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Abstract
Let the Ornstein–Uhlenbeck process (Xt )t≥0 driven by a fractional Brownian motion BH

described by dXt = −θXtdt + σdBH
t be observed at discrete time instants tk = kh, k =

0, 1, 2, . . . , 2n+2.We propose an ergodic type statistical estimator θ̂n , Ĥn and σ̂n to estimate
all the parameters θ , H and σ in the above Ornstein–Uhlenbeck model simultaneously. We
prove the strong consistence and the rate of convergence of the estimator. The step size h can
be arbitrarily fixed and will not be forced to go zero, which is usually a reality. The tools to
use are the generalized moment approach (via ergodic theorem) and the Malliavin calculus.

Keywords Fractional Brownian motion · Fractional Ornstein–Uhlenbeck · Parameter
estimation · Malliavin calculus · Ergodicity · Stationary processes · Newton method ·
Central limit theorem

Mathematics Subject Classification 62M09 · 60G22 · 60H10 · 60H30

1 Introduction

The Ornstein–Uhlenbeck process (Xt )t≥0 is described by the following Langevin equation:

dXt = −θXtdt + σdBH
t , (1.1)

where θ > 0 so that the process is ergodic and where for simplicity of the presentation we
assume X0 = 0. Other initial value can be treated exactly in the same way. We assume that
the process (Xt )t≥0 is observed at discrete time instants tk = kh and we want to use the
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observations {Xh, X2h, . . . , X2n+2h} to estimate the parameters θ , H and σ that appear in
the above Langevin equation simultaneously.

Before we continue let us briefly recall some recent relevant works obtained in literature.
Most of the works deal with the estimator of the drift parameter θ . In fact, when the Ornstein–
Uhlenbeck process (Xt )t≥0 can be observed continuously and when the parameters σ and H
are assumed to be known, we have the following results :

1. The maximum likelihood estimator for θ defined by θmle
T is studied Tudor and Viens

(2007) (see also the references therein for earlier references), and is proved to be strongly
consistent. The asymptotic behavior of the bias and the mean square of θmle

T is also given.
In this paper, a strongly consistent estimator of σ is also proposed.

2. A least squares estimator defined by θ̃T = − ∫ T
0 Xt dXt

∫ T
0 X2

t dt
was studied in Chen et al. (2017),

Hu and Nualart (2010) and Hu et al. (2019). It is proved that θ̃T → θ almost surely
as T → ∞. It is also proved that when H ≤ 3/4,

√
T (θ̃T − θ) converges in law to a

mean zero normal random variable. The variance of this normal variable is also obtained.
When H ≥ 3/4, the rate of convergence is also known Hu et al. (2019).

Usually in reality the process can only be observed at discrete times {tk = kh, k =
1, 2, . . . , n} for some fixed observation time lag h > 0. In this very interesting case, there
are very limited works. Let us only mention two (Hu and Song 2013; Panloup et al. 2019).
To the best of knowledge there is only one work (Brouste and Iacus 2013) that estimates all
the parameters θ , H and σ at the same time, but the observations are assumed to be made
continuously.

The diffusion coefficient σ represents the “volatility” and it is commonly believed that
it should be computed (hence estimated) by the 1/H variations (see Hu et al. 2019 and
references therein). To use the 1/H variations one has to assume the process can be observed
continuously (or we have high frequency data). Namely, it is a common belief that σ can
only be estimated when one has high frequency data.

In this work, we assume that the process can only be observed at discrete times {tk =
kh, k = 1, 2, . . . , n} for some arbitrarily fixed observation time lag h > 0 (without the
requirement that h → 0). We want to estimate θ , H and σ simultaneously. The idea we
use is the ergodic theorem, namely, we find the explicit form of the limit distribution of
1
n

∑n
k=1 f (Xkh) and use it to estimate our parameters. People may naturally think that if

we appropriately choose three different f , then we may obtain three different equations to
obtain all the three parameters θ , H and σ .

However, this is impossible since as long as we proceed this way, we shall find out that
whatever we choose f , we cannot get independent equations. Motivated by a recent work [4],
wemay try to add the limit distribution of 1

n

∑n
k=1 g(Xkh, X(k+1)h) to find all the parameters.

However, this is still impossible because regardless how we choose f and g we obtain only
two independent equations. This is because regardless how we choose f and g the limits
depends only on the covariance of the limiting Gaussians (see Y0 and Yh ulteriorly). Finally,
we propose to use the following quantities to estimate all the three parameters θ , H and σ :

∑n
k=1 X

2
kh

n
,

∑n
k=1 Xkh Xkh+h

n
,

∑n
k=1 Xkh Xkh+2h

n
. (1.2)

We shall study the strong consistence and joint limiting law of our estimators. The above
three series converge toE(Y 2

0 ),E(Y0Yh), andE(Y0Y2h) respectively. It should be emphasized
that it seems that we cannot use the joint distribution of Y0, Yh alone to estimate all the three
parameters θ , H and σ , we need to the joint distribution of Y0, Yh, Y2h .
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The paper is organized as follows. In Sect. 2, we recall some known results. The con-
struction and the strong consistency of the estimators are provided in Sect. 3. Central limit
theorems are obtained in Sect. 4. To make the paper more readable, we delay some proofs in
Append A. To use our estimators we need the determinant of some functions to be nondegen-
erate. This is given in Appendix B. Some numerical simulations to validate our estimators
are illustrated in Appendix C.

2 Preliminaries

Let (�,F,P) be a complete probability space. The expectation on this space is denoted by
E. The fractional Brownian motion (BH

t , t ∈ R) with Hurst parameter H ∈ (0, 1) is a zero
mean Gaussian process with the following covariance structure:

E(BH
t BH

s ) = RH (t, s) = 1

2
(| t |2H + | s |2H − | t − s |2H ), ∀ t, s ∈ R. (2.1)

On stochastic analysis of this fractional Brownian motion, such as stochastic integral∫ b
a f (t)dBH

t , chaos expansion, and stochastic differential equation dXt = b(Xt )dt +
σ(Xt )dBH

t we refer to Biagini et al. (2008).
For any s, t ∈ R, we define

〈I[0,t], I[0,s]〉H = RH (s, t), (2.2)

where I[a,b] denotes the indicate function on [a, b] and we use I[b,a] = −I[a,b] for any
a < b. We can first extend this scalar product to general elementary functions f (·) =∑n

i=1 ai I[0,si ](·) by (bi-)linearity and then to general function by a limiting argument. We
can then obtain the reproducing kernel Hilbert space, denoted by H, associated with this
Gaussian process BH

t (see e.g. Hu and Nualart 2010 for more details).
Let S be the space of smooth and cylindrical random variables of the form

F = f (BH (φ1), . . . , B
H (φn)), φ1, . . . , φn ∈ C∞

0 ([0, T ]),

where f ∈ C∞
b (Rn) and BH (φ) = ∫ ∞

0 φ(t)dBH
t . For such a variable F , we define its

Malliavin derivative as the H valued random element:

DF =
n∑

k=1

∂ f

∂xi
(BH (φ1), . . . , B

H (φn))φi .

