E

⎡

⎣

∥
∥
∥
∥
∥

1√
n

n∑

t=1

Ht (θ0) − 1√
n

n∑

t=1

Ht,r (θ0)

∥
∥
∥
∥
∥

2
⎤

⎦ = 0. (66)

As a consequence we will have limr→∞ Ir (θ0) = I (θ0). The limit in (66) is obtained as
follows:

E

⎡

⎣

∥
∥
∥
∥
∥

1√
n

n∑

t=1

Ht (θ0) − 1√
n

n∑
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∥
∥
∥
∥
∥

2
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⎤

⎦ = E

⎡

⎣

∥
∥
∥
∥
∥

1√
n

n∑
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∥
∥
∥
∥
∥

2

Rp+q+1

⎤

⎦

≤ 4

n

p+q+1∑

l=1

E

⎡

⎢
⎣

⎛

⎝
n∑

t=1

∑

k≥r+1

.
λk,l (θ0) εt−kεt

⎞

⎠

2
⎤

⎥
⎦

≤ 4

n
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n∑
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n∑

s=1

∑
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∑
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∣
∣
∣
.
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∣
∣
∣
∣
∣
∣
.
λ j,l (θ0)

∣
∣
∣
∣
∣E
[
εt−kεtεs− jεs

]∣
∣ ,

We use successively the stationarity of (εt )t∈Z, Lemma 14 and Assumption (A4’)with τ = 4
in order to obtain that

E

⎡

⎣

∥
∥
∥
∥
∥

1√
n

n∑

t=1

Ht (θ0) − 1√
n

n∑

t=1

Ht,r (θ0)

∥
∥
∥
∥
∥

2
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⎤

⎦

≤ 4

n
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n−1∑

h=1−n

∑

k≥r+1

∑

j≥r+1

∣
∣
∣
.
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∣
∣
∣
∣
∣
∣
.
λ j,l (θ0)

∣
∣
∣ (n − |h|) ∣∣E [εt−kεtεt−h− jεt−h
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∣
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∞∑
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∑
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∑
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∣
∣
∣
.
λk,l (θ0)

∣
∣
∣
∣
∣
∣
.
λ j,l (θ0)

∣
∣
∣
∣
∣E
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εt−kεtεt−h− jεt−h

]∣
∣

≤ K

(r + 1)2
∑

h �=0

∑

k≥r+1

∞∑

j=−∞

∣
∣cum

(
ε0, ε−k, ε− j , ε−h

)∣
∣

+ K

(r + 1)2
∑

k≥r+1

∑

j≥r+1

∣
∣cum

(
ε0, ε−k, ε− j , ε0

)∣
∣+ Kσ 4

ε

∑

k≥r+1

(
1

k

)2

and we obtain the convergence stated in (66) when r → ∞.
Using Theorem 7.7.1 and Corollary 7.7.1 of Anderson (see Anderson (1971), pp. 425–

426), the lemma is proved once we have, uniformly in n,

Var

(
1√
n

n∑

t=1

Gt,r (θ0)

)

−−−→
r→∞ 0 .
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Arguing as before we may write

[

Var

(
1√
n

n∑

t=1

Gt,r (θ0)

)]

i j

=
⎡

⎣Var

⎛

⎝ 2√
n

n∑

t=1

∑

k≥r+1

Λk(θ0)εt−kεt

⎞

⎠

⎤

⎦

i j

= 4

n

n∑

t=1

n∑

s=1

∑

k1≥r+1

∑

k2≥r+1

.
λk1,i (θ0)

.
λk2, j (θ0) E

[
εt−k1εtεs−k2εs

]

≤ 4
∞∑

h=−∞

∑

k1,k2≥r+1

∣
∣
∣
.
λk1,i (θ0)

.
λk2, j (θ0)

∣
∣
∣
∣
∣E
[
εt−k1εtεt−h−k2εt−h

]∣
∣ .

and we obtain that

sup
n

V ar

(
1√
n

n∑

t=1

Gt,r (θ0)

)

−−−→
r→∞ 0, (67)

which completes the proof. ��
No we can end this quite long proof of the asymptotic normality result.
Proof of Theorem 2

In view of Lemma 15, the Eq. (46) can be rewritten in the form:

oP(1) = √
n

∂

∂θ
On(θ0) +

[
∂2

∂θi∂θ j
Qn

(
θ∗
n,i, j

)]√
n
(
θ̂n − θ0

)
.

FromLemma19 [(∂2/∂θi∂θ j )Qn(θ
∗
n,i, j )]

√
n(θ̂n−θ0) converges in distribution toN (0, I (θ0)).

Using Lemma 17 and Slutsky’s theorem we deduce that
([

∂2

∂θi∂θ j
Qn

(
θ∗
n,i, j

)]

,

[
∂2

∂θi∂θ j
Qn

(
θ∗
n,i, j

)]√
n(θ̂n − θ0)

)

converges in distribution to (J (θ0), Z) with PZ = N (0, I ). Consider now the function
h : R

(p+q+1)×(p+q+1) × R
p+q+1 → R

p+q+1 that maps (A, X) to A−1X . If Dh denotes
the set of discontinuity points of h, we have P((J (θ0), Z) ∈ Dh) = 0. By the continuous
mapping theorem

h
([

(∂2/∂θi∂θ j )Qn(θ
∗
n,i, j )

]
,
[
(∂2/∂θi∂θ j )Qn(θ

∗
n,i, j )

]√
n(θ̂n − θ0)

)

converges in distribution to h(J (θ0), Z) and thus
√
n(θ̂n − θ0) has a limiting normal distri-

bution with mean 0 and covariance matrix J−1(θ0)I (θ0)J−1(θ0). The proof of Theorem 2 is
then completed.

6.4 Proof of the convergence of the variancematrix estimator

We show in this section the convergence in probability of Ω̂ := Ĵ−1
n Î SPn Ĵ−1

n to Ω , which is
an adaptation of the arguments used in Boubacar Mainassara et al. (2012).

Using the same approach as that followed in Lemma 17, we show that Ĵn converges in
probability to J . We give below the proof of the convergence in probability of the estimator
Î SPn , obtained using the approach of the spectral density, to I .
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We recall that the matrix norm used is given by ‖A‖ = sup‖x‖≤1 ‖Ax‖ = ρ1/2(A
′
A),

when A is a R
k1×k2 matrix, ‖x‖2 = x

′
x is the Euclidean norm of the vector x ∈ R

k2 , and
ρ(·) denotes the spectral radius. This norm satisfies

‖A‖2 ≤
k1∑

i=1

k2∑

j=1

a2i, j , (68)

with ai, j the entries of A ∈ R
k1×k2 . The choice of the norm is crucial for the following results

to hold (with e.g. the Euclidean norm, this result is not valid).
We denote

ΣH ,Hr = EHt H
′
r ,t , ΣH = EHt H

′
t , ΣHr = EHr ,t H

′
r ,t

where Ht := Ht (θ0) is definied in (7) and Hr ,t = (H
′
t−1, . . . , H

′
t−r )

′
. For any n ≥ 1, we

have

Î SPn = Φ̂−1
r (1)Σ̂ûr Φ̂

′−1
r (1)

=
(
Φ̂−1
r (1) − Φ−1(1)

)
Σ̂ûr Φ̂

′−1
r (1) + Φ−1(1)

(
Σ̂ûr − Σu

)
Φ̂

′−1
r (1)

+ Φ−1(1)Σu

(
Φ̂

′−1
r (1) − Φ

′−1(1)
)

+ Φ−1(1)ΣuΦ
′−1(1).

