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Abstract

Let X = (X;);>0 be a known process and 7 an unknown random time independent of
X. Our goal is to derive the distribution of 7" based on an iid sample of X7. Belomestny
and Schoenmakers (Stoch Process Appl 126(7):2092-2122, 2015) propose a solution based
the Mellin transform in case where X is a Brownian motion. Applying their technique we
construct a non-parametric estimator for the density of 7' for a self-similar one-dimensional
process X. We calculate the minimax convergence rate of our estimator in some examples
with a particular focus on Bessel processes where we also show asymptotic normality.
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1 Introduction

Belomestny and Schoenmakers (2015) considered the problem of recovering the distribution
of an independent random time 7" based on iid samples from a one-dimensional Brownian
motion B at time 7. Comte and Genon-Catalot (2015) already considered this problem
for Poisson processes. Here we use the method of Belomestny and Schoenmakers (2015)
and derive corresponding results for self-similar processes. We particularly focus on Bessel
processes. As a consequence, we extend results from Belomestny and Schoenmakers (2015)
to multi-dimensional Brownian motion. This is accomplished by considering the two-norm
of the multi-dimensional Brownian motion, thus reducing the problem to the case of a Bessel
process which is a one-dimensional process and can be treated similarly to the case of one-
dimensional Brownian motion. More specifically, we give a non-parametric estimator for
the density f7 of 7. We show consistency of this estimator with respect to the L2 risk and
derive a polynomial convergence rate for sufficiently smooth densities fr. Moreover, we
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show that this rate is optimal in the minimax sense. The constructed estimator is also shown
to be asymptotically normal.

The paper is organized as follows: In Sect. 2 we recapitulate the Mellin transform which
is our main tool throughout this paper. Using this transform we construct our estimator in
Sect. 3 by solving a multiplicative deconvolution problem which is related to the original
problem through self-similarity of the underlying process. The use of the Mellin transform in
multiplicative deconvolution problems proposed by Belomestny and Schoenmakers (2015)
is different to the standard approach which consists in applying a log-transformation and thus
reducing the problem to an additive deconvolution problem which is usually addressed by
the kernel density deconvolution technique. In Sect. 4 we give bounds on bias and variance of
the estimator in the general self-similar case. In the following two sections we lay our focus
on Bessel processes and give the convergence rates of our estimator for this case (Sect. 5)
and show its asymptotic normality (Sect. 6). Section 7 is devoted to two further examples
of self-similar processes where our method yields consistent estimators. Their convergence
rates are provided there. In the following Sect. 8 we show optimality in the minimax sense
of all previously obtained rates. Some numerical examples are given in Sect. 9. Finally, we
collect some of the longer proofs in Sect. 10.

2 Mellin transform

In this section we recapitulate some properties of the Mellin transform from Butzer and
Jansche (1997). This integral transform will be our main tool in estimation procedures of the
next sections. For an interval I define the space

My :=ﬂ[f:R+—>(C‘/OOO|f(x)|xC_ldx <oo}.

cel
If f is the density function of an R -valued random variable, then we have atleast f € [y 1.
Moreover, if f : Ry — R is locally integrable on R with

Ox~%), for x -0
O™, for x > 00’

fx) = {
then f € M, p) holds.

Definition 1 For a densitiy function f € 9(4,p) of a random variable X define

MLFIGs) = MIX](s) = [0 FOoxdx

as the Mellin transform of f (or of X) in s € C with Re(s) € (a, b).

If f € 9M.p) holds, then M[f](s) is well defined and holomorphic on the strip
{s € C|Re(s) € (a, b)} according to Butzer and Jansche (1997).

Example2 (i) Consider gamma densities

4 1
— o— —rXx 1
Sx) 7F(O)x e (D
for x,o,r > 0. Forall s € C with Re(s — o + 1) > 0 we have

1—s

F(g)]"(s +o—1).

r

MLfI(s) =
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(i) Consider for ¢t > 0, d > 1 the densities

270t e
filx) = Wx a7, x>0. 2)
For Re(s) > 1 — d elementary calculus shows that
MUATS) = —— r(”d‘l)z% 3)
I'd/2) 2

Similar to the well-known relation of the classical Fourier transform to sums of indepen-
dent random variables, the Mellin transform behaves multiplicatively with respect to products
of independent random variables:

Theorem 3 Let X and Y be independent R -valued random variables with densities fx €
M,y and fy € Mc ay, and Mellin transforms M[X]and M[Y]fora < b, c < d, (a,b)N
(c,d) # . Then XY has a density fxy € M pn(c,qd), and

MIXY](s) = MIXT(s)M[Y](s)
forall s € C with Re(s) € (a, b) N (c, d).

In the setting of Theorem 3 it is easy to see that fxy is identical to

(fx © f)(s) = /0 T (2) e ax @

S
X
forall s € C with Re(s) € (a, b) N(c, d). The function fx © fy is called Mellin convolution

of fx and fy.

For a < b denote the space of holomorphic functions on {s € C|Re(s) € (a, b)} by
H(a, b). The mapping M : M, ) — H(a, b), f — M][f]is injective. Given the Mellin
transform of a function f we can reconstruct f:

Theorem 4 Fora <y <blet f € Mup). If

[e.¢]
[ i1+ v < .
—00
then the inversion formula
1 [ .
fx)= */ MUy +iv)x™""dv
27 J_ o

holds almost everywhere for x € R.