We shall use the following result in Sect. 4 to obtain the central limit theorem. We refer
to Hu (2017) and many other references for a proof.

Proposition 2.1 Let {Fn, n ≥ 1} be a sequence of random variables in the space of p-th
Wiener Chaos, p ≥ 2 ,such that limn→∞ E(F2

n ) = σ 2. Then the following statements are
equivalent:

(i) Fn converges in law to N (0, σ 2) as n tends to infinity.
(ii) ‖DFn‖2H converges in L2 to a constant as n tends to infinity.
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3 Estimators of �,H and �

If X0 = 0, then the solution Xt to (1.1) can be expressed as

Xt = σ

∫ t

0
e−θ(t−s)dBH

s . (3.1)

The associated stationary solution, the solution of (1.1) with the initial value

Y0 =
∫ 0

−∞
eθsdBH

s , (3.2)

can be expressed as

Yt =
∫ t

−∞
e−θ(t−s)dBH

s = e−θ t Y0 + Xt . (3.3)

Yt is stationary, namely, the Yt has the same distribution as that of Y0 which is also the limiting
normal distribution of Xt (when t → ∞). Let’s consider the following three quantities :

⎧
⎪⎨

⎪⎩

ηn = 1
n

∑n
k=1 X

2
kh,

ηh,n = 1
n

∑n
k=1 Xkh Xkh+h,

η2h,n = 1
n

∑n
k=1 Xkh Xkh+2h .

(3.4)

As in Kubilius et al. (2017, Section 1.3.2.2), we have the following ergodic result:

lim
n→∞ ηn = E(Y 2

0 ) = σ 2H�(2H)θ−2H . (3.5)

Nowwe want to have a similar result for ηh,n . First, let’s study the ergodicity of the processes
{Yt+h −Yt }t≥0. According to Magdziarz and Weron (2011), a centered Gaussian wide-sense
stationary process Mt is ergodic if E(MtM0) → 0 as t tends to infinity. We shall apply this
result to Mt = Yt+h − Yt , t ≥ 0. Obviously, it is a centered Gaussian stationary process and

E((Yt+h − Yt )(Yh − Y0)) = E(Yt+hYh) − E(Yt+hY0) − E(YtYh) + E(YtY0).

In Cheridito et al. (2003, Theorem 2.3), it is proved that E(YtY0) → 0 as t goes to infinity.
Thus, it is easy to see that E((Yt+h − Yt )(Yh − Y0)) → 0. Hence, we see that the process
{Yt+h − Yt }t≥0 is ergodic. This implies

∑n
k=1 [Y(k+1)h − Ykh]2

n
→n→∞ E([Yh − Y0]2).

This combined with (3.5) yields the following Lemma.

Theorem 3.1 Let ηn, ηh,n and η2h,n be defined by (3.4). Then as n → ∞ we have almost
surely

lim
n→∞ ηn = E(Y 2

0 ) = σ 2H�(2H)θ−2H ; (3.6)

lim
n→∞ ηh,n = E(Y0Yh) = σ 2 �(2H + 1) sin(πH)

2π

∫ ∞

−∞
eixh

| x |1−2H

θ2 + x2
dx ; (3.7)

lim
n→∞ η2h,n = E(Y0Y2h) = σ 2 �(2H + 1) sin(πH)

2π

∫ ∞

−∞
e2i xh

| x |1−2H

θ2 + x2
dx . (3.8)
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The explicit expressions of E(Y0Yh) and E(Y0Y2h) are borrowed from Cheridito et al. (2003,
Remark 2.4).

From the above theorem we propose the following construction for the estimators of the
parameters θ , H and σ .

First let us define
⎧
⎪⎪⎨

⎪⎪⎩

f1(θ, H , σ ) := σ 2H�(2H)θ−2H ;
f2(θ, H , σ ) := 1

π
σ 2�(2H + 1) sin(πH)

∫ ∞
0 cos(hx) x

1−2H

θ2+x2
dx ;

f3(θ, H , σ ) := 1
π
σ 2�(2H + 1) sin(πH)

∫ ∞
0 cos(2hx) x

1−2H

θ2+x2
dx .

(3.9)

It is elementary to verify (we fix h > 0) that f1(θ, H , σ ), f2(θ, H , σ ), f3(θ, H , σ ) are
continuously differentiable functions of θ > 0, σ > 0 and H ∈ (0, 1). Let f (θ, H , σ ) =
( f1(θ, H , σ ), f2(θ, H , σ ), f3(θ, H , σ ))T be a vector function defined on θ > 0, σ > 0 and
H ∈ (0, 1). Then we set

⎧
⎪⎨

⎪⎩

f1(θ, H , σ ) = ηn = 1
n

∑n
k=1 X

2
kh ;

f2(θ, H , σ ) = ηh,n = 1
n

∑n
k=1 Xkh Xkh+h ;

f3(θ, H , σ ) = η2h,n = 1
n

∑n
k=1 Xkh Xkh+2h,

(3.10)

as a system of three equations for the three unknowns (θ, H , σ ). The Jacobian of f , denoted
by J (θ, H , σ ), is an elementary function whose explicit form can be obtained in a straight-
forward way. However, this explicit expression is extremely complicated and involves the
complicated integrations as well. It is hard to find the range of the parameters analytically
so that the determinant of the Jacobian J (θ, H , σ ) is not singular (nonzero). In Appendix B,
we shall give a more detailed account for the determinant of the Jacobian J (θ, H , σ ) and in
particular we shall demonstrate

det(J (θ, H , σ )) �= 0, ∀ (θ, H , σ ) ∈ Dh, (3.11)

where

Dh = {(θ, H , σ ) : 2/h < θ < 10/h, H ∈ (0.3, 1/2) ∪ (1/2, 3/4), σ > 0} . (3.12)