We then obtain

∥
∥
∥ Î SPn − I (θ0)

∥
∥
∥ ≤

∥
∥
∥Φ̂−1

r (1) − Φ−1(1)
∥
∥
∥
∥
∥
∥Σ̂ûr

∥
∥
∥
∥
∥
∥Φ̂

′−1
r (1)

∥
∥
∥+ ∥

∥Φ−1(1)
∥
∥
∥
∥
∥Σ̂ûr − Σu

∥
∥
∥
∥
∥
∥Φ̂

′−1
r (1)

∥
∥
∥

+ ∥
∥Φ−1(1)

∥
∥ ‖Σu‖

∥
∥
∥Φ̂

′−1
r (1) − Φ

′−1(1)
∥
∥
∥

≤
∥
∥
∥Φ̂−1

r (1) − Φ−1(1)
∥
∥
∥
(∥
∥
∥Σ̂ûr

∥
∥
∥
∥
∥
∥Φ̂

′−1
r (1)

∥
∥
∥+ ∥

∥Φ−1(1)
∥
∥ ‖Σu‖

)

+
∥
∥
∥Σ̂ûr − Σu

∥
∥
∥
∥
∥
∥Φ̂

′−1
r (1)

∥
∥
∥
∥
∥Φ−1(1)

∥
∥

≤
∥
∥
∥Φ̂−1

r (1)
∥
∥
∥
∥
∥
∥Φ(1) − Φ̂r (1)

∥
∥
∥
∥
∥Φ−1(1)

∥
∥
(∥
∥
∥Σ̂ûr

∥
∥
∥
∥
∥
∥Φ̂

′−1
r (1)

∥
∥
∥+ ∥

∥Φ−1(1)
∥
∥ ‖Σu‖

)

+
∥
∥
∥Σ̂ûr − Σu

∥
∥
∥
∥
∥
∥Φ̂

′−1
r (1)

∥
∥
∥
∥
∥Φ−1(1)

∥
∥ . (69)

In view of (69), to prove the convergence in probability of Î SPn to I (θ0), it suffices to show
that Φ̂r (1) → Φ(1) and Σ̂ûr → Σu in probability. Let the r × 1 vector �r = (1, . . . , 1)

′

and the r(p + q + 1) × (p + q + 1) matrix Er = Ip+q+1 ⊗ �r , where ⊗ denotes the matrix
Kronecker product and Im the m × m identity matrix. Write Φ∗

r = (Φ1, . . . , Φr ) where the

123



590 Statistical Inference for Stochastic Processes (2021) 24:549–608

Φi ’s are defined by (8). We have

∥
∥
∥Φ̂r (1) − Φ(1)

∥
∥
∥ =

∥
∥
∥
∥
∥

r∑

k=1

Φ̂r ,k −
r∑

k=1

Φr ,k +
r∑

k=1

Φr ,k −
∞∑

k=1

Φk

∥
∥
∥
∥
∥

≤
∥
∥
∥
∥
∥

r∑

k=1

(
Φ̂r ,k − Φr ,k

)
∥
∥
∥
∥
∥

+
∥
∥
∥
∥
∥

r∑

k=1

(
Φr ,k − Φk

)
∥
∥
∥
∥
∥

+
∥
∥
∥
∥
∥

∞∑

k=r+1

Φk

∥
∥
∥
∥
∥

≤
∥
∥
∥
(
Φ̂r − Φr

)
Er

∥
∥
∥+ ∥

∥
(
Φ∗

r − Φr

)
Er
∥
∥+

∥
∥
∥
∥
∥

∞∑

k=r+1

Φk

∥
∥
∥
∥
∥

≤ √
p + q + 1

√
r
(∥
∥
∥Φ̂r − Φr

∥
∥
∥+ ∥

∥Φ∗
r − Φr

∥
∥
)

+
∥
∥
∥
∥
∥

∞∑

k=r+1

Φk

∥
∥
∥
∥
∥

. (70)

Under the assumptions of Theorem 5 we have
∥
∥
∥
∥
∥

∞∑

k=r+1

Φk

∥
∥
∥
∥
∥

≤
∞∑

k=r+1

‖Φk‖ −−−→
n→∞ 0.

Therefore it is enough to show that
√
r‖Φ̂r −Φr‖ and

√
r‖Φ∗

r −Φr‖ converge in probability
towards 0 in order to obtain the convergence in probability of Φ̂r (1) towards Φ(1). From (9)
we have

Ht (θ0) = Φr Hr ,t (θ0) + ur ,t , (71)

and thus

Σur = Var(ur ,t ) = E

[
ur ,t

(
Ht (θ0) − Φr Hr ,t (θ0)

)′]
.

The vector ur ,t is orthogonal to Hr ,t (θ0). It follows that

Var(ur ,t ) = E

[(
Ht (θ0) − Φr Hr ,t (θ0)

)
H

′
t (θ0)

]

= ΣH − ΦrΣ
′
H ,Hr

.

Consequently the least squares estimator of Σur can be rewritten in the form:

Σ̂ûr = Σ̂Ĥ − Φ̂r Σ̂
′
Ĥ ,Ĥr

, (72)

where

Σ̂Ĥ = 1

n

n∑

t=1

Ĥt Ĥ
′
t . (73)

Similar arguments combined with (8) yield

Σu = E

[
utu

′
t

]
= E

[
ut H

′
t (θ0)

]

= E

[
Ht (θ0)H

′
t (θ0)

]
−

r∑

k=1

ΦkE

[
Ht−k(θ0)H

′
t (θ0)

]
−

∞∑

k=r+1

ΦkE

[
Ht−k(θ0)H

′
t (θ0)

]

= ΣH − Φ∗
rΣ

′
H ,Hr

−
∞∑

k=r+1

ΦkE

[
Ht−k(θ0)H

′
t (θ0)

]
.
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By (72) we obtain

∥
∥
∥Σ̂ûr − Σu

∥
∥
∥ =

∥
∥
∥
∥
∥
Σ̂Ĥ − Φ̂r Σ̂

′
Ĥ ,Ĥr

− ΣH + Φ∗
rΣ

′
H ,Hr

+
∞∑

k=r+1

ΦkE

[
Ht−k(θ0)H

′
t (θ0)

]
∥
∥
∥
∥
∥

=
∥
∥
∥Σ̂Ĥ − ΣH −

(
Φ̂r − Φ∗

r

)
Σ̂

′
Ĥ ,Ĥr

− Φ∗
r

(
Σ̂

′
Ĥ ,Ĥr

− Σ
′
H ,Hr

)

+
∞∑

k=r+1

ΦkE

[
Ht−k(θ0)H

′
t (θ0)

]
∥
∥
∥
∥
∥

≤
∥
∥
∥Σ̂Ĥ − ΣH

∥
∥
∥+

∥
∥
∥
(
Φ̂r − Φ∗

r

) (
Σ̂

′
Ĥ ,Ĥr

− Σ
′
H ,Hr

)∥
∥
∥+

∥
∥
∥
(
Φ̂r − Φ∗

r

)
Σ

′
H ,Hr

∥
∥
∥

+
∥
∥
∥Φ∗

r

(
Σ̂

′
Ĥ ,Ĥr

− Σ
′
H ,Hr

)∥
∥
∥+

∥
∥
∥
∥
∥

∞∑

k=r+1

ΦkE

[
Ht−k(θ0)H

′
t (θ0)

]
∥
∥
∥
∥
∥

. (74)

From Lemma 18 and under Assumptions of Theorem 5 we deduce that
∥
∥
∥
∥
∥

∞∑

k=r+1

ΦkE

[
Ht−k(θ0)H

′
t (θ0)

]
∥
∥
∥
∥
∥

≤
∞∑

k=r+1

‖Φk‖
∥
∥
∥E
[
Ht−k(θ0)H

′
t (θ0)

]∥
∥
∥

≤ K
∞∑

k=r+1

1

k2
−−−→
n→∞ 0.

Observe also that
∥
∥Φ∗

r

∥
∥2 ≤

∑

k≥1

Tr
(
ΦkΦ

′
k

)
< ∞.

Therefore the convergence Σ̂ûr toΣu will be a consequence of the four following properties:

• ‖Σ̂Ĥ − ΣH‖ = oP(1),

• P − limn→∞ ‖Φ̂r − Φ∗
r ‖ = 0,

• P − limn→∞ ‖Σ̂ ′
Ĥ ,Ĥr

− Σ
′
H ,Hr

‖ = 0 and

• ‖Σ ′
H ,Hr

‖ = O(1).