Another important result in the theory of Mellin transforms is the Parseval formula for
Mellin tranforms (see (Bleistein and Handelsman 1986, page 108) for the proof):

Theorem5 Let f, g : Ry — R be measurable functions such that

/0 Jfx)gx)dx

exists. Suppose that M[f]1(1 — -) and M([g](:) are holomorphic on some vertical strip
S:={z€Cla <Re(z) < b} fora,b eR. Ifthereisay € (a,b) with

/00 IM[fI(1 —y —is)|ds < oo and /ooxy_1|g(x)|dx < 00,
0

—00
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then

00 1 y+ioco
/ fx)gx)dx = T/ MLFIA = s)MIgl(s)ds.
0 Tl Jy—ioco

3 Construction of the estimator

We consider a real-valued stochastic process (¥;);>0 with cadlag paths which is self-similar
with scaling parameter H (for short, H-ss), that is

Ya)r=0 £ @"¥)io foralla > 0. 5)

Here, £ denotes identity of all finite dimensional distributions. Let 7 > 0 be a stopping time
with density fr independentof Y. Let X1, ..., X, beiid samples of Yr. In order to construct
a non-parametric estimator for fr we use the simple consequence of (5) that

THy, Ly, (6)

We take the absolute value on both sides and assume that fr € M, ) with0 < a < b and
that the density of Y7 is in 97(0,oc), S0 we can apply the Mellin transform on both sides of
(6) and obtain

M Yr[1(s) = MITTY)MIY1[1(s) = M[T(Hs — H + 1) M[|Y1]1(s)
for max{0, “F=1} < Re(s) < 2HI=1. Setting z := Hs — H + 1 we conclude that
_ MOl (257)

MOV ()

If the Mellin inversion formula (Lemma 4) is applicable to T, we may write

MIT](z) max{l — H,a} <Re(z) < b. 7

y+ioo 00 .
Jr(x) = i MIT](2)x " dz = L/ MITI(y +iv)x™"""dv  (8)
27 Jy—ico 27 oo

fora < y < b. Combining (7) and (8) we obtain the representation
1 /oo M) (e

fr) =—— . )x‘y—"“dv )

for max{l — H,a} < y < b. In order to obtain an estimator of fr based on (9) we would
like to replace M[|Yr|] by its empirical counterpart

1 n
M §) = — s=1
AlYr1IGs) o= — ) X
k=1
However, this substitution may prevent the integral in (9) from converging. Thus, we introduce
asequence (g,)neN With g, — 00 (chosen later) in order to regularize our estimator. In view
of (9) define
. e Mallvpl (B
Jalw) = o s (10)
T g MY (%)

for x > 0 and max{l — H, a} < y < b as an estimator for fr.
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4 Convergence analysis

For the sake of brevity we introduce the notation f(x) < g(x) forx — a, if f = O(g) in
the Landau notation. We write f(x) ~ g(x) forx — a,if f(x) < g(x) and g(x) < f(x)
forx - a. ForO0 <a < b and B € (0, m) consider the class of densities

F@)<z%as 20, f(2)<z 7" as |z]—> 00

C(ﬂ, a, b) = {f S Em(a,;,)

EIf':Sﬁ%(C holomorphic with f'\RJr:f, }

where

={z€C:|arg(z)] < B} and C(B.a.00):=[|C(B.a.b).

b>0

For the bias of the estimator (10) we have:

Theorem 6 Let (Y;);>0 be H-ss with cadlag paths. Let T > 0 be a stopping time independent
of Y with density fr.If fr € C(B,a,b) with B € (0,7) and0 < a < b, then

E[fr(x) = fa(0)] S x77e Per (11)
forallx >0, y € (max{a, 1 — H}, b).
Proof Let x > 0. By Fubini’s theorem and (7),
I /gn MallYr[) (2
21 J_g, MM (M)
y+H—1+iv
1o E[Mallyrl) ()]
27 Jgy M1 (M)

g Myl (P
= — —Zx V7" dv
27 g M) (P

x7V7 dv

E[f,(x)] =E

x7V7 do.

8n .
= L/ M[T1(y +iv)x 7 "Vdv. (12)
2w Jg,
We combine Theorem 4 with (12) to get
| fr(x) —E[fn(0)] < 7/| | IMIT](y +iv)|dv. 13)
U >gll

Since fr € C(B, a, b) implies IM[T](y + iv)| < e PPl for v — 400, y € (a,b) (see
Proposition 5 in Flajolet et al. (1995)), we have

L= / PNMITI(y + iv)|dv < 0. (14)
{Iv]>gn}

Moreover, (13) gives

. -y L
|fr(x) —E[fy(0)]] < e Pt / PIHMITI(y +iv)|dv < e Porx™7 —
27 J{jvl>gn) 27

for all x > 0, which is our claim. O
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Having established an upper bound on the bias of fn, we now shall do the same for the
variance of our estimator.

Theorem 7 Let (Y;);>0 be H-ss with cadlag paths. Let T > 0 be a stopping time independent
of Y with density fr.If fr € Mq,py with 0 < a < b and the density of |Y1] is in M0, c0),
then

MUV (2572 + 1) MITICY = 1)

Var[ f,, (x)] < 4m2x—2vn

2

8n 1
X / = dv
o LMY ] ()|
foralln € Nand all x > 0.