Our approach there is a numerical one. We can try to plot more values to enlarge the domain
Dh . However, we shall not pursue along this direction. By the inverse function theorem, we
see that for any point (θ0, H0, σ0) in Dh , there is a neighbourhood U of (θ0, H0, σ0) and a
neighbourhood V of f (θ0, H0, σ0) such that the function f has a continuously differentiable
inverse f −1 fromV toU . FromTheorem3.1weknow that if the true parameter is (θ0, H0, σ0),
then νn = (ηn, ηh,n, η2h,n) converges almost surely to f (θ0, H0, σ0) as n → ∞. This means
that there is a N = N (ω) such that when n ≥ N , νn = (ηn, ηh,n, η2h,n) ∈ V . In other words,
when n is sufficiently large, the Eq. (3.10) has a (unique) solution in the neighbourhood of
(θ0, H0, σ0).

Theorem 3.2 If (θ, H , σ ) ∈ Dh, then when n is sufficiently large the Eq. (3.10) has a solution
in Dh and in a neighbourhood of (θ, H , σ ) the solution is unique denoted by (θ̃n, H̃n, σ̃n).
Moreover, (θ̃n, H̃n, σ̃n) converge almost surely to (θ, H , σ ) as n tends to infinity.

We shall use (θ̃n, H̃n, σ̃n) to estimate the parameters (θ, H , σ ). We call (θ̃n, H̃n, σ̃n) the
ergodic (or generalized moment) estimator of (θ, H , σ ).

It seems hard to explicitly obtain the explicit solution of the system of Eq. (3.10). However,
it is a classical problem. There are copious numeric approaches to find the approximate
solution. We shall give some validation of our estimators numerically in “Appendix C”.
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Theorem 3.2 states that the ergodic estimator exists uniquely in a neighbourhood of the
true parameter (θ, H , σ ). However, does the Eq. (3.10) have more than one solution on
the domain Dh? The global inverse function theorem is much more sophisticated. There are
several extension of the Hadamard–Caccioppoli theorem (e.g.Mustafa et al. 2007). However,
it seems that these works can hardly be applied to our situation. It seems impossible to use
the determinant alone to determine if a mapping has a global inverse or not. For example, the
function ( f (x, y), g(x, y)) = (ex cos y, ex sin y) has a strictly positive determinant on R

2.
This function is a surjection from R

2 onto R
2\{0}, but it is not an injection. For this reason

we are not going to obtain rigorous results on the uniqueness of the solution to (3.10) on
the whole domain Dh in the present paper. However, we propose the following two points in
statistical practice to determine the estimator (θ̃n, H̃n, σ̃n).

(1) Dividing the second and third equations by the first one in (3.9) and noticing�(2H+1) =
2H�(2H) we have

⎧
⎨

⎩

f2
f1

= 2 sin(πH)θ2H

π

∫ ∞
0 cos(hx) x

1−2H

θ2+x2
dx,

f3
f1

= 2 sin(πH)θ2H

π

∫ ∞
0 cos(2hx) x

1−2H

θ2+x2
dx,

(3.13)

where we recall that f1, f2, f3 are given by the right hand side (3.10), which are deter-
mined from the real observations of the process. Denote

Ih(θ, H) := 2 sin(πH)θ2H

π

∫ ∞

0
cos(hx)

x1−2H

θ2 + x2
dx . (3.14)

We obtain a system of equations for (θ, H):
⎧
⎨

⎩

Ih(θ, H) = f2
f1

,

I2h(θ, H) = f3
f1

.
(3.15)

When the real data are observed and when one knows a priori the domain (say the
projection ofDh onto the (θ, H) plane) of the parameter (θ, H), one can plot the function

g(θ, H) :=
∥
∥
∥
∥Ih(θ, H) − f2

f1

∥
∥
∥
∥

2

+
∥
∥
∥
∥I2h(θ, H) − f3

f1

∥
∥
∥
∥

2

on that domain to see if it reaches its minimum 0 only at one point (θ, H). We carry out
a simulation of the process with θ = 6, σ = 2 and H = 0.7 for the f1, f2, f3 and we
plot the function g for h = 0.1 as Fig. 1 (for n = 210). A quick computation shows that
g reaches its minimum 0 only for one point (θ = 7.833, H = 0.7133).

(2) In the case that one finds several solutions to (3.10), a second way to select which one
as the ergodic estimator may follow the following principle. Choose appropriately some
positive integers N1, N2, N3 and let

Z̃ = {(p, q,m), p = 1, . . . , N1, q = 1, . . . , N2, m = 1, . . . , N3} .

For each (p, q,m) ∈ Z̃ compute ηp,q,m = 1
n

∑n
k=1 X

p
kh X

q
kh+mh and we know that this

quantity will convergence to E(Y p
0 Y

q
mh) as n → ∞. Thus, we may choose the one which

minimizes
∑

(p,q,m)∈Z̃
(
ηp,q,m − E(Y p

0 Y
q
mh)

)2
.
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Fig. 1 Plot of the function g for θ = 6, σ = 2, H = 0.7 and n = 210

4 Central limit theorem

In this section, we shall prove central limit theorem associated with our ergodic estimator
(θ̃n, H̃n, σ̃n). We shall prove that

√
n(θ̃n − θ, H̃n − H , σ̃n − σ) converges in law to a mean

zero normal vector.
Let’s first consider the random variable Fn defined by

Fn =
⎛

⎜
⎝

√
n(ηn − E(ηn))√

n(ηh,n − E(ηh,n))√
n(η2h,n − E(η2h,n))

⎞

⎟
⎠ . (4.1)

Our first goal is to show that Fn converges in law to a multivariate normal distribution
using Proposition 2.1. So we consider a linear combination:

Gn = α
√
n(ηn − E(ηn)) + β

√
n(ηh,n − E(ηh,n)) + γ

√
n(η2h,n − E(η2h,n)), (4.2)

and show that it converges to a normal distribution.
We will use the following Feynman diagram formula (Hu 2017), where interested readers

can find a proof.