The above properties will be proved thanks to several lemmas that are stated and proved
hereafter. This ends the proof of Theorem 5. For this, consider the following lemmas:

Lemma 20 Under the assumptions of Theorem 5, we have

sup
r≥1

max
{∥
∥ΣH ,Hr

∥
∥ ,
∥
∥ΣHr

∥
∥ ,

∥
∥
∥Σ−1

Hr

∥
∥
∥
}

< ∞.

Proof See Lemma 1 in the supplementary material of Boubacar Mainassara et al. (2012). ��

Lemma 21 Under the assumptions of Theorem 5 there exists a finite positive constant K such
that, for 1 ≤ r1, r2 ≤ r and 1 ≤ m1,m2 ≤ p + q + 1 we have

sup
t∈Z

∞∑

h=−∞

∣
∣Cov

{
Ht−r1,m1(θ0)Ht−r2,m2(θ0), Ht−r1−h,m1(θ0)Ht−r2−h,m2(θ0)

}∣
∣ < K .
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Proof We denote in the sequel by
.
λ j,k the coefficient

.
λ j,k(θ0) defined in (30).

Using the fact that the process (Ht (θ0))t∈Z is centered and taking into consideration the
strict stationarity of (εt )t∈Z we obtain that for any t ∈ Z

∞∑

h=−∞

∣
∣
∣Cov

(
Ht−r1,m1(θ0)Ht−r2,m2(θ0), Ht−r1−h,m1(θ0)Ht−r2−h,m2(θ0)

)∣∣
∣

=
∞∑

h=−∞

∣
∣
∣E
[
Ht−r1,m1(θ0)Ht−r2,m2(θ0)Ht−r1−h,m1(θ0)Ht−r2−h,m2(θ0)

]

− E
[
Ht−r1,m1(θ0)Ht−r2,m2(θ0)

]
E
[
Ht−r1−h,m1(θ0)Ht−r2−h,m2(θ0)

] ∣∣
∣

≤
∞∑

h=−∞

∣
∣
∣cum

(
Ht−r1,m1(θ0), Ht−r2,m2(θ0), Ht−r1−h,m1(θ0), Ht−r2−h,m2(θ0)

)∣∣
∣

+
∞∑

h=−∞

∣
∣E
[
Ht−r1,m1(θ0)Ht−r1−h,m1(θ0)

]∣
∣
∣
∣E
[
Ht−r2,m2(θ0)Ht−r2−h,m2(θ0)

]∣
∣

+
∞∑

h=−∞

∣
∣E
[
Ht−r1,m1(θ0)Ht−r2−h,m2(θ0)

]∣
∣
∣
∣E
[
Ht−r2,m2(θ0)Ht−r1−h,m1(θ0)

]∣
∣

≤
∞∑

h=−∞

∑

i1, j1,k1,�1≥1

∣
∣
∣
.
λi1,m1

.
λ j1,m2

.
λk1,m1

.
λ�1,m2

∣
∣
∣

|cum (
ε0ε−i1 , εr1−r2εr1−r2− j1 , ε−hε−h−k1 , εr1−r2−hεr1−r2−h−�1

)∣
∣

+ T (1)
r1,m1,r2,m2

+ T (2)
r1,m1,r2,m2

,

where

T (1)
r1,m1,r2,m2

=
∞∑

h=−∞

∣
∣E
[
Ht−r1,m1(θ0)Ht−r1−h,m1(θ0)

]∣
∣
∣
∣E
[
Ht−r2,m2(θ0)Ht−r2−h,m2(θ0)

]∣
∣

and

T (2)
r1,m1,r2,m2

=
∞∑

h=−∞

∣
∣E
[
Ht−r1,m1(θ0)Ht−r2−h,m2(θ0)

]∣
∣
∣
∣E
[
Ht−r2,m2(θ0)Ht−r1−h,m1(θ0)

]∣
∣ .

Thanks to Lemma 14 one may use the product theorem for the joint cumulants ( Brillinger
(1981)) as in the proof of Lemma A.3. in Shao (2011) in order to obtain that

∞∑

h=−∞

∑

i1, j1,k1,�1≥1

∣
∣
∣
.
λi1,m1

.
λ j1,m2

.
λk1,m1

.
λ�1,m2

∣
∣
∣

∣
∣cum

(
ε0ε−i1 , εr1−r2εr1−r2− j1 , ε−hε−h−k1 , εr1−r2−hεr1−r2−h−�1

)∣
∣

< ∞

where we have used the absolute summability of the k-th (k = 2, . . . , 8) cumulants assumed
in (A4’) with τ = 8.
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Observe now that

T (1)
r1,m1,r2,m2

=
∞∑

h=−∞

∣
∣E
[
Ht−r1,m1 (θ0)Ht−r1−h,m1 (θ0)

]∣
∣
∣
∣E
[
Ht−r2,m2 (θ0)Ht−r2−h,m2 (θ0)

]∣
∣

≤ sup
h∈Z

∣
∣E
[
Ht−r1,m1 (θ0)Ht−r1−h,m1 (θ0)

]∣
∣

∞∑

h=−∞

∣
∣E
[
Ht−r2,m2 (θ0)Ht−r2−h,m2 (θ0)

]∣
∣ .

For any h ∈ Z, from (29) we have

∣
∣E
[
Ht−r1,m1 (θ0)Ht−r1−h,m1 (θ0)

]∣
∣ ≤

∑

i, j≥1

∣
∣
∣
.
λi,m1

∣
∣
∣
∣
∣
∣
.
λ j,m1

∣
∣
∣
∣
∣cum

(
ε0, ε−i , ε−h, ε−h− j

)∣
∣

+
∑

i, j≥1

∣
∣
∣
.
λi,m1

∣
∣
∣
∣
∣
∣
.
λ j,m1

∣
∣
∣

{
∣
∣E
[
ε0ε−i

]
E
[
ε−hε−h− j

]∣
∣

+ ∣
∣E
[
ε0ε−h

]
E
[
ε−iε−h− j

]∣
∣+ ∣

∣E
[
ε0ε−h− j

]
E
[
ε−iε−h

]∣
∣
}

≤
∑

i, j≥1

∣
∣cum

(
ε0, ε−i , ε−h, ε−h− j

)∣
∣+ σ 4

ε

∑

i≥1

∣
∣
∣
.
λi,m1

∣
∣
∣
2
.

Under Assumption (A4’) with τ = 4 and in view of Lemma 14 we may write that

sup
h∈Z

∣
∣E
[
Ht−r1,m1(θ0)Ht−r1−h,m1(θ0)

]∣
∣ ≤ sup

h∈Z

∑

i, j≥1

∣
∣cum

(
ε0, ε−i , ε−h, ε−h− j

)∣
∣

+ σ 4
ε

∑

i≥1

∣
∣
∣
.
λi,m1

∣
∣
∣
2

< ∞.

Similarly, we obtain

∞∑

h=−∞

∣
∣E
[
Ht−r2,m2(θ0)Ht−r2−h,m2(θ0)

]∣
∣ ≤

∞∑

h=−∞

∑

i, j≥1

∣
∣cum

(
ε0, ε−i , ε−h, ε−h− j

)∣
∣

+ σ 4
ε

∑

i≥1

∣
∣
∣
.
λi,m1

∣
∣
∣
2

< ∞.

Consequently T (1)
r1,m1,r2,m2

< ∞ and the same approach yields that T (2)
r1,m1,r2,m2

< ∞ and the
lemma is proved. ��
Let Σ̂Hr

, Σ̂H and Σ̂H ,Hr
be the matrices obtained by replacing Ĥt by Ht (θ0) in Σ̂Ĥr

, Σ̂Ĥ

and Σ̂Ĥ ,Ĥr
.

Lemma 22 Under the assumptions of Theorem 5,
√
r‖Σ̂Hr

− ΣHr
‖, √r‖Σ̂H ,Hr

− ΣH ,Hr
‖

and
√
r‖Σ̂H − ΣH‖ tend to zero in probability as n → ∞ when r = o(n1/3).