Proof Letx > 0,n € N. As

Var[/ fvdv]<</ \/Wdu>,

for any bounded random function f, (continuous in v), we obtain

) | N \/VarwnnYTu (L))
Var[ f,(x)] < - /
Am2x—2y e IMIIY1 ] (y+H 1+w) |

y—l+iv 2
1 &n \/ H
/ dv | . (15)

) 1
At \ Lo My ) (P

dv

In order to get a bound on Var([| YT| ] we use the self-similarity of Y to get

- / ELQY D 2/ fr(1)dt
0

= E[(|y;)® 2/ / Y72 fr(n)dt,
0

which (together with (15)) gives the desired bound on Var[ f,, x)]. ]

5 Application to Bessel processes

In this section we choose Y to be a Bessel process BES = (BES;);>¢ starting in 0 with
dimension d € [1, c0). Note that the case d = 1 leads to the absolute value of the one-
dimensional Brownian motion and was already considered in Belomestny and Schoenmakers
(2015). We refer to Revuz and Yor (1999) for detailed information about Bessel processes. It
is well-known, that Bessel processes are %-ss and have continuous paths. Marginal densities
are given by:
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In Example 2(ii) we calculated M[BES;](s) = I (:24=1)2"7 . Looking at (10) we

obtain

1
TWd/2)

dy 1 2(y —1+iv)
f(x)—i/g” I (%) 5 Xio Xi
n -

—x "V dy (16)
21 J g, I (y + % — 1 +iv)2r—1+iv

as an estimator for the density fr (x) of a stopping time 7' > 0 for x > 0 and max{1/2, a} <
y < b, where a, b are such that f7 € M, p) and X1, ..., X, are independent samples of
B E St. With our major result Theorem 8 we shall derive the convergence rates for (16).

Theorem 8 If fr € C(B,a,b) for some 0 <a < b, B € (0, ) and if thereisa y € (a, b)
with2y — 1 € (a,b) and y > (4 —d)/4, then

P 1 e _
XV E[ fr () = fu@P] = Cra,y <;e"én +e 2'38") , x>0 (17
for some Cr, 4, > 0 depending only on L, y,d as well as T. Moreover, taking
logn
= 18
8= i a8 (18)

in (17), one has for all x > 0 the polynomial convergence rate

~ =B
\/E[|fT(x) = ()P S x7 'm0 — oo. 19)
Proof Let x > 0. We use the upper bound on variance obtained in Lemma 7 with H = 1/2
to get
N C s d 8n 1 2
Varla? f, 01 = <952 ( | —ay 0)
472n —g» IMIBES|1Q2y — 1+ 2iv)|
for some Co(y, d) > 0. By Example 2(ii) and Lemma 21(ii) we have
2 2
A Coy,d)I" (& 8n 1
Varle? fy 1 = LD G) / v
n222vp —a 1T (y =14+ 4 +iv)]

_Cotr. I (3)°
w222vn

for some constants C1(d, y) and C>. Adding (21) and (11) gives

Coly, d)I" (4)°

(C1(d, y) + Cre™8n/%)? @21)

X Ell fr(x) = fu(0)’] < (C1d, y) + Cre™8/%)? 4 CZe™ P8

7222vn
1
<CrLa, <fe”8" - e—zﬁg"> (22)
n
for some Cy, 4,, > 0. The choice (18) yields the rate (19). O

The class C(B, a, b) is fairly large. In particular, C(8, 0, co) includes for all 8 € (0, 7/2)
such well-known families of distributions as Gamma, Weibull, Beta, log-normal and inverse
Gaussian. So, if T belongs to one of those families, Theorem 8 is true for any y >
max{1/2, (4 —d)/4}. If d > 2, then we only require y > 1/2.
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6 Asymptotic normality for Bessel processes

Note that the estimator (16) can be written as

. 1<
) == Zus (23)
n k=1
with 2y tiv)
d y—1+iv
2, =) /g" X X777 gy, (24)
’ o Jog T'(y+ % —1+iv)2rtiv

Since f, is a sum of iid variables, we can show that (under mild assumptions on fr) f, is
asymptotically normal. In fact, we have:

Theorem 9 Let fr € My p) for some 0 < a < b. Suppose there is a 'y € (a, b) such that
2y —1le(a,b),y > @& —d)/dand (6 +2)y — 6 — 1 € (a, b) for some § > 0 and

/OO IM[T]2y — 1 +iv)|dv < oo. (25)

—0o0

If we choose g, ~ log(n) in (16) then we have

vy 2 (Fa0) = ELR (0D S M0, 1) (26)

forall x > 0, where

I (§) —ayta-3

Syl ¢ log ™ (ga) (1 + 0(1)) 27)

v, = Var[Z, 1] =
with some ¢ > 0 given by (47).

We present the proof in Sect. 10.1. As we mentioned in the end of Sect. 5, we can often
assume (a, b) = (0, 00), sothatthe choice of y isonly restricted by y > max{1/2, (4—d)/4}.
In this case a suitable § can always be found: For y € (1/2, 1) choose é < (1—-2y)/(1—vy),
for y > 1 choose § > (1 —2y)/(1 — y) and for y = 1 any § > 0. If in addition to
(a, b) = (0, c0) we have d > 2, then the statement is true for all y > 1/2.

It is possible to give a Berry-Esseen type error estimate for the convergence in (26). This
is a new result even for dimension d = 1.