Proposition 4.1 Let X1, X2, X3, X4 be jointly Gaussian random variables with mean zero.
Then

E(X1X2X3X4) = E(X1X2)E(X3X4) + E(X1X3)E(X2X4) + E(X1X4)E(X2X3).

An immediate consequence of this result is
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Proposition 4.2 Let X1, X2, X3, X4 be jointly Gaussian random variables with mean zero.
Then

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

E [(X1X2 − E(X1X2))(X3X4 − E(X3X4))]

= E(X1X3)E(X2X4) + E(X1X4)E(X2X3) ;
E

[
(X2

1 − E(X2
1))(X2X3 − E(X2X3))

] = 2E(X1X2)E(X1X3) ;
E

[
(X2

1 − E(X2
1))(X

2
2 − E(X2

2))
] = 2 [E(X1X2)]

2 .

(4.3)

(4.4)

(4.5)

Theorem 4.3 Let H ∈ (0, 1/2) ∪ (1/2, 3/4). Let Xt be the Ornstein–Uhlenbeck process
defined by Eq. (1.1) and let ηn, ηh,n, η2h,n be defined by (3.4). Then

⎛

⎝

√
n(ηn − E(ηn))√

n(ηh,n − E(ηh,n))√
n(η2h,n − E(η2h,n))

⎞

⎠ → N (0, �), (4.6)

where � = (�(i, j))1≤i, j≤3 is a positive semidefinite symmetric matrix whose elements are
given by

�(1, 1) = 2
[
E(Y 2

0 )
]2 + 4

∞∑

m=1

[E(Y0Ymh)]
2 ; (4.7)

�(2, 2) = [
E(Y 2

0 )
]2 + [E(Y0Yh)]

2 + 2
∞∑

m=1

[E(Y0Ymh)]
2

+2
∞∑

m=1

E(Y0Y(m−1)h)E(Y0Y(m+1)h) ; (4.8)

�(3, 3) = [
E(Y 2

0 )
]2 + [E(Y0Y2h)]

2 + 2
∞∑

m=1

[E(Y0Ymh)]
2

+2
∞∑

m=1

E(Y0Y|m−2|h)E(Y0Y(m+2)h) ; (4.9)

�(1, 2) = �(2, 1) = 4
∞∑

m=0

E(Y0Ymh)E(Y0Y(m+1)h) ; (4.10)

�(2, 3) = �(3, 2) = E(Y 2
0 )E(Y0Yh) +

∞∑

m=1

E(Y 2
0 )

[
E(Y0Y(m+1)h) + E(Y0Y(m−1)h)

]

+E(Y0Yh)E(Y0Y2h) +
∞∑

m=1

E(Y0Y(m+2)h)E(Y0Y(m−1)h)

+
∞∑

m=1

E(Y0Y|m−2|h)E(Y0Y(m+1)h) (4.11)

�(1, 3) = �(3, 1) = E(Y 2
0 )E(Y0Y2h) +

∞∑

m=1

E(Y0Ymh)E(Y0Y(m+2)h)

+
∞∑

m=1

E(Y0Ymh)E(Y0Y|m−2|h). (4.12)
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Remark 4.4 (1) It is easy from the following proof to see that all entries �(i, j) of the
covariance matrix � are finite.

(2) In an earlier work of Hu and Song it is said (Hu and Song 2013, equation (19.19)) that
the variance � (corresponding to our �(1, 1) in our notation) is independent of the time
lag h. But there was an error on the bound of An on Hu and Song (2013, page 434, line
14). So, An there does not go to zero. Its limit is re-calculated in this work.

Proof We write

E(G2
n) = (α, β, γ )�n(α, β, γ )T , �n = (�n(i, j))1≤i, j≤3 ,

where �n is a symmetric 3 × 3 matrix given by
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�n(1, 1) = nE
[
(ηn − E(ηn))

2] ;
�n(1, 2) = �n(2, 1) = nE

[
(ηn − E(ηn))(ηh,n − E(ηh,n))

] ;
�n(1, 3) = �n(3, 1) = nE

[
(ηn − E(ηn))(η2h,n − E(η2h,n))

] ;
�n(2, 2) = nE

[
(ηh,n − E(ηh,n))

2] ;
�n(2, 3) = �n(3, 2) = nE

[
(ηh,n − E(ηh,n))(η2h,n − E(η2h,n))

] ;
�n(3, 3) = nE

[
(η2h,n − E(η2h,n))

2] .

First,we compute the limit of�n(1, 1). From theDefinition (3.4) ofηn andProposition 4.2,
we have

�n(1, 1) = 1

n

n∑

k,k′=1

E
[
(X2

kh − E
[
(Xkh)

2])(X2
k′h − E

[
(Xk′h)

2])
]

= 2

n

n∑

k,k′=1

[E(Xkh Xk′h)]
2 .

By Lemma A.2 with a = b = c = d = 0, we see that

�n(1, 1) → �(1, 1) = 2
[
E(Y 2

0 )
]2 + 4

∞∑

m=1

[E(Y0Ymh)]
2 . (4.13)

This proves (4.7). For �n(2, 2) we have

�n(2, 2) = 1

n

n∑

k,k′=1

E(Xkh X(k′+1)h)E(X(k+1)h Xk′h)

+1

n

n∑

k,k′=1

E(Xkh Xk′h)E(X(k+1)h X(k′+1)h)

= I1,n + I2,n . (4.14)

By Lemma A.2 with a = d = 0 and b = c = 1, we see that that

I1,n → [E(Y0Yh)]
2 + 2

∞∑

m=1

E(Y0Y(m−1)h)E(Y0Y(m+1)h). (4.15)

By Lemma A.2 with a = b = 0 and c = d = 1, we have

I2,n → [
E(Y 2

0 )
]2 + 2

∞∑

m=1

[E(Y0Ymh)]
2 . (4.16)

123



336 Statistical Inference for Stochastic Processes (2021) 24:327–351

This proves (4.8). As for �n(3, 3) we have

�n(3, 3) = 1

n

n∑

k,k′=1

E(Xkh X(k′+2)h)E(X(k+2)h Xk′h)

+1

n

n∑

k,k′=1

E(Xkh Xk′h)E(X(k+2)h X(k′+2)h)