Proof For 1 ≤ m1,m2 ≤ p + q + 1 and 1 ≤ r1, r2 ≤ r , the ({(r1 − 1)(p + q + 1) +
m1}, {(r2 − 1)(p + q + 1) + m2})−th element of Σ̂Hr

is given by:

1

n

n∑

t=1

Ht−r1,m1(θ0)Ht−r2,m2(θ0).
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For all β > 0, we use (68) and we obtain

P

(√
r
∥
∥
∥Σ̂Hr

− ΣHr

∥
∥
∥ ≥ β

)
≤ r

β2 E

∥
∥
∥Σ̂Hr

− ΣHr

∥
∥
∥
2

≤ r

β2 E

∥
∥
∥
∥
∥

1

n

n∑

t=1

Hr ,t H
′
r ,t − E

[
Hr ,t H

′
r ,t

]
∥
∥
∥
∥
∥

2

≤ r

β2

r∑

r1=1

r∑

r2=1

p+q+1∑

m1=1

p+q+1∑

m2=1

E

(
1

n

n∑

t=1

Ht−r1,m1 (θ0)Ht−r2,m2 (θ0)

− E
[
Ht−r1,m1 (θ0)Ht−r2,m2 (θ0)

]
)2

.

The stationarity of the process
(
Ht−r1,m1(θ0)Ht−r2,m2(θ0)

)
t∈Z and Lemma 21 imply

P

(√
r
∥
∥
∥Σ̂Hr

− ΣHr

∥
∥
∥ ≥ β

)

≤ r

β2

r∑

r1=1

r∑

r2=1

p+q+1∑

m1=1

p+q+1∑

m2=1

Var

(
1

n

n∑

t=1

Ht−r1,m1(θ0)Ht−r2,m2(θ0)

)

≤ r

(nβ)2

r∑

r1=1

r∑

r2=1

p+q+1∑

m1=1

p+q+1∑

m2=1

n∑

t=1

n∑

s=1

Cov
(
Ht−r1,m1(θ0)Ht−r2,m2(θ0), Hs−r1,m1(θ0)Hs−r2,m2(θ0)

)

≤ r

(nβ)2

r∑

r1=1

r∑

r2=1

p+q+1∑

m1=1

p+q+1∑

m2=1

n−1∑

h=1−n

(n − |h|)

Cov
(
Ht−r1,m1(θ0)Ht−r2,m2(θ0), Ht−h−r1,m1(θ0)Ht−h−r2,m2(θ0)

)

≤ r

nβ2

r∑

r1=1

r∑

r2=1

p+q+1∑

m1=1

p+q+1∑

m2=1

sup
t∈Z

∞∑

h=−∞
∣
∣Cov

(
Ht−r1,m1(θ0)Ht−r2,m2(θ0), Ht−h−r1,m1(θ0)Ht−h−r2,m2(θ0)

)∣
∣

≤ C(p + q + 1)2r3

nβ2 .

Consequently we have

E

[

r
∥
∥
∥Σ̂H − ΣH

∥
∥
∥
2
]

≤ E

[

r
∥
∥
∥Σ̂H ,Hr

− ΣH ,Hr

∥
∥
∥
2
]

≤ E

[

r
∥
∥
∥Σ̂Hr

− ΣHr

∥
∥
∥
2
]

≤ C(p + q + 1)2r3

n
−−−→
n→∞ 0

when r = o(n1/3). The conclusion follows. ��
We show in the following lemma that the previous lemma remains valid when we replace

Ht (θ0) by Ĥt .
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Lemma 23 Under the assumptions of Theorem 5,
√
r‖Σ̂Ĥr

− ΣHr
‖, √r‖Σ̂Ĥ ,Ĥr

− ΣH ,Hr
‖

and
√
r‖Σ̂Ĥ − ΣH‖ tend to zero in probability as n → ∞ when r = o(n(1−2(d0−d1))/5).

Proof As mentioned in the end of the proof of the previous lemma, we only have to deal with
the term

√
r‖Σ̂Ĥr

− ΣHr
‖.

We denote Σ̂Hr,n
the matrix obtained by replacing ε̃t (θ̂n) by εt (θ̂n) in Σ̂Ĥr

. We have

√
r
∥
∥
∥Σ̂Ĥr

− ΣHr

∥
∥
∥ ≤ √

r
∥
∥
∥Σ̂Ĥr

− Σ̂Hr,n

∥
∥
∥+ √

r
∥
∥
∥Σ̂Hr,n

− Σ̂Hr

∥
∥
∥+ √

r
∥
∥
∥Σ̂Hr

− ΣHr

∥
∥
∥ .

ByLemma 22, the term
√
r‖Σ̂Hr

−ΣHr
‖ converges in probability. The lemmawill be proved

as soon as we show that

√
r
∥
∥
∥Σ̂Ĥr

− Σ̂Hr,n

∥
∥
∥ = oP(1) and (75)

√
r
∥
∥
∥Σ̂Hr,n

− Σ̂Hr

∥
∥
∥ = oP(1), (76)

when r = o(n(1−2(d0−d1))/5). This is done in two separate steps.
Step 1: proof of (75). For all β > 0, we have

P

(√
r
∥
∥
∥Σ̂Ĥr

− Σ̂Hr,n

∥
∥
∥ ≥ β

)
≤

√
r

β
E

∥
∥
∥Σ̂Ĥr

− Σ̂Hr,n

∥
∥
∥

≤
√
r

β
E

∥
∥
∥
∥
∥

1

n

n∑

t=1

Ĥr ,t Ĥ
′
r ,t − 1

n

n∑

t=1

H (n)
r ,t H

(n)′
r ,t

∥
∥
∥
∥
∥

≤ K
√
r

β

r∑

r1=1

r∑

r2=1

p+q+1∑

m1=1

p+q+1∑

m2=1

E

∣
∣
∣
∣
∣

1

n

n∑

t=1

Ĥt−r1,m1 Ĥt−r2,m2

−1

n

n∑

t=1

H (n)
t−r1,m1

H (n)
t−r2,m2

∣
∣
∣
∣
∣
,

where

H (n)
t,m = 2εt (θ̂n)

∂

∂θm
εt (θ̂n) and H (n)

r ,t =
(
H (n)′
t−1 , . . . , H

(n)′
t−r

)′
.

It is follow that

P

(√
r
∥
∥
∥Σ̂Ĥr

− Σ̂Hr,n

∥
∥
∥ ≥ β

)

≤ 4K
√
r

nβ

r∑

r1=1

r∑

r2=1

p+q+1∑

m1=1

p+q+1∑

m2=1

E

∣
∣
∣
∣

n∑

t=1

ε̃t−r1(θ̂n)
∂

∂θm1

ε̃t−r1(θ̂n)ε̃t−r2(θ̂n)
∂

∂θm2

ε̃t−r2(θ̂n)

− εt−r1(θ̂n)
∂

∂θm1

εt−r1(θ̂n)εt−r2(θ̂n)
∂

∂θm2

εt−r2(θ̂n)

∣
∣
∣
∣. (77)
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Observe now that

ε̃t−r1 (θ̂n)
∂

∂θm1

ε̃t−r1 (θ̂n)ε̃t−r2 (θ̂n)
∂

∂θm2

ε̃t−r2 (θ̂n) − εt−r1 (θ̂n)
∂

∂θm1

εt−r1 (θ̂n)εt−r2 (θ̂n)
∂

∂θm2

εt−r2 (θ̂n)

=
(
ε̃t−r1 (θ̂n) − εt−r1 (θ̂n)

) ∂

∂θm1

ε̃t−r1 (θ̂n)ε̃t−r2 (θ̂n)
∂

∂θm2

ε̃t−r2 (θ̂n)

+ εt−r1 (θ̂n)

(
∂

∂θm1

ε̃t−r1 (θ̂n) − ∂

∂θm1

εt−r1 (θ̂n)

)

ε̃t−r2 (θ̂n)
∂

∂θm2

ε̃t−r2 (θ̂n)

+ εt−r1 (θ̂n)
∂

∂θm1

εt−r1 (θ̂n)
(
ε̃t−r2 (θ̂n) − εt−r2 (θ̂n)

) ∂

∂θm2

ε̃t−r2 (θ̂n)

+ εt−r1 (θ̂n)
∂

∂θm1

εt−r1 (θ̂n)εt−r2 (θ̂n)

(
∂

∂θm2

ε̃t−r2 (θ̂n) − ∂

∂θm2

εt−r2 (θ̂n)

)

.