Theorem 10 Let fr € M4 p) for some 0 < a < b. Suppose there is a 'y € (a, b) such that
2y —le(a,b),y > @4 —d)/4 3y —2 € (a, b) and (25) holds. Fix some x > 0. Denote
by F, the distribution function of

vy 2 (Fu(x) = ELA (0]

(where fn (x) is defined by (16) and v, = nVar[f,l (x)] is given by (27)) and by @ the
distribution function of the standard normal distribution. If we choose g, ~ log(n) in (16)
then we have

T
N

1
n~2(log ) =43 10g? (log(n)), if v<
Pn :=sup |[Fp(y) — @ (y)] S _1 3Q2y—d+3)/2 3 . 3
yeR n~ 2 (logn) log”’(log(n)), if y >

|
B

(28)

N‘

forn — oo.
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Proof Let x > 0 and n € N. Consider the representation (23) of f,,(x). Berry-Esseen

Theorem (see Génssler and Stute 1977) states

6El|Zy,1 — E[Zy.111°]
(Var[Z,,11)3/?n'/2

Pn = (29)

We choose j = 3 in Lemma 11 to get

—y=d/2+3/2 37g, /2 if _
e , 1 +d/2-3/2<0
E[|Zn.1 — E[Zy 1111 < EllZu1]*] < {g" y+dj2=3

e37an/2, ify+d/2—-3/2>0
(30)
for n — o0o. By Theorem 9 we have (27). Choose g, ~ log(n). Plugging (30) and (27) into
(29) concludes the proof. O

Note that the signs of the powers 4y — d + 3 and 3(2y — d + 3)/2 in (28) are ambiguous
and depend on the relative positions of y and d. However, if d > 2 then we only have the
case Y +d/2 — 3/2 > 0 and the power of the logarithm is positive.

The following observation about the absolute moments of Z, ; is useful in the proof of
Theorem 9 but also holds some insights in itself.

Lemma 11 Let fr € Map) for some 0 < a < b and (g,)nen C Ry with g, — 00
asn — oo. If there is a y € (a,b) such that 2y —1 € (a,b), y > (4 — d)/4 and
(y = 1)j+1E¢€(a,b), then

gV nil2 ify 142 —3/2 <0

EllZ,11'1 < { i 31)

e”gnj/zy lf)/ +d/2—3/220
asn — oo for all j € Ry. In particular, all absolute moments of Z, 1 exist for alln € N

greater than some no € N.

Proof Case y + d/2 — 3/2 > 0: By Jensen inequality, Lemma 21(ii) and (7) (with H =
1/2, Y = BES there) we have

' 20-Djy [* 1
E[1Za1V] < cE[X] ]/ — dv
e [T (y+d/2—1+iv))
< cMIX)QR>y — 1)j+ D(Cyaj+ Cje™I/?)
= cM[TI((y — 1)j + DMIBES{1Q2(y — 1)j + )(Cyaj + Cje™81I/2),

where ¢ ;= I" (%)j (2"7x¥)~/ and Cy.a,j,Cj > 0.Thecase y +d/2 — 3/2 < 0 follows
similarly applying Lemma 21(i) instead of (ii). O

For the special case (a, b) = (0, 1) andd = j = 1 this result is mentioned in Belomestny
and Schoenmakers (2015) but without an extensive proof which we provide here. Note that
ford > 2 the assumption y > (4 —d)/4 is redundant. Moreover, we always have the smaller
bound of the second case in (31).

7 Some other self-similar processes

7.1 Normally distributed processes

LetY = (¥;):>0 be H-ss with cadlag paths and Y standard normally distributed. As example
consider a fractional Brownian motion. This setting is easily generalized to the case where
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Y1 ~ N(0, 62) with 92 > ( by considering the process ()7,),20 = (Y;/0):>0 and modifying
our observations to X; := X;/o. Taking d = 1 in Example 2(ii) we see that estimator (10)
assumes the form

. 1~y (—1tiv)/H
8 D ket X

o 1
fn(x) = 2ﬁ /_g” r <y+1~12;11+iv)zy+“2’;]+iu

x VT dy (32)

forx > Oand max{l — H, a} < y < b. We can prove a convergence result for this estimator,
similar to Theorem 8.

Theorem 12 Let O < a < b. Suppose fr € C(B, a, b) for some B € (0, 7). If there is some
y € (max{a, 1 — H,3/4}, b), then

. 1,mgn/(2H) 4 ,—2Bgn i >
Y E[fr(x) = fu@P1 S {E:;SI—V)/H;_;/(ZH) ;Lefzﬁgn, Z: Z _ 1 (33)
forn — oo and all x > 0. Taking
2H logn .
gn = [gﬁ?zlzg,—zw—l)loglogn lf = , (34)
T+4HP s ify <1
we obtain for all x > 0 the polynomial convergence rate
__2HB
AR - AP T e V! (35)

_ _2HB a=y)2p
n~ 7P (logn) =6 | if y < 1
forn — oo.

Proof The proof is analogous to the one of Theorem 8 except for the upper bound on variance
which is in this case

&n 2
Cotv. NH? [ (Ci(y. ) + G ), i y =1
yH2H—1 x

Var[x” f,(x)] <
T2 n C?(2H/gn) ™ et if y<l1

for some Co(y, H) > 0. Combining this with the bound on the bias from Lemma 6(i) we
obtain (33). Plugging (34) into (33) gives the rate (35). ]

Taking H = 1/2 in Theorem 12 we obtain the same rates as for Bessel processes (see
Theorem 8). For smaller H the rate is worse and for greater H it is better. Note that we work
with observations of | Y7 | rather than Y.