→ [E (Y0Y2h)]
2 + 2

∞∑

m=1

E
(
Y0Y(m+2

)
E

(
Y0Y|m−2|h

)

+ [
E

(
Y 2
0

)]2 + 2
∞∑

m=1

[E (Y0Ymh)]
2 . (4.17)

This proves (4.9).
Now let consider the limit of�n(1, 2). From the Definition (3.4) and from Proposition 4.2

it follows

�n(1, 2) = 2

n

n∑

k,k′=1

E(Xkh Xk′h)E(Xkh X(k′+1)h)

→ E(Y 2
0 )E(Y0Y1) +

∞∑

m=1

E(Y0Ym)E(Y0Ym+1) +
∞∑

m=1

E(Y0Ym)E(Y0Ym−1)

= 4
∞∑

m=0

E(Y0Ymh)E(Y0Y(m+1)h). (4.18)

This proves (4.10). As for �n(2, 3) we have similarly

�n(2, 3) = 1

n

n∑

k,k′=1

E(Xkh Xk′h)E(X(k+1)h X(k′+2)h)

+1

n

n∑

k,k′=1

E(Xkh X(k′+2)h)E(X(k+1)h Xk′h)

→ E(Y 2
0 )E(Y0Yh) +

∞∑

m=1

E(Y 2
0 )

[
E(Y0Y(m+1)h) + E(Y0Y(m−1)h)

]

+E(Y0Yh)E(Y0Y2h) +
∞∑

m=1

E(Y0Y(m+2)h)E(Y0Y(m−1)h)

+
∞∑

m=1

E(Y0Y|m−2|h)E(Y0Y(m+1)h). (4.19)

This is (4.11). Lastly, to get (4.12) we use

�n(1, 3) = 2

n

n∑

k,k′=1

E(Xkh Xk′h)E(Xkh X(k′+2)h)

→ E(Y 2
0 )E(Y0Y2h) +

∞∑

m=1

E(Y0Ymh)E(Y0Y(m+2)h)
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+
∞∑

m=1

E(Y0Ymh)E(Y0Y|m−2|h). (4.20)

Combining (4.13)–(4.20) yields

lim
n→∞E(G2

n) = (α, β, γ )�(α, β, γ )T . (4.21)

Using Lemma A.3, we know that Jn := 〈DGn, DGn〉H converges to a constant. Then by
Proposition 2.1, we know Gn converges in law to a normal random variable.

Since Gn converges to a normal for any real vales α, β, and γ , we know by the Cramér-
Wold theorem that Fn converges to a mean zero Gaussian random vector, proving theorem.

��
Now using the delta method and the above theorem we immediately have the following
theorem.

Theorem 4.5 Let (θ, H , σ ) ∈ Dh. Let Xt be the Ornstein–Uhlenbeck process defined by Eq.
(1.1) and let (θ̃n, H̃n, σ̃n) be the ergodic estimator defined by (3.10). Then as n → ∞, we
have

⎛

⎜
⎝

√
n(θ̃n − θ)

√
n(H̃n − H)√
n(σ̃n − σ)

⎞

⎟
⎠

d→N (0, �̃)

,

where J denotes the Jacobian matrix of f , studied in Appendix B, � is defined in 4.3 and

�̃ = [J (θ, H , σ )]−1 �
[
J T (θ, H , σ )

]−1
. (4.22)

Acknowledgements We thank the referees for the constructive comments.

Appendix A: Detailed computations

First, we need the following lemma.

Lemma A.1 Let Xt be the Ornstein–Uhlenbeck process defined by (1.1). Then

|E(Xt Xs)| ≤ C(1 ∧ |t − s|2H−2) ≤ (1 + |t − s|)2H−2 . (A.1)

The above inequality also holds true for Yt .

Proof From Cheridito et al. (2003, Theorem 2.3), we have that

E(YsYt ) ≤ CH ,θ |t − s|2H−2 for |t − s|sufficiently large. (A.2)

But Xt = Yt − e−θ t Y0. This combined with (A.2) proves (A.1). ��
Lemma A.2 Let Xt be defined by (1.1) and let a, b, c, d be integers.When H ∈ (0, 1

2 )∪( 12 , 3
4 )

we have

lim
n→∞

1

n

n∑

k,k′=1

E
(
Xkh+ah Xk′h+bh

)
E

(
Xkh+ch Xk′h+dh

)
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= E
(
Y0Y|b−a|

)
E

(
Y0Y|d−c|

) +
∞∑

m=1

E
(
Y0Y|m+b−a|

)
E

(
Y0Y|m+d−c|

)

+
∞∑

m=1

E
(
Y0Y|m+a−b|

)
E

(
Y0Y|m+c−d|

)
. (A.3)

Proof To simplify notations we shall use Xk , Yk to represent Xkh , Ykh etc. From the relation
(3.3) it is easy to see that

E(Xk+a Xk′+b) = E(Yk+aYk′+b) − e−θ(k′+b)h
E(Y0Yk+a)

−e−θ(k+a)h
E(Y0Yk′+b) + e−θ(k+k′+a+b)h

E(Y 2
0 )

=:
4∑

i=1

Ii,k,k′ , (A.4)

where Ii,k,k′ = Ii,a,b,k,k′ , i = 1, . . . , 4, denote the above i-th term.
Let us consider 1

n

∑n
k,k′=1 I

2
i,k,k′ for i = 2, 3, 4. First, we consider i = 2. By Cheridito et

al. (2003, Theorem 2.3), we know that E(Y0Yk) converges to 0 when k → ∞. Thus by the
Toeplitz theorem, we have

1

n

n∑

k,k′=1

I 22,k,k′ = 1

n

n∑

k,k′=1

e−2θ(k′+b)h [
E(Y0Yk+a)

]2

≤ C
1

n

n∑

k

[
E(Y0Yk+a)

]2 → 0. (A.5)

Exactly in the same way we have

1

n

n∑

k,k′=1

I 23,k,k′ → 0. (A.6)

When i = 4, we have easily

lim
n→∞

1

n

n∑

k,k′=1

I 24,k,k′ = 1

n

n∑

k,k′=1

e−2θ(k+k′+a+b)h [
E(Y 2

0 )
]2 → 0. (A.7)

Now we have

1

n

n∑

k,k′=1

E
(
Xkh+ah Xk′h+bh

)
E

(
Xkh+ch Xk′h+dh

)