We replace the above identity in (77) and we obtain by Hölder’s inequality that

P

(√
r
∥
∥
∥Σ̂Ĥr

− Σ̂Hr,n

∥
∥
∥ ≥ β

)
≤ 4K

√
r

nβ

r∑

r1=1

r∑

r2=1

p+q+1∑

m1=1

p+q+1∑

m2=1

(
Tn,1 + Tn,2 + Tn,3 + Tn,4

)

(78)

where

Tn,1 =
n∑

t=1

∥
∥
∥ε̃t−r1 (θ̂n) − εt−r1 (θ̂n)

∥
∥
∥
L2

∥
∥
∥
∥

∂

∂θm1

ε̃t−r1 (θ̂n)

∥
∥
∥
∥
L6

∥
∥
∥ε̃t−r2 (θ̂n)

∥
∥
∥
L6

∥
∥
∥
∥

∂

∂θm2

ε̃t−r2 (θ̂n)

∥
∥
∥
∥
L6

,

Tn,2 =
n∑

t=1

∥
∥
∥εt−r1 (θ̂n)

∥
∥
∥
L6

∥
∥
∥
∥

∂

∂θm1

ε̃t−r1 (θ̂n) − ∂

∂θm1

εt−r1 (θ̂n)

∥
∥
∥
∥
L2

∥
∥
∥ε̃t−r2 (θ̂n)

∥
∥
∥
L6

∥
∥
∥
∥

∂

∂θm2

ε̃t−r2 (θ̂n)

∥
∥
∥
∥
L6

,

Tn,3 =
n∑

t=1

∥
∥
∥εt−r1 (θ̂n)

∥
∥
∥
L6

∥
∥
∥
∥

∂

∂θm1

εt−r1 (θ̂n)

∥
∥
∥
∥
L6

∥
∥
∥ε̃t−r2 (θ̂n) − εt−r2 (θ̂n)

∥
∥
∥
L2

∥
∥
∥
∥

∂

∂θm2

ε̃t−r2 (θ̂n)

∥
∥
∥
∥
L6

,

Tn,4 =
n∑

t=1

∥
∥
∥εt−r1 (θ̂n)

∥
∥
∥
L6

∥
∥
∥
∥

∂

∂θm1

εt−r1 (θ̂n)

∥
∥
∥
∥
L6

∥
∥
∥εt−r2 (θ̂n)

∥
∥
∥
L6

∥
∥
∥
∥

∂

∂θm2

ε̃t−r2 (θ̂n) − ∂

∂θm2

εt−r2 (θ̂n)

∥
∥
∥
∥
L2

.

For all θ ∈ Θδ and t ∈ Z, in view of (29) and Remark 12, we have

∥
∥
∥ε̃t (θ̂n) − εt (θ̂n)

∥
∥
∥
L2

=
⎛

⎜
⎝E

⎡

⎢
⎣

⎧
⎨

⎩

∑

j≥0

(
λtj (θ̂n) − λ j (θ̂n)

)
εt− j

⎫
⎬

⎭

2
⎤

⎥
⎦

⎞

⎟
⎠

1/2

≤ sup
θ∈Θδ

⎛

⎜
⎝E

⎡

⎢
⎣

⎧
⎨

⎩

∑

j≥0

(
λtj (θ) − λ j (θ)

)
εt− j

⎫
⎬

⎭

2
⎤

⎥
⎦

⎞

⎟
⎠

1/2

≤ σε sup
θ∈Θδ

∥
∥λ(θ) − λt (θ)

∥
∥

�2

≤ K
1

t1/2+(d1−d0)
.

It is not difficult to prove that ε̃t (θ) and ∂ε̃t (θ)/∂θ belong to L
6. The fact that εt (θ) and

∂εt (θ)/∂θ have moment of order 6 can be proved using the same method than in Lemma 21
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using the absolute summability of the k-th (k = 2, . . . , 8) cumulants assumed in (A4’) with
τ = 8. We deduce that

Tn,1 ≤ K
n∑

t=1

∥
∥
∥ε̃t−r1(θ̂n) − εt−r1(θ̂n)

∥
∥
∥
L2

≤ K
0∑

t=1−r

∥
∥
∥εt (θ̂n)

∥
∥
∥
L2

+ K
n∑

t=1

∥
∥
∥ε̃t (θ̂n) − εt (θ̂n)

∥
∥
∥
L2

≤ K

(

r +
n∑

t=1

1

t1/2+(d1−d0)

)

.

Then we obtain

Tn,1 ≤ K
(
r + n1/2−(d1−d0)

)
. (79)

The same calculations hold for the terms Tn,2, Tn,3 and Tn,4. Thus

Tn,1 + Tn,2 + Tn,3 + Tn,4 ≤ K
(
r + n1/2−(d1−d0)

)
(80)

and reporting this estimation in (78) implies that

P

(√
r
∥
∥
∥Σ̂Ĥr

− Σ̂Hr,n

∥
∥
∥ ≥ β

)
≤ Kr5/2(p + q + 1)2

nβ

(
r + n1/2−(d1−d0)

)

≤ K

(
r7/2

n
+ r5/2

n1/2+(d1−d0)

)

.

Since 2/7 > (1+ 2(d1 − d0))/5, the sequence
√
r
∥
∥
∥Σ̂Ĥr

− Σ̂Hr,n

∥
∥
∥ converges in probability

to 0 as n → ∞ when r = r(n) = o(n(1−2(d0−d1))/5).
Step 2: proof of (76). First we follow the same approach than in the previous step. We have

∥
∥
∥Σ̂Hr ,n

− Σ̂Hr

∥
∥
∥
2 =

∥
∥
∥
∥
∥

1

n

n∑

t=1

H (n)
r ,t H

(n)′
r ,t − 1

n

n∑

t=1

Hr ,t H
′
r ,t

∥
∥
∥
∥
∥

2

≤
r∑

r1=1

r∑

r2=1

p+q+1∑

m1=1

p+q+1∑

m2=1

(
1

n

n∑

t=1

H (n)
t−r1,m1

H (n)
t−r2,m2

− 1

n

n∑

t=1

Ht−r1,m1Ht−r2,m2

)2

≤ 16
r∑

r1=1

r∑

r2=1

p+q+1∑

m1=1

p+q+1∑

m2=1

(
1

n

n∑

t=1

εt−r1 (θ̂n)
∂

∂θm1
εt−r1 (θ̂n)εt−r2 (θ̂n)

∂

∂θm2
εt−r2 (θ̂n)

−εt−r1 (θ0)
∂

∂θm1
εt−r1 (θ0)εt−r2 (θ0)

∂

∂θm2
εt−r2 (θ0)

)2
.
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Since

εt−r1(θ̂n)
∂

∂θm1

εt−r1(θ̂n)εt−r2(θ̂n)
∂

∂θm2

εt−r2(θ̂n) − εt−r1(θ0)
∂

∂θm1

εt−r1(θ0)εt−r2(θ0)

∂

∂θm2

εt−r2(θ0)

=
(
εt−r1(θ̂n) − εt−r1(θ0)

) ∂

∂θm1

εt−r1(θ̂n)εt−r2(θ̂n)
∂

∂θm2

εt−r2(θ̂n)

+ εt−r1(θ0)

(
∂

∂θm1

εt−r1(θ̂n) − ∂

∂θm1

εt−r1(θ0)

)

εt−r2(θ̂n)
∂

∂θm2

εt−r2(θ̂n)

+ εt−r1(θ0)
∂

∂θm1

εt−r1(θ0)
(
εt−r2(θ̂n) − εt−r2(θ0)

) ∂

∂θm2

εt−r2(θ̂n)

+ εt−r1(θ0)
∂

∂θm1

εt−r1(θ0)εt−r2(θ0)

(
∂

∂θm2

εt−r2(θ̂n) − ∂

∂θm2

εt−r2(θ0)

)