7.2 Gamma distributed processes

LetY = (Y;)s>0 be H-ss with cadlag paths such that Y| has Gamma density (1) with » = 1.
We can easily generalize to the case r > 0, by considering the process (Yt)tEO = (rY;)i=0
and modifying our observations to X i '=rX;. As an example consider the so-called square
of a Bessel process with dimension d starting at 0 (see Revuz and Yor 1999, Chapter X1, §1).
Considering Example 2(i) estimator (10) takes the form

n (y—1+iv)/H
rey [ iyn,xy
2 r (aH+yfl+iv>
—&n

falx) = XTI gy (36)

H
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for x > 0 and max{l — o0 H,a} < y < b. We can prove a convergence result for this
estimator, that is similar to Theorems 8 and 12.

Theorem 13 Let 0 < a < b. Suppose fr € C(B, a, b) for some 8 € (0, ). If there is some
y € (max{a,l —oH,1 —o/4},b) with2y — 1 € (a, b), then

5 l ner;+e—2ﬂgn if)/ZI—UH-i-g
X E[fr(x) — fu@)*] |_20te -l o 5 GD
,,gn e + e 2Pen jf y<l—oH+ 75
forn — oo andall x > 0. If
%“’fgﬁ, if y=1-oH+1
&n = logn— |20 te A=) loglogn . ’ (38)
( %41-12,3 ) , zfy<1—oH+%

then for all x > O we have

n T if y>l—ocH+ 14
VB0 - fior1 24" o > (39
n 7 logn)*, if y<l—oH+4
__8 (2(V+(7H—]) _ 1)
forn — oo, where k py; T .
Proof 1In this case he upper bound on variance becomes
Lo, if y>1—-ocH+4
Var[x? f,(0)]1 S 4" 2wkein 4,
lgn " eH,ify<1—aH+%
Rest is again analogue to the proof of Theorem 8. O
8 Optimality
The rates from Theorems 8, 12 and 13 are optimal in the minimax sense.
Theorem 14 Forall B € (0,7) and0 < a < b < 7 /B there is x > 0 such that
liminf v, 2 inf sup E[|f,1(x) —f@Pl=c (40)

n—0oQo f” fEC(ﬂ,a,b)

Sfor some ¢ > 0, where infimum is over all estimators based on samples of Y1 with
(i) a Bessel process Y with dimension d € [1, co) and ¥, = rf%;

(ii) a H-ss. Gaussian process Y (H € (0,2)) and Y, = niﬁ;

(iii) a H-ss. Gamma distributed process Y (H € (0, 2)) and ¥, = n_ﬁ.

See Sect. 10.2 for the proof of this theorem. A similar optimality result was obtained
in Belomestny and Schoenmakers (2015) for the case where the absolute value of a one-
dimensional Brownian motion is observed. (40) means that for each estimator fn, that we
may construct with our observations, there is a true density f € C(B8, a, b) such that

VELAG) = F@ORIZ Y, 7 — 00
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for some x > 0, i.e. it is impossible to construct an estimator with a convergence rate (w.r.t.
L?-distance) faster than v, for all f € C(B,a, b) and all x > 0.

9 Simulation study

In this Section we test our estimator (16) with some simulated data. Consider a Bessel process
with dimension d = 5 and a Gamma(2, 1) distributed stopping time 7', i.e. T has the density

fx)=xe™™, x=>0.

In order to evaluate the estimator (16) we choose y = 0.7. Take the cut-off parameter
gn (;ig)) (in accordance with (18)) and B = 0. To choose 8 small appears counterintuitive

at first because we showed in Theorem 8 that the convergence rate is better for large f.
However, in our examples the choice 8 = 0 delivers the best results. This can be explained
as follows: Our bound on the bias of estimator fn contains the constant L (see (14)) as a factor.
This constant is growing in B and seems to make a crucial contribution to the overall error.
We refer to Belomestny and Schoenmakers (2015) and Schulmann (2019) for an alternative
choice of g, based purely on the data.

In order to test the performance of fn we compute it based on 100 independent samples
of BE St of size n € {1000, 5000, 10,000, 50,000}. In Fig. 1 we see the resulting box-plots
of the loss.

Let us demonstrate the performance of our estimator for different distributions of 7. As
examples we consider Exponential, Gamma, Inverse-Gaussian and Weibull distributions. To
construct the estimate (16) we choose d =5, y = 0.8, n = 1000 and g,, as before. Figure 2
shows the densities of the four distributions and their 50 respective estimates based on 50
independent samples of BESt.

We can see that the error is particularly large in the neighborhood of 0. That is because
our estimator is not defined in 0 and 11m fn (x) does not exist for fixed n. Note also that the

variance of our estimator is large for small x (see (27)). Conversely, we obtain better results
for large x.

10 Proofs
10.1 Proof of Theorem 9

We roughly imitate the proof of an analogous result for the special case d = 1, (a,b) =
(0, 1) found in Belomestny and Schoenmakers (2015). In distinction from Belomestny and
Schoenmakers (2015) we do not restrict ourselves to the case x = 1 in the proof and provide
the specific form of v, for all x > 0.