= 1

n

4∑

i, j=1

n∑

k,k′=1

Ii,a,b,k,k′ I j,c,d,k,k′

= 1

n

n∑

k,k′=1

I1,a,b,k,k′ I1,c,d,k,k′ + 1

n

∑

i �=1,or j �=1

n∑

k,k′=1

Ii,a,b,k,k′ I j,c,d,k,k′

= I1,1,n +
∑

i �=1,or j �=1

Ii, j,n .
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First, let us consider I1,1,n . By the stationarity of Yn , we have

I1,1,n = 1

n

n∑

k,k′=1

E(Yk+aYk′+b)E(Yk+cYk′+d)

= 1

n

n∑

k,k′=1

E(Y0Y|k′−k+b−a|)E(Y0Y|k′−k+d−c|)

= E(Y0Y|b−a|)E(Y0Y|d−c|) + 1

n

n−1∑

m=1

(n − m)E(Y0Y|m+b−a|)E(Y0Y|m+d−c|)

+1

n

n−1∑

m=1

(n − m)E(Y0Y|−m+b−a|)E(Y0Y|−m+d−c|)

= E(Y0Y|b−a|)E(Y0Y|d−c|) +
n−1∑

m=1

E(Y0Y|m+b−a|)E(Y0Y|m+d−c|)

+
n−1∑

m=1

E(Y0Y|m+a−b|)E(Y0Y|m+a−b|) + 1

n

n−1∑

m=1

mE(Y0Y|m+b−a|)E(Y0Y|m+d−c|)

+1

n

n−1∑

m=1

mE(Y0Y|m+a−b|)E(Y0Y|m+c−d|). (A.8)

By Lemma A.1 for Yt or an expression of E(Y0Ym) given in Cheridito et al. (2003, Theorem
2.3):

E(Y0Ym) = 1

2
σ 2

N∑

n=1

θ−2n(�2n−1
k=0 (2H − k))m2H−2n + O(m2H−2N−2).

This means E(Y0Ym) = O(m2H−2) as m → ∞, which in turn means that
∣
∣E(Y0Y|m+ρ1|)E

(Y0Y|m+ρ2|)
∣
∣ = O(m4H−4) for any arbitrarily given integers ρ1 and ρ2. Hence, when H < 3

4 ,∑n−1
m=0 E(Y0Y|m+ρ1|)E(Y0Y|m+ρ2|) converges as n tends to infinity. This shows that the second

and third terms in (A.8) are convergent.
Notice that for H < 3

4 ,mE(Y0Ym)2 = O(m4H−3) → 0 asm → ∞. By Toeplitz theorem
we have

1

n

n−1∑

m=0

m
∣
∣E(Y0Y|m+ρ1|)E(Y0Y|m+ρ2|)

∣
∣ → 0 as n → ∞.

Thus, the fourth and fifth terms in (A.8) converges to 0. This implies that I1.1.n converges to
the right hand side of (A.3).

When one of the i or j is not equal to 1, we have by the Hölder inequality

Ii, j,n ≤
⎛

⎝1

n

n∑

k,k′=1

I 2i,a,b,k,k′

⎞

⎠

1/2 ⎛

⎝1

n

n∑

k,k′=1

I 2j,c,d,k,k′

⎞

⎠

1/2

which will go to 0 since 1
n

∑n
k,k′=1 I

2
i,a,b,k,k′ , n = 1, 2, . . . is bounded when i = 1 and

converges to zero when i �= 1 by (A.5)–(A.7). ��
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Let Gn be defined by (4.2) in Sect. 4. Its Malliavin derivative is given by

DGn = 1√
n
2α

n∑

k=1

XkDXk + 1√
n

β

n∑

k=1

(XkDXk+1 + Xk+1DXk)

+ 1√
n

n∑

k=1

γ (XkDXk+2 + Xk+2DXk). (A.9)

Lemma A.3 Define the sequence of random variables Jn := 〈DGn, DGn〉H. Then

lim
n→∞E [Jn − E(Jn)]

2 = 0. (A.10)

Proof It is easy to see that Jn is a linear combination of terms of the following forms (with
the coefficients being a quadratic forms of α, β, γ ):

J̃n := 1

n

n∑

k′,k=1

〈DXk1 , DXk′
1
〉HXk2 Xk′

2

= 1

n

n∑

k′,k=1

E(Xk1Xk′
1
)Xk2 Xk′

2
, (A.11)

where k1, k2 may take k, k + 1, k + 2, and k′
1, k

′
2 may take k′, k′ + 1, k′ + 2. For example,

one term is to take k1 = k2 = k and k′
1 = k′ + 1, k′

2 = k′ which corresponds to the product:
〈

1√
n
2α

n∑

k=1

XkDXk,
1√
n

β

n∑

k=1

(XkDXk+1)

〉

= 2αβ

n

n∑

k′,k=1

E(Xk Xk′+1)Xk Xk′ =: 2αβ J̃0,n . (A.12)

We will first give a detail argument to explain why

E

[
J̃0,n − E( J̃0,n)

]2 → 0

and then we outline the procedure that similar claims hold true for any terms in (A.11). Note
that E( J̃0,n) will not converge to 0.

From the Proposition 4.2 it follows

E

[
J̃0,n − E( J̃0,n)

]2 = 1

n2

n∑

k,k′, j, j ′=1

E(Xk Xk′+1)E(X j X j ′+1)E(Xk X j )E(Xk′ X j ′)

+ 1

n2

n∑

k,k′, j, j ′=1

E(Xk Xk′+1)E(X j X j ′+1)E(Xk X j ′)E(Xk′ X j )

=: I1,n + I2,n .

Using (A.1) we have

I1,n ≤ 1

n2

n∑

k,k′, j, j ′=1

(1 + |k′ − k|)2H−2(1 + | j ′ − j |)2H−2

(1 + | j − k|)2H−2(1 + |k′ − j ′|)2H−2 ;
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I2,n ≤ 1

n2

n∑

k,k′, j, j ′=1

(1 + |k′ − k|)2H−2(1 + | j ′ − j |)2H−2

(1 + | j ′ − k|)2H−2(1 + |k′ − j |)2H−2.