,

one has

∥
∥
∥Σ̂Hr,n

− Σ̂Hr

∥
∥
∥
2 ≤ 16

r∑

r1=1

r∑

r2=1

p+q+1∑

m1=1

p+q+1∑

m2=1

(
Un,1 +Un,2 +Un,3 +Un,4

)2 (81)

where

Un,1 = 1

n

n∑

t=1

∣
∣
∣εt−r1(θ̂n) − εt−r1(θ0)

∣
∣
∣

∣
∣
∣
∣

∂

∂θm1

εt−r1(θ̂n)

∣
∣
∣
∣

∣
∣
∣εt−r2(θ̂n)

∣
∣
∣

∣
∣
∣
∣

∂

∂θm2

εt−r2(θ̂n)

∣
∣
∣
∣ ,

Un,2 = 1

n

n∑

t=1

∣
∣εt−r1(θ0)

∣
∣
∣
∣
∣
∣

∂

∂θm1

εt−r1(θ̂n) − ∂

∂θm1

εt−r1(θ0)

∣
∣
∣
∣

∣
∣
∣εt−r2(θ̂n)

∣
∣
∣

∣
∣
∣
∣

∂

∂θm2

εt−r2(θ̂n)

∣
∣
∣
∣ ,

Un,3 = 1

n

n∑

t=1

∣
∣εt−r1(θ0)

∣
∣
∣
∣
∣
∣

∂

∂θm1

εt−r1(θ0)

∣
∣
∣
∣

∣
∣
∣εt−r2(θ̂n) − εt−r2(θ0)

∣
∣
∣

∣
∣
∣
∣

∂

∂θm2

εt−r2(θ̂n)

∣
∣
∣
∣

Un,4 = 1

n

n∑

t=1

∣
∣εt−r1(θ0)

∣
∣
∣
∣
∣
∣

∂

∂θm1

εt−r1(θ0)

∣
∣
∣
∣
∣
∣εt−r2(θ0)

∣
∣
∣
∣
∣
∣

∂

∂θm2

εt−r2(θ̂n) − ∂

∂θm2

εt−r2(θ0)

∣
∣
∣
∣ .

Taylor expansions around θ0 yield that there exists θ and θ between θ̂n and θ0 such that

∣
∣
∣εt (θ̂n) − εt (θ0)

∣
∣
∣ ≤ wt

∥
∥
∥θ̂n − θ0

∥
∥
∥

and
∣
∣
∣
∣

∂

∂θm
εt (θ̂n) − ∂

∂θm
εt (θ0)

∣
∣
∣
∣ ≤ qt

∥
∥
∥θ̂n − θ0

∥
∥
∥

with wt =
∥
∥
∥∂εt (θ)/∂θ

′∥∥
∥ and qt =

∥
∥
∥∂2εt (θ)/∂θ

′
∂θm

∥
∥
∥. Using the fact that

E

∣
∣
∣
∣wt−r1

∂

∂θm1

εt−r1(θ̂n)εt−r2(θ̂n)
∂

∂θm2

εt−r2(θ̂n)

∣
∣
∣
∣ < ∞
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and that (
√
n(θ̂n − θ0))n is a tight sequence (which implies that ‖θ̂n − θ0‖ = OP(1/

√
n)),

we deduce that

Un,1 = OP

(
1√
n

)

.

The same arguments are valid for Un,2, Un,3 and Un,4. Consequently Un,1 +Un,2 +Un,3 +
Un,4 = OP(1/

√
n) and (81) yields

∥
∥
∥Σ̂Hr,n

− Σ̂Hr

∥
∥
∥
2 = OP

(
r2

n

)

.

When r = o(n1/3) we finally obtain
√
r‖Σ̂Hr,n

− Σ̂Hr
‖ = oP(1).

��

Lemma 24 Under the assumptions of Theorem 5, we have

√
r
∥
∥Φ∗

r − Φr

∥
∥ = oP(1) as r → ∞.

Proof Recall that by (8) and (71) we have

Ht (θ0) = Φr Hr ,t + ur ,t = Φ∗
r Hr ,t +

∞∑

k=r+1

Φk Ht−k(θ0) + ut := Φ∗
r Hr ,t + u∗

r ,t .

By the orthogonality conditions in (8) and (71), one has

Σu∗
r ,Hr

:= E

[
u∗
r ,t H

′
r ,t

]
= E

[(
Ht (θ0) − Φ∗

r Hr ,t

)
H

′
r ,t

]

= E

[(
Φr Hr ,t + ur ,t − Φ∗

r Hr ,t

)
H

′
r ,t

]
= (

Φr − Φ∗
r

)
ΣHr

,

and consequently

Φ∗
r − Φr = −Σu∗

r ,Hr
Σ−1

Hr
. (82)
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Using Lemmas 20 and 21, (82) implies that

P
(√

r
∥
∥Φ∗

r − Φr

∥
∥ ≥ β

) ≤
√
r

β

∥
∥Σu∗

r ,Hr

∥
∥
∥
∥
∥Σ−1

Hr

∥
∥
∥

≤ K
√
r

β

∥
∥
∥
∥
∥
∥
E

⎡

⎣

⎛

⎝
∑

k≥r+1

Φk Ht−k(θ0) + ut

⎞

⎠ H
′
r ,t

⎤

⎦

∥
∥
∥
∥
∥
∥

≤ K
√
r

β

∑

k≥r+1

‖Φk‖
∥
∥
∥E
[
Ht−k(θ0)H

′
r ,t

]∥
∥
∥

≤ K
√
r

β

∑

�≥1

‖Φ�+r‖
∥
∥
∥E
[
Ht−�−r (θ0)

(
H

′
t−1(θ0), . . . , H

′
t−r (θ0)

)]∥
∥
∥

≤ K
√
r

β

∑

�≥1

‖Φ�+r‖
⎛

⎝
p+q+1∑

j=1

p+q+1∑

k=1

r∑

r1=1

∣
∣E
[
Ht−r−�, j (θ0)Ht−r1,k(θ0)

]∣
∣2

⎞

⎠

1/2

≤ K
√
r

β

∑

�≥1

‖Φ�+r‖
⎛

⎝
p+q+1∑

j=1

p+q+1∑

k=1

r∑

r1=1

E

[
H2
t−r−�, j (θ0)

]
E
[
H2
t−r1,k(θ0)

]
⎞

⎠

1/2

≤ K (p + q + 1)r

β

∑

�≥1

‖Φ�+r‖ .

Under Assumptions of Theorem 5, r
∑

�≥1 ‖Φ�+r‖ = o(1) as r → ∞. The proof of the
lemma follows. ��

Lemma 25 Under the assumptions of Theorem 5, we have

√
r

∥
∥
∥
∥Σ̂

−1
Ĥr

− Σ−1
Hr

∥
∥
∥
∥ = oP(1)

as n → ∞ when r = o(n(1−2(d0−d1))/5) and r → ∞.

Proof We have

∥
∥
∥
∥Σ̂

−1
Ĥr

− Σ−1
Hr

∥
∥
∥
∥ ≤

(∥
∥
∥
∥Σ̂

−1
Ĥr

− Σ−1
Hr

∥
∥
∥
∥+

∥
∥
∥Σ−1

Hr

∥
∥
∥

)∥
∥
∥ΣHr

− Σ̂Ĥr

∥
∥
∥
∥
∥
∥Σ−1

Hr

∥
∥
∥ ,

and by induction we obtain

∥
∥
∥
∥Σ̂

−1
Ĥr

− Σ−1
Hr

∥
∥
∥
∥ ≤

∥
∥
∥Σ−1

Hr

∥
∥
∥

∞∑

k=1

∥
∥
∥ΣHr

− Σ̂Ĥr

∥
∥
∥
k ∥∥
∥Σ−1

Hr

∥
∥
∥
k
.