Let x > 0. It suffices to show the Lyapunov condition, i.e. fora § > 0:

im E[|Z,.1 — E[Z,1]1*"]
n—>00 nB/Z(Var[Zn’l])l—HS/Z

=0. 41

The claim (26) follows from (41) with v, = Var[Z, 1]. Note that E[Z, 1] — fr(x) for
n — oo by monotone convergence and (9) (if we choose Y = BE S there). So, (41) holds if
we can prove, that Var[Z, 1] — oo and
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e el e—

0.00
L

T T T T
1000 5000 10000 50000

Fig. 1 Box plot of the loss Sque[O,lO]{‘fn (x) — fr(x)|} for different sample sizes

lim - EUZnaPT 4
% WP (Nar Zy )IH2 “42)

In any case of Lemma 11 (for j = § + 2) we have
E[Zy 1771 S ghe™ @082, n - oo (43)

for all § € R4 and some ¢ > 0. Now we investigate the asymptotic behavior of Var[Z, 1].
Looking at (24) we use Fubini’s theorem to obtain

Var[Z), 1]

B / / Cov[X 2)/ 1+iv X2y_l+iu]dvdu
7T2 gn (2x)2yFi(v— “)F(y—i—i—l—l—lv)F(y—l—%—l—iu)

/gn / E[X4y 4+2i(v— ”)]d du
712 o Q)OO (y 4 4 14 iv) M (y+ 4 — 1 —iu)

% /. /gn (2x) 2y —i(v—u) E[X2y 2+2w]E[X2y 2— 21u]dvdu

2 gn 7—1+lv)1’(y+§—1—iu)
r) / f MIX1 1@y +2i(v — u) — 3)dvdu
w2 gn J—gy (2x)2H = ”)F()/-I- —1+iv)F(y+%—1—iu)
2
r (4)? /gn MIXQy —1+2v) b o
w2 g @OV (y + 4 — 1 +iv) ' ’

By Example 2(ii) we can estimate

1 &n 2
R25272y</ |M[T]()/+iv)|dv> <C<oo
X —8n

for some C > 0 and further
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(ourtuo 21n3y J0[0D) *(A213) seWINS? 2ANDASAI ()G 1Y) puE (Pal) SNISuUdp pajewnsy ¢ b4
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dvdu.

) /g,, /gn MITIQy —1+i(w—uNI 2y —2+ 4 +i(v —w)

1:2n2x2y xi(vfu)r(y_i_%_l_kiv)r(y_i_%_l_iu)

Our strategy now is to decompose the double integral defining R into pieces that are easy
to estimate. To that end let p, := g, where 0 < @ < 1/2 and define

1 4i(w— 244 4iw—
/ / 1 WPHM[T](zy l+iw—u)l 2y =2+ §+i ”))dvdu.

X0 (y + 2 4 iv) T (y + 952 — i)
By Lemma 20 there are C{, C> > 0 such that
T (v +(d/2) = 1 +iv)| = Cillpj<a + Calpgaful? 1+ 7710172
IF (v +@d/2) =1 = iw)] = Ciljza + Colpypoalul? =17 ¢~/
and K, K, > 0 such that
'y =24+ W/2)+i(v—u) = Kilp—u<2
Kol jupsalv — u20 70T o2,
With the help of these inequalities we deduce
|I 1<g 3\)/ U+d=2 7t (gn—pn) /2 g4|y—1|+(3d—5)/2en(g,,_%n)’

n — oQ.

8n
/ / Lul<gu—pn Liv—ulzpn

(2y—l+l(v—u))F(2y+d 2 +i(v—u)
x’(” O (v + G2 +i0) I (v + 52— iu)
<g1 7(gn— pn)’ n — 00 (44)

Similarly,

dvdu

dvdu

/ /gn L ) MITIQRy — 1 +i(—w)T 2y + 5% +i(v —w))
T T E TS0 (- 2 ) Ty + 452 i)
Sglem@n=rm | p s 0. (45)

for some / > 0. Combine (44) and (45) to obtain

dvdu

/ /é’n MITIQy —1+iw—u)T 2y + S +i(v —w)
v—u<pn

& - xi0=0 [ (y + 2 4 iv) I (y + 52 —iu)

8n
/ / llv‘zgn*)on]1|M|Zgnfﬂn]llvf’4|fpn

(2y—l+l(v—u))F(2y+d L +i(v—u))
A0 (y + G2 iv) I (y + 52 — iu)
= I;_‘_O(gflen(gn_l)n))'

dv du—I—O(gl 7T(gn— /)n))
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Next, we examine the asymptotic behavior of the integral I7. To this end, we take advantage
of Stirling’s formula (Lemma 19)

d—2 d—2 rr Y,
F<V+T+i”> = <V+T+iv> e VT TN 2r (1 + 0w YY)
forv — oo. Consider the integrand of 1. Tn the denominator it holds by means of the identity

log(iv) = log(v) + - that
'y +Wd/2)—14+iv)l'(y +(d/2) — 1 —iu)

2y+d-3

_ Zneivlogu—iulogu—i(v—u)e—%(u-f-v)(vu) (1 —i—O(v_l) +(9(u_1))

for u, v — o0. On the set
{lul > gn — pa} NIVl > gn — pu} N {lv —ul < pa} N {v >0,u >0}
wedefineu =g, —r,v=g, —swithO < r,s < p,, |[r —s| < p, to obtain
[y +@/2) =1+ iy +d/2) — 1 — i)
= 2m expli(gn — 5)log(gn — ) —i(gn —r)log(gn — 1) —i(r — )]
2y4+d—3 _ _ _
x g T e RO (1 4 O0(g, ) + Opngy )
+O(ppg, I,