Now it is elementary to see that I1,n → 0 and I2,n → 0 when n → ∞.
Now we deal with the general term

J̃1,n := 1

n

n∑

k′,k=1

E(Xk1Xk′
1
)Xk2 Xk′

2

in (A.11), where k1, k2 may take k, k + 1, k + 2, and k′
1, k

′
2 may take k′, k′ + 1, k′ + 2. We

use Proposition 4.2 to obtain

E

[
J̃1,n − E( J̃1,n)

]2 = 1

n2

n∑

k,k′, j, j ′=1

E(Xk1Xk′
1
)E(X j1X j ′1)E(Xk2 X j2)E(Xk′

2
X j ′2)

+ 1

n2

n∑

k,k′, j, j ′=1

E(Xk1Xk′
1
)E(X j1X j ′1)E(Xk2 X j ′2)E(Xk′

2
X j2)

=: Ĩ1,n + Ĩ2,n,

where k1, k2 may take k, k + 1, k + 2, and k′
1, k

′
2 may take k′, k′ + 1, k′ + 2, j1, j2 may take

j, j + 1, j + 2, and j ′1, j ′2 may take j ′, j ′ + 1, j ′ + 2. Using (A.1) we have

Ĩ1,n ≤ 1

n2

n∑

k,k′, j, j ′=1

(1 + |k′ − k|)2H−2(1 + | j ′ − j |)2H−2

(1 + | j − k|)2H−2(1 + |k′ − j ′|)2H−2 ;

Ĩ2,n ≤ 1

n2

n∑

k,k′, j, j ′=1

(1 + |k′ − k|)2H−2(1 + | j ′ − j |)2H−2

(1 + | j ′ − k|)2H−2(1 + |k′ − j |)2H−2.

Now it is elementary to see that I1,n → 0 and I2,n → 0 when n → ∞. ��

Appendix B: Determinant of the Jacobian of f

The goal of this section is to compute the determinant of the Jacobian of

f (θ, H , σ ) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1
π
σ 2�(2H + 1) sin(πH)

∫ ∞
0

x1−2H

θ2+x2
dx ;

1
π
σ 2�(2H + 1) sin(πH)

∫ ∞
0 cos(hx) x

1−2H

θ2+x2
dx ;

1
π
σ 2�(2H + 1) sin(πH)

∫ ∞
0 cos(2hx) x

1−2H

θ2+x2
dx,

(B.1)

(we use the integral form of the first component of f to simplify the computation of the
determinant).
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The Jacobian matrix of f is equivalent (their determinants are up to a sign) to J =
(C1,C2,C3), where the column vectors are given by

C1 =

⎛

⎜
⎜
⎜
⎝

2σ�(2H + 1) sin(πH)
∫ ∞
0

x1−2H

θ2+x2
dx

2σ�(2H + 1) sin(πH)
∫ ∞
0 cos(hx) x

1−2H

θ2+x2
dx

2σ�(2H + 1) sin(πH)
∫ ∞
0 cos(2hx) x

1−2H

θ2+x2
dx

⎞

⎟
⎟
⎟
⎠

;

C2 =

⎛

⎜
⎜
⎜
⎝

−2θσ 2�(2H + 1) sin(πH)
∫ ∞
0

x1−2H

(θ2+x2)2
dx

−2θσ 2�(2H + 1) sin(πH)
∫ ∞
0 cos(hx) x1−2H

(θ2+x2)2
dx

−2θσ 2�(2H + 1) sin(πH)
∫ ∞
0 cos(2hx) x1−2H

(θ2+x2)2
dx

⎞

⎟
⎟
⎟
⎠

;

and C3 = C3,1 + C3,2 + C3,3, where

C3,1 =

⎛

⎜
⎜
⎜
⎝

σ 2�(2H + 1) sin(πH)
∫ ∞
0 −2 log(x) x

1−2H

θ2+x2
dx

σ 2�(2H + 1) sin(πH)
∫ ∞
0 −2 log(x) cos(hx) x

1−2H

θ2+x2
dx

σ 2�(2H + 1) sin(πH)
∫ ∞
0 −2 log(x) cos(2hx) x

1−2H

θ2+x2
dx

⎞

⎟
⎟
⎟
⎠

;

C3,2 =

⎛

⎜
⎜
⎜
⎝

σ 2π�(2H + 1) cos(πH)
∫ ∞
0

x1−2H

θ2+x2
dx

σ 2π�(2H + 1) cos(πH)
∫ ∞
0 cos(hx) x

1−2H

θ2+x2
dx

σ 2π�(2H + 1) cos(πH)
∫ ∞
0 cos(2hx) x

1−2H

θ2+x2
dx

⎞

⎟
⎟
⎟
⎠

;

and

C3,3 =

⎛

⎜
⎜
⎜
⎝

σ 2∂H�(2H + 1) sin(πH)
∫ ∞
0

x1−2H

θ2+x2
dx

σ 2∂H�(2H + 1) sin(πH)
∫ ∞
0 cos(hx) x

1−2H

θ2+x2
dx

σ 2∂H�(2H + 1) sin(πH)
∫ ∞
0 cos(2hx) x

1−2H

θ2+x2
dx

⎞

⎟
⎟
⎟
⎠

.

By the linearity of the determinant, we have

det(J ) = det(C1,C2,C3,1) + det(C1,C2,C3,2) + det(C1,C2,C3,3)

It is easy to see that det(C1,C2,C3,2) = det(C1,C2,C3,3) = 0 (C1 is a proportional to C3,2

and to C3,3). Therefore
det(J ) = det(C1,C2,C3,1). (B.2)

Notice that
det(C1,C2,C3,1) = −4θσ 5�3(2H + 1) sin3(πH) det(M), (B.3)

where

M=

⎛

⎜
⎜
⎜
⎝

∫ ∞
0

x1−2H

(θ2+x2)
dx

∫ ∞
0

x1−2H

(θ2+x2)2
dx

∫ ∞
0 −2 log(x) x

1−2H

θ2+x2
dx

∫ ∞
0 cos(hx) x1−2H

(θ2+x2)
dx

∫ ∞
0 cos(hx) x1−2H

(θ2+x2)2
dx

∫ ∞
0 −2 log(x) cos(hx) x

1−2H

θ2+x2
dx

∫ ∞
0 cos(2hx) x1−2H

(θ2+x2)
dx

∫ ∞
0 cos(2hx) x1−2H

(θ2+x2)2
dx

∫ ∞
0 −2 log(x) cos(2hx) x

1−2H

θ2+x2
dx

⎞

⎟
⎟
⎟
⎠
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Fig. 2 Determinant of M for H ∈ (0, 1) and θ ∈ (2, 10)

Since θ > 0, σ > 0, sin(πH) > 0 and �(2H + 1) > 0 (for H ∈ (0, 1)), det(J ) = 0 if and
only if det(M) = 0.