123



Statistical Inference for Stochastic Processes (2021) 24:549–608 601

We have

P

(√
r
∥
∥Σ̂−1

Ĥr
− Σ−1

Hr

∥
∥ > β

)

≤ P

(√
r
∥
∥
∥Σ−1

Hr

∥
∥
∥

∞∑

k=1

∥
∥
∥ΣHr

− Σ̂Ĥr

∥
∥
∥
k ∥∥
∥Σ−1

Hr

∥
∥
∥
k

> β

)

≤ P

(√
r
∥
∥
∥Σ−1

Hr

∥
∥
∥

∞∑

k=1

∥
∥
∥ΣHr

− Σ̂Ĥr

∥
∥
∥
k ∥∥
∥Σ−1

Hr

∥
∥
∥
k

> β and
∥
∥
∥ΣHr

− Σ̂Ĥr

∥
∥
∥
∥
∥
∥Σ−1

Hr

∥
∥
∥ < 1

)

+ P

(√
r
∥
∥
∥Σ−1

Hr

∥
∥
∥

∞∑

k=1

∥
∥
∥ΣHr

− Σ̂Ĥr

∥
∥
∥
k ∥∥
∥Σ−1

Hr

∥
∥
∥
k

> β and
∥
∥
∥ΣHr

− Σ̂Ĥr

∥
∥
∥
∥
∥
∥Σ−1

Hr

∥
∥
∥ ≥ 1

)

≤ P

⎛

⎜
⎝

√
r

∥
∥
∥Σ−1

Hr

∥
∥
∥
2 ∥∥
∥ΣHr

− Σ̂Ĥr

∥
∥
∥

1 −
∥
∥
∥ΣHr

− Σ̂Ĥr

∥
∥
∥
∥
∥
∥Σ−1

Hr

∥
∥
∥

> β

⎞

⎟
⎠+ P

(√
r
∥
∥
∥ΣHr

− Σ̂Ĥr

∥
∥
∥
∥
∥
∥Σ−1

Hr

∥
∥
∥ ≥ 1

)

≤ P

⎛

⎜
⎝

√
r
∥
∥
∥ΣHr

− Σ̂Ĥr

∥
∥
∥ >

β
∥
∥
∥Σ−1

Hr

∥
∥
∥
2 + βr−1/2

∥
∥
∥Σ−1

Hr

∥
∥
∥

⎞

⎟
⎠

+ P

(√
r
∥
∥
∥ΣHr

− Σ̂Ĥr

∥
∥
∥ ≥

∥
∥
∥Σ−1

Hr

∥
∥
∥

−1
)

.

Lemmas 20 and 23 imply the result. ��

Lemma 26 Under the assumptions of Theorem 5, we have

√
r
∥
∥
∥Φ̂r − Φr

∥
∥
∥ = oP(1) as r → ∞ and r = o(n(1−2(d0−d1))/5).

Proof Lemmas 20 and 25 yield

∥
∥
∥
∥Σ̂

−1
Ĥr

∥
∥
∥
∥ ≤

∥
∥
∥
∥Σ̂

−1
Ĥr

− Σ−1
Hr

∥
∥
∥
∥+

∥
∥
∥Σ−1

Hr

∥
∥
∥ = OP(1). (83)

By (71), we have

0 = E

[
ur ,t H

′
r ,t

]
= E

[(
Ht (θ0) − Φr Hr ,t

)
H

′
r ,t

]
= ΣH ,Hr

− ΦrΣHr
,

and so we have Φr = ΣH ,Hr
Σ−1

Hr
. Lemmas 20, 23, 25 and (83) imply

√
r
∥
∥
∥Φ̂r − Φr

∥
∥
∥ = √

r

∥
∥
∥
∥Σ̂Ĥ ,Ĥr

Σ̂−1
Ĥr

− ΣH ,Hr
Σ−1

Hr

∥
∥
∥
∥

= √
r

∥
∥
∥
∥

(
Σ̂Ĥ ,Ĥr

− ΣH ,Hr

)
Σ̂−1

Ĥr
+ ΣH ,Hr

(

Σ̂−1
Ĥr

− Σ−1
Hr

)∥
∥
∥
∥

= oP(1),

and the lemma is proved. ��
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Proof of Theorem 5

Since by Lemma 23 we have ‖Σ̂Ĥ − ΣH‖ = oP(r−1/2) = oP(1) and ‖Σ̂Ĥ ,Ĥr
− ΣH ,Hr

‖ =
oP(r−1/2) = oP(1), and by Lemma 24 ‖Φ̂r −Φ∗

r ‖ = oP(r−1/2) = oP(1), Theorem 5 is then
proved.

6.5 Invertibility of the normalizationmatrix Pp+q+1,n

The following proofs are quite technical and are adaptations of the arguments used in
Boubacar Maïnassara and Saussereau (2018).

To prove Proposition 6, we need to introduce the following notation.
We denote St the vector of R

p+q+1 defined by

St =
t∑

j=1

Uj =
t∑

j=1

−2J−1Hj = −2J−1
t∑

j=1

ε j
∂

∂θ
ε j (θ0)

and St (i) its i−th component. We have

St−1(i) = St (i) −Ut (i). (84)

If the matrix Pp+q+1,n is not invertible, there exists some real constants d1, . . . , dp+q+1 not
all equal to zero, such that d

′
Pp+q+1,nd = 0, where d = (d1, . . . , dp+q+1)

′
. Thus we may

write that
∑p+q+1

i=1

∑p+q+1
j=1 d j Pp+q+1,n( j, i)di = 0 or equivalently

1

n2

n∑

t=1

p+q+1∑

i=1

p+q+1∑

j=1

d j

(
t∑

k=1

(Uk( j) − Ūn( j))

)(
t∑

k=1

(Uk(i) − Ūn(i))

)

di = 0.

Then

n∑

t=1

⎛

⎝
p+q+1∑

i=1

di

(
t∑

k=1

(Uk(i) − Ūn(i))

)⎞

⎠

2

= 0,

which implies that for all t ≥ 1

p+q+1∑

i=1

di

(
t∑

k=1

(Uk(i) − Ūn(i))

)

=
p+q+1∑

i=1

di

(

St (i) − t

n
Sn(i)

)

= 0.

So we have

1

t

p+q+1∑

i=1

di St (i) =
p+q+1∑

i=1

di

(
1

n
Sn(i)

)

. (85)

We apply the ergodic theorem and we use the orthogonality of εt and (∂/∂θ)εt (θ0) in order
to obtain that

p+q+1∑

i=1

di

(
1

n

n∑

k=1

Uk(i)

)
a.s.−−−→

n→∞

p+q+1∑

i=1

diE [Uk(i)] = −2
p+q+1∑

i, j=1

di J
−1(i, j)E

[

εk
∂εk

∂θ j

]

= 0 .
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Reporting this convergence in (85) implies that
∑p+q+1

i=1 di St (i) = 0 a.s. for all t ≥ 1. By
(84), we deduce that

p+q+1∑

i=1

diUt (i) = −2
p+q+1∑

i=1

di

p+q+1∑

j=1

J−1(i, j)

(

εt
∂εt

∂θ j

)

= 0, a.s.

Thanks to Assumption (A5), (εt )t∈Z has a positive density in some neighborhood of zero
and then εt �= 0 almost-surely. So we would have d

′
J−1 ∂εt

∂θ
= 0 a.s. Now we can follow

the same arguments that we developed in the proof of the invertibility of J (see Proof of
Lemma 16 and more precisely (56)) and this leads us to a contradiction. We deduce that the
matrix Pp+q+1,n is non singular.

6.6 Proof of Theorem 7

The arguments follows the one in Boubacar Maïnassara and Saussereau (2018) in a simpler
context.

Recall that the Skorohod space D
�[0,1] is the set of R

�−valued functions on [0,1] which
are right-continuous and has left limits everywhere. It is endowedwith the Skorohod topology

and the weak convergence on D
�[0,1] is mentioned by

D
�−→. The integer part of x will be

denoted by �x�.
The goal at first is to show that there exists a lower triangular matrix T with nonnegative

diagonal entries such that

1√
n

�nr�∑

t=1

Ut
D

p+q+1−−−−→
n→∞ (T T

′
)1/2Bp+q+1(r), (86)

where (Bp+q+1(r))r≥0 is a (p+q+1)−dimensional standard Brownian motion. Using (29),
Ut can be rewritten as

Ut =
(

−2

{ ∞∑

i=1

.
λi,1 (θ0) εtεt−i , . . . ,

∞∑

i=1

.
λi,p+q+1 (θ0) εtεt−i

}

J−1′
)′

.