Note that due to the choice of p,, we have p,g;' — 0 and p2g;' — 0. We use the
asymptotic decomposition

(80 — ) 10g(gn = $) = (g0 — 1) 10g(gn — 1) = (r =) = (r — ) log(gn) + O(0;/8n)
to obtain
I'y+W/2)=1+iv)I'(y +(d/2) =1 —iu)
=278, " expli(r — 5) log(g,))
x e T T4 0 (o, ).
Analogously, on the set
{lul = gn = pa} NIVl = gn — pp} O {lv —ul < pu} N {v <0, < 0}
wedefineu = —g, +r,v=—g, +swithO <r,s < p,, |r —s| < p, to obtain
F'(y+{d/2)—1+iv)I (y +d/2) —1—iu)
=278, " exp(—i(r — 5) log(ga))
x e TR (L4 0 (o, ).

Hence, I,? can be decomposed as follows:

3= 1 exp(wgn)
nT on 2y+d—3
8n

X M[T]Q2y — 1+i(r —s))exp(i(s —r)log(gn))(1 + O(pggn_l))_ldrds

1 exp(rgn) .
~ ngyT_’g{Re[l:] +0(p2e 1M
n

Pn [ Pn L P . d—4
/ Lrsizp,x e 2L Qy + —— +ilr = 9))
0 0
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where
Pn Pn - d—4
Ir? = / f ]l‘rfslfpne_j(r_h?)r(zy + A + l(r - S))
o Jo 2
X M[T1Q2y — 1 +i(r —s))exp(i(s — r)log(g.)x'"~drds
Pn
= / e VR, (v)dv
0
with

Pn—v bt ; d—4 i
R,(v) == /0 e~ T2y + —+ iMIT12y — 1+ iu)e 8@ gy, (46)
The integral in (46) allows a series representation via Lemma 22. In fact,
. d—4 1
Ry(v) =il"| 2y + > MIT]Q2y —1)log™ (gn)
d —Zu _iu d—4 . ; -2
— E[e x| 2y + — +iu | M[T]2y — 1+ iu)] log™“(gn)

u=0
+ Olog ™ (gn))

uniformly in v. Thus,

Re[1] = ; log™2(gn) + O(log ™ (gx))

holds with
d —Zu_iu d—4 . :
c:=Re|—e 2"x"TI 2y + —— 4+ iu | M[T1R2y — 1 +iu)
du 2 u=0
b4 d—4
= 51“ 2y + = MI[T]12y — 1). 47)

Summing up the auxiliary quantities introduced above we get

(4 _ _ c
Var[Z,,1] = an(xzz)y [gn 273 {;IOg_z(gn) +O(log™ (gn)) + O(pfgn_l)]

+ O(ghe™ e =) + (1)

and thus (27). If g, ~ log(n), then (27) and (43) imply (42) and hence the claim.

10.2 Proof of Theorem 14

The basic construction used in this proof is due to Belomestny and Schoenmakers (2016),
where it is used in the context of an observed Brownian motion. Define the x 2-divergence

(qo(x) — q1(x))?

d 48
q0(x) * 8

x2(P1IPo) == x*(q1lq0) :=

between two probability measures Py and P; with densities go and g;. The following general
result forms the basis for the subsequent steps (see Tsybakov 2008 for a proof).
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Theorem 15 Let {Py|f € O} be family of probability measures indexed by a non-

parametrical class of densities ©. Suppose that X1, ..., X, are iid observations in model n
with L(X1) € {Pr|f € O}. If there are f, 0, fn,1 € O such that
[f0o.n(X) = fin()| Z ¥n, n— 00 (49)
and if
(1 + x> (Pf, | P, )" <@ (50)
holds for some a > 0 independent of n, then
liminf ¥, 2 inf sup E[| f,(x) — f(0)*] = ¢ (51)
n— 00 fn c®

holds for some ¢ > 0, where the infimum is over all estimators.

Let B € (0,7)and 0 < a < b < /B. Define for M > 0

sin(fB) .- log? (x)/2 sin(M log(x))

q(x) = ﬂ m and pM()C) = E X , X = 0.
The following lemma provides some properties of the functions g and pyy.
Lemma 16 The function q is a probability density on R with Mellin transform
sin(B)
Mlgl(z) = — .+ 0 <Re(z) <m/B. (52)
sin(Bz)
The Mellin transform of the function pyy is given by
G 1HIM?/2 _ (z—1=iM)?/2
Mlpml(z) = , zeC. (53)

2i

Proof Formula (52) can be found in Oberhettinger (2012) and (53) is shown in (Belomestny
and Schoenmakers 2016, Lemma 6.2). O

Set now for any M > 0 and some § > 0,

Som(x) :=¢qx) and f1y(x):=qgx)+ (g O pm)(x) (54)

for x > 0, where g © py is defined by (4). The following lemma will help us verify condition
(49).

Lemma 17 For any M > 0 and some § > 0 not depending on M the function fi p is a
probability density satisfying

sup | fo,m (x) — fim(X)| Z exp(=MB), M — oo. (55)

x>0

Moreover, fo,m and fi y arein C(B,a,b) forall p € (0,7) and0 <a <b < m/p.