The determinant det(J ) or the determinant det(M) depends also on h. To remove this
dependence, we write M = (Mi j )1≤i, j≤3, where

M11 =
∫ ∞

0
h2H

x1−2H

(h2θ2 + x2)
dx, M12 =

∫ ∞

0
h2H+2 x1−2H

(h2θ2 + x2)2
dx

M13 =
∫ ∞

0
−2h2H log(

x

h
)

x1−2H

h2θ2 + x2
dx, M21 =

∫ ∞

0
h2H cos(x)

x1−2H

(h2θ2 + x2)
dx

M22 =
∫ ∞

0
h2H+2 cos(x)

x1−2H

(h2θ2 + x2)2
dx,

M23 =
∫ ∞

0
−2h2H log(

x

h
) cos(x)

x1−2H

h2θ2 + x2
dx

M31 =
∫ ∞

0
h2H cos(2x)

x1−2H

(h2θ2 + x2)
dx,

M32 =
∫ ∞

0
h2H+2 cos(2hx)

x1−2H

(h2θ2 + x2)2
dx

M33 =
∫ ∞

0
−2h2H log(

x

h
) cos(2x)

x1−2H

h2θ2 + x2
dx

Since log( xh ) = log(x) − log(h), the determinant of M is equal to h6H+2 multiply the
determinant of the following matrix:

N =

⎛

⎜
⎜
⎜
⎝

∫ ∞
0

x1−2H

(h2θ2+x2)
dx

∫ ∞
0

x1−2H

(h2θ2+x2)2
dx

∫ ∞
0 −2 log(x) x1−2H

h2θ2+x2
dx

∫ ∞
0 cos(x) x1−2H

(h2θ2+x2)
dx

∫ ∞
0 cos(x) x1−2H

(h2θ2+x2)2
dx

∫ ∞
0 −2 log(x) cos(x) x1−2H

h2θ2+x2
dx

∫ ∞
0 cos(2x) x1−2H

(h2θ2+x2)
dx

∫ ∞
0 cos(2x) x1−2H

(h2θ2+x2)2
dx

∫ ∞
0 −2 log(x) cos(2x) x1−2H

h2θ2+x2
dx

⎞

⎟
⎟
⎟
⎠
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Namely, the determinant det(J ) is a negative number multiplied by the determinant det(N ).
Denote θ ′ = hθ . The determinant of N a function of two variables only: θ ′ and H . The plot
in Fig. 2 shows that det(N ) is positive for H ∈ (0.03, 1) and θ ′ ∈ (2, 10). Combining this
with (B.2) and (B.3), we see that on

Dh = {H > 0.03, 2 < θh < 10, σ > 0} (B.4)

det(J ) is strictly negative hence is not singular.

Appendix C: Numerical results

For all the experiments, we take h = 1.

C.1. Strong consistency of the estimators

In this subsection, we illustrate the almost-sure convergence by plotting different trajectories
of the estimators. We observe that when log2(n) ≥ 14, the estimators become very close to
the true parameter.

However, since our estimators are random (they depend on the sample {Xkh}nk=1), what’s
important to see in these figures is the deviations from the true parameter we are estimating.
Even if three trajectories are not enough to make statements about the variance, the figures
predict that the variance of θ̃n is very high compared to the other estimators (see Figs. 3, 4)
and that, for H close to 0 (see Fig. 5), the deviations of H̃n increase.

C.2. Mean and standard deviation/Asymptotic behavior of the estimators

It is important to check the mean and deviation of our estimators. For example, a large
variance implies a large deviation and therefore a “weak” estimator. That is why we plotted
the mean and variance of our estimators for n = 212 over 100 samples.

As we observe, the standard deviation (s.d) of θ̃n is larger than the s.d of σ̃n which is larger
than the s.d of H̃n (see Tables 1, 2). Notice also that the s.d of H̃n increases as H decreases.

In Hu and Song (2013), the variance of the θ estimator is proportional to θ2. In our case,
it is difficult to compute the variances of our estimators (they depend on the matrix � (see
Theorem 4.3) and the Jacobian of the function f (see Eq. (3.9)), however we should probably
expect something similar which could explain the gap in the variances since the values of θ

are usually bigger that the values taken by σ or H .
Having access to 100 estimates of each parameter, we are also able to plot the distributions

of our estimators to show that they effectively have a Gaussian nature (4.5) (Figs. 6, 7, 8).

Remark C.1 In practice, one may already know the value of one parameter, σ for example. In
this case, it is important to point out that the estimators perform a lot better. For example, in
Fig. 9, we plot the density of θn and Hn for σ = 1, H = 0.6, θ = 6 and for log2(n). Observe
how the variance of the estimators is a lot smaller and the shape of the density is smoother.
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Fig. 3 Convergence of H̃n for H = 0.7 and H = 0.4 (θ = 6, σ = 2)
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Fig. 4 Convergence of θ̃n for θ = 6, H = 0.7, σ = 2

Fig. 5 Convergence of σ̃n for θ = 6, H = 0.7, σ = 2
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Table 1 H = 0.7,θ = 6 and
σ = 2

Mean Standard deviation

H̃n 0.704 0.0221

θ̃n 6.2983 0.8288

σ̃n 2.0921 0.2117

Table 2 H = 0.4,θ = 6 and
σ = 2

Mean Standard deviation

H̃n 0.4392 0.0531

θ̃n 6.832 1.3227

σ̃n 2.4785 0.3833
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Fig. 6 Distribution of H̃n for H = 0.7 and H = 0.4 while θ = 6, σ = 2
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Fig. 7 Distribution of θ̃n for θ = 6, H = 0.7, σ = 2

Fig. 8 Distribution of σ̃n for θ = 6, H = 0.7, σ = 2
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Fig. 9 Density plots of θn and Hn when σ is known (= 1)
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