The non-correlation between εt ’s implies that the process (Ut )t∈Z is centered. In order to
apply the functional central limit theorem for stronglymixing process, we need to identify the
asymptotic covariance matrix in the classical central limit theorem for the sequence (Ut )t∈Z.
It is proved in Theorem 2 that

1√
n

n∑

t=1

Ut
in law−−−→
n→∞ N (0,Ω =: 2π fU (0)) ,

where fU (0) is the spectral density of the stationary process (Ut )t∈Z evaluated at frequency
0. The existence of the matrix Ω has already been discussed (see the proofs of Lemmas 16
and 18 ).

Since the matrix Ω is symmetric positive definite, it can be factorized as Ω = T T
′
where

the (p + q + 1) × (p + q + 1) lower triangular matrix T has real positive diagonal entries.
Therefore, we have

1√
n

n∑

t=1

(T T
′
)−1/2Ft

in law−−−→
n→∞ N (

0, Ip+q+1
)
,
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where Ip+q+1 is the identity matrix of order p + q + 1.
As in the proof of the asymptotic normality of (

√
n(θ̂n − θ0))n≥1, the distribution of

n−1/2∑n
t=1Ut when n tends to infinity is obtained by introducing the random vector Uk

t
defined for any positive integer k by

Uk
t =

(

−2

{
k∑

i=1

.
λi,1 (θ0) εtεt−i , . . . ,

k∑

i=1

.
λi,p+q+1 (θ0) εtεt−i

}

J−1′
)′

.

SinceUk
t depends on a finite number of values of the noise process (εt )t∈Z, it also satisfies a

mixing property (see Theorem 14.1 in Davidson (1994), p. 210). The central limit theorem
for strongly mixing process of Herrndorf (1984) shows that its asymptotic distribution is
normal with zero mean and variance matrix Ωk that converges when k tends to infinity to Ω

(see the proof of Lemma 19):

1√
n

n∑

t=1

Uk
t

in law−−−→
n→∞ N (0,Ωk) .

The above arguments also apply to matrix Ωk with some matrix Tk which is defined analo-
gously as T . Consequently, we obtain

1√
n

n∑

t=1

(TkT
′
k )

−1/2Uk
t

in law−−−→
n→∞ N (0, Ip+q+1).

Now we are able to apply the functional central limit theorem for strongly mixing process of
Herrndorf (1984) and we obtain that

1√
n

�nr�∑

t=1

(TkT
′
k )

−1/2Uk
t

D
p+q+1−−−−→
n→∞ Bp+q+1(r).

Since

(T T
′
)−1/2Uk

t =
(
(T T

′
)−1/2 − (TkT

′
k )

−1/2
)
Uk
t + (TkT

′
k )

−1/2Uk
t ,

we may use the same approach as in the proof of Lemma 19 in order to prove that
n−1/2∑n

t=1((T T
′
)−1/2 − (TkT

′
k )

−1/2)Uk
t converges in distribution to 0. Consequently we

obtain that

1√
n

�nr�∑

t=1

(T T
′
)−1/2Uk

t
D

p+q+1−−−−→
n→∞ Bp+q+1(r).

In order to conclude that (86) is true, it remains to observe that uniformly with respect to
n it holds that

Ỹ k
n (r) := 1√

n

�nr�∑

t=1

(T T
′
)−1/2 Z̃ k

t
D

p+q+1−−−−→
n→∞ 0, (87)

where

Z̃ k
t =

(

−2

{ ∞∑

i=k+1

.
λi,1 (θ0) εtεt−i , . . . ,

∞∑

i=k+1

.
λi,p+q+1 (θ0) εtεt−i

}

J−1′
)′

.
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By (67), one has

sup
n

Var

(
1√
n

n∑

t=1

Z̃ k
t

)

−−−→
n→∞ 0

and since �nr� ≤ n,

sup
0≤r≤1

sup
n

{∥
∥
∥Ỹ k

n (r)
∥
∥
∥
}

−−−→
n→∞ 0.

Thus (87) is true and the proof of (86) is achieved.
By (86) we deduce that

1√
n

⎛

⎝
�nr�∑

j=1

(Uj − Ūn)

⎞

⎠ D
p+q+1−−−−→
n→∞ (T T

′
)1/2

(
Bp+q+1(r) − r Bp+q+1(1)

)
. (88)

One remarks that the continuous mapping theorem on the Skorohod space yields

Pp+q+1,n
in law−−−→
n→∞ (T T

′
)1/2

[∫ 1

0

{
Bp+q+1(r) − r Bp+q+1(1)

} {
Bp+q+1(r) − r Bp+q+1(1)

}′
dr

]

(T T
′
)1/2

= (T T
′
)1/2Vp+q+1(T T

′
)1/2.

Using (86), (88) and the continuous mapping theorem on the Skorohod space, one finally
obtains

n
(
θ̂n − θ0

)′
P−1
p+q+1,n

(
θ̂n − θ0

)

D
p+q+1−−−−→
n→∞

{
(T T

′
)1/2Bp+q+1(1)

}′ {
(T T

′
)1/2Vp+q+1(T T

′
)1/2

}−1 {
(T T

′
)1/2Bp+q+1(1)

}

= B
′
p+q+1(1)V

−1
p+q+1Bp+q+1(1) := Up+q+1.

The proof of Theorem 7 is then complete.

6.7 Proof of Theorem 8

In view of (14) and (17), we write P̂p+q+1,n = Pp+q+1,n + Qp+q+1,n where

Qp+q+1,n = (
J (θ0)

−1 − Ĵ−1
n

) 1

n2

n∑

t=1

⎛

⎝
t∑

j=1

(Hj − 1

n

n∑

k=1

Hk)

⎞

⎠

(
n∑

t=1

(Hj − 1

n

n∑

k=1

Hk)

)′

+ Ĵ−1
n

1

n2

n∑

t=1

{
⎛

⎝
t∑

j=1

(Hj − 1

n

n∑

k=1

Hk)

⎞

⎠

(
n∑

t=1

(Hj − 1

n

n∑

k=1

Hk)

)′

−
⎛

⎝
t∑

j=1

(Ĥ j − 1

n

n∑

k=1

Ĥk)

⎞

⎠

(
n∑

t=1

(Ĥ j − 1

n

n∑

k=1

Ĥk)

)′ }

.

Using the same approach as in Lemma 17, Ĵn converges in probability to J . Thus we deduce
that the first term in the right hand side of the above equation tends to zero in probability.
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The second term is a sum composed of the following terms

qi, j,k,ls,t = εs(θ0)εt (θ0)
∂εs(θ0)

∂θi

∂εt (θ0)

∂θ j
− ε̃s(θ̂n)ε̃t (θ̂n)

∂ε̃s(θ̂n)

∂θk

∂ε̃t (θ̂n)

∂θl
.

Using similar arguments done before (see for example the use of Taylor’s expansion in
Sect. 6.4, we have qi, j,k,ls,t = oP(1) as n goes to infinity and thus Qp+q+1,n = oP(1). So one
may find a matrix Q∗

p+q+1,n that tends to the null matrix in probability and such that

n
(
θ̂n − θ0

)′
P̂−1
p+q+1,n

(
θ̂n − θ0

)
= n

(
θ̂n − θ0

)′ (
Pp+q+1,n + Qp+q+1,n

)−1
(
θ̂n − θ0

)

= n
(
θ̂n − θ0

)′
P−1
p+q+1,n

(
θ̂n − θ0

)

+ n
(
θ̂n − θ0

)′
Q∗

p+q+1,n

(
θ̂n − θ0

)
.

Thanks to the arguments developed in the proof of Theorem 7, n(θ̂n −θ0)
′
P−1
p+q+1,n(θ̂n −θ0)

converges in distribution. So n(θ̂n − θ0)
′
Q∗

p+q+1,n(θ̂n − θ0) tends to zero in distribution,

hence in probability. Then n(θ̂n − θ0)
′
P̂−1
p+q+1,n(θ̂n − θ0) and n(θ̂n − θ0)

′
P−1
p+q+1,n(θ̂n − θ0)

have the same limit in distribution and the result is proved.
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