Proof For (55) see (Belomestny and Schoenmakers 2016, Lemma 6.3) where it is also shown
that for 6 small enough:

/w‘w’drsmwx x 0. (56)

8l(g © pm)(x)| =8 ;

It is easy to see that fo.p € C(B,a,b) forall p € (0,7), 0 <a < b < /B and (56)
implies the same for fi . O
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Looking further towards applying Theorem 15 let us consider the densities pys,0 and py 1
of an observation associated with the hypotheses fp » and fi u, respectively. At this point
we have to differentiate between the models we discussed so far. We will only present the
proof for the Bessel case, parts (ii) and (iii) of Theorem 14 can be showed along the same
lines.

Let Ty, p and T, s be two random variables with respective densities fo p and fi . The
density of the random variable BE ST, ,,, i = 0, 1 is obtained via (4):
21-%
I"(d/2)
For the Mellin transform of p; » we use self-similarity of BES and (3) to get

Mpi,ml(s) = MIBES 1(s)M[T; m]((s + 1)/2)

oo XQ
pim(x) = xd_l/ A2e T fi yy(Wdh, x> 0,d>1,i=0,1.
0

1 ) +d —1 s+1
= r 272 7 1)/2), i=0,1 57
@R ( > ) MU fiml((s +1)/2), i (57)
for Re(s) > 1 —d and Re(s) € (—1,  +1).

Lemma 18 Foralld > 1 and B € (0, ) we have

K 2(prmlpos) S MOTPHA=2,=METH26) - pp s o0

-4 .
Proof Define cg g4 := Ig(d/72) Sméﬁ) . By the change of variables y = %,

2 1

oo
_ d—1 —d/2 ,—%
po,m(X) = cgax /0 A e 2 T F Yoy di

=cgal|l r
’ B
>x Pt x5 oo (58)
with
o /oo e‘»"% yzn/ﬂ+d/2—2dy - /00 e—y%y%%_%dy < x—%’—d-&-l’ ‘> o0
0 yE 41 0 ~

For the next step leta € {0, (27r/8) — 1}. We apply Theorem 5 and the rule M[(-) £ (-)1(z) =
M([f(-)](z + a) and obtain

/0 x(po,m(x) — p1 m(x))dx

3+a

8227 yHoo o g z+1
=— rf>~——)Mlgo — 59
7il (d)2)? Jy—ico ( 2 ) 4 pM]( 2 ) &

d — 2 —
T (“%) Mig © ou] (%) d:

for suitable y, where M[q © py] = MlglM|[pp]. Due to (53), we can estimate
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<u—21)2 o+ M)+ olv—M)
2

[Mlomlu +iv)| <e (60)

112
with ¢(v) = e” 2. Next, we use Lemma 20 in (59) to estimate the gamma terms, then plug
in (60) and |[M[g](u + iv)| < ce P! for some ¢ > 0 to obtain

m —
/ XLy () — pon(x)2dx < M TET MR/ A o (61)
0

fora € {0, 27 /B) — 1}. By (58) and (61),

® (pm 1 (x) = puo(x))?
Pum,0(x)

dx

x*(p1.mlpo,m) :/o
5/0 (P (x) — pao(x)*dx

o
+/ x B -H(pM’](x) - PM,O(X))de
0

< MAA=3[2=M@+2p) | pg/B)+d=2,~M@+2B)  pr o o
where M(7/P)+d=2,=MT+2p) i5 the dominating term. This proves the lemma. O

Lemma 18 implies (50). With the choice

_ log(n)

T +28
Lemma 17 implies (49). Claim of Theorem 14(i) follows with Theorem 15.
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Appendix

For proof of Lemmas 19 and 20 we refer to Andrews et al. (1999).

Lemma 19 For |arg(s)| < mw we have I"(s) ~ V255712675 for |s| — .

@ Springer


http://creativecommons.org/licenses/by/4.0/

Statistical Inference for Stochastic Processes (2021) 24:477-498 497

Lemma 20 Forall a € R there are Cy, C2 > 0 such that

C11B1*7 127 BT/ < | (a +iB)| < Co|B1*7 127 1BIT/2 18] > 2.

Corollary 21 (i) Foralla € (0,1/2),8 > 0and U > 2 there is a C(a, §) > 0 such that

U
/ ;dv < C(a, 5)U(1/2*Q)56Um$/2.
_y | l(@+iv))®  —

(ii) Foralla > 1/2, 6 > 0and U > 2 there are C(a, §) and Cy(«, §) > 0 with

U
1

— _dv < Ci(a,8) + Ca(a, 5V,
/,U|r<a+iu)|s < Ci(a, 8) + Ca(, )

Proof Define C := f_22 mdv. For « € (0, 1/2) Lemma 20 gives a C; > 0 such that

U
/ S — §C+C1/ o] /2@ lvme/2 gy
_u T (a+iv)f? (2<v|<U}

U
<C+2c,u2? / e dy
2

—-C +4C1(7‘[5)_1U(1/2_a)6(eUﬂ5/2 _ eﬂé)

which implies the claim with C (e, §) := max{2C, 8C;(w8)~!}). The case o > % follows
similarly with Ci(«, 8) := C and C(«, ) := 4C (78~ L. ]

Lemma22 Leta < B. If f : (o, B) — Cis N times continuously differentiable (N € N),
then we have the expansion

N-1 .

B . i .
/ f(u)e”‘“du — Z pre f(n)(ﬂ)elxﬂ
o n=0
N-1 .,

i .
— Z prEs] f(")((x)e’m +ox™™), x> oo.
n=0

Proof See Erdélyi (1956, page 47). O
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