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Abstract
Let X = (Xt )t≥0 be a known process and T an unknown random time independent of
X . Our goal is to derive the distribution of T based on an iid sample of XT . Belomestny
and Schoenmakers (Stoch Process Appl 126(7):2092–2122, 2015) propose a solution based
the Mellin transform in case where X is a Brownian motion. Applying their technique we
construct a non-parametric estimator for the density of T for a self-similar one-dimensional
process X . We calculate the minimax convergence rate of our estimator in some examples
with a particular focus on Bessel processes where we also show asymptotic normality.

Keywords Estimation of stopping times · Multiplicative deconvolution · Mellin transform ·
Self-similar process · Bessel process

Mathematics Subject Classification 62G07 · 62G20 · 60G18 · 60G40

1 Introduction

Belomestny and Schoenmakers (2015) considered the problem of recovering the distribution
of an independent random time T based on iid samples from a one-dimensional Brownian
motion B at time T . Comte and Genon-Catalot (2015) already considered this problem
for Poisson processes. Here we use the method of Belomestny and Schoenmakers (2015)
and derive corresponding results for self-similar processes. We particularly focus on Bessel
processes. As a consequence, we extend results from Belomestny and Schoenmakers (2015)
to multi-dimensional Brownian motion. This is accomplished by considering the two-norm
of the multi-dimensional Brownian motion, thus reducing the problem to the case of a Bessel
process which is a one-dimensional process and can be treated similarly to the case of one-
dimensional Brownian motion. More specifically, we give a non-parametric estimator for
the density fT of T . We show consistency of this estimator with respect to the L2 risk and
derive a polynomial convergence rate for sufficiently smooth densities fT . Moreover, we
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show that this rate is optimal in the minimax sense. The constructed estimator is also shown
to be asymptotically normal.
The paper is organized as follows: In Sect. 2 we recapitulate the Mellin transform which
is our main tool throughout this paper. Using this transform we construct our estimator in
Sect. 3 by solving a multiplicative deconvolution problem which is related to the original
problem through self-similarity of the underlying process. The use of theMellin transform in
multiplicative deconvolution problems proposed by Belomestny and Schoenmakers (2015)
is different to the standard approach which consists in applying a log-transformation and thus
reducing the problem to an additive deconvolution problem which is usually addressed by
the kernel density deconvolution technique. In Sect. 4 we give bounds on bias and variance of
the estimator in the general self-similar case. In the following two sections we lay our focus
on Bessel processes and give the convergence rates of our estimator for this case (Sect. 5)
and show its asymptotic normality (Sect. 6). Section 7 is devoted to two further examples
of self-similar processes where our method yields consistent estimators. Their convergence
rates are provided there. In the following Sect. 8 we show optimality in the minimax sense
of all previously obtained rates. Some numerical examples are given in Sect. 9. Finally, we
collect some of the longer proofs in Sect. 10.

2 Mellin transform

In this section we recapitulate some properties of the Mellin transform from Butzer and
Jansche (1997). This integral transform will be our main tool in estimation procedures of the
next sections. For an interval I define the space

MI :=
⋂

c∈I

{
f : R+ → C

∣∣∣∣
∫ ∞

0
| f (x)|xc−1dx < ∞

}
.

If f is the density function of anR+-valued randomvariable, thenwehave at least f ∈ M[1,1].
Moreover, if f : R+ → R is locally integrable on R+ with

f (x) =
{O(x−a), for x → 0
O(x−b), for x → ∞ ,

then f ∈ M(a,b) holds.

Definition 1 For a densitiy function f ∈ M(a,b) of a random variable X define

M[ f ](s) := M[X ](s) :=
∫ ∞

0
f (x)xs−1dx

as the Mellin transform of f (or of X ) in s ∈ C with Re(s) ∈ (a, b).

If f ∈ M(a,b) holds, then M[ f ](s) is well defined and holomorphic on the strip
{s ∈ C|Re(s) ∈ (a, b)} according to Butzer and Jansche (1997).

Example 2 (i) Consider gamma densities

f (x) = rσ

Γ (σ )
xσ−1e−r x (1)

for x, σ, r > 0. For all s ∈ C with Re(s − σ + 1) > 0 we have

M[ f ](s) = r1−s

Γ (σ)
Γ (s + σ − 1).
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(ii) Consider for t > 0, d ≥ 1 the densities

ft (x) = 21− d
2 t− d

2

Γ (d/2)
xd−1e− x2

2t , x > 0. (2)

For Re(s) > 1 − d elementary calculus shows that

M[ f1](s) = 1

Γ (d/2)
Γ

(
s + d − 1

2

)
2

s−1
2 . (3)

Similar to the well-known relation of the classical Fourier transform to sums of indepen-
dent randomvariables, theMellin transform behavesmultiplicativelywith respect to products
of independent random variables:

Theorem 3 Let X and Y be independent R+-valued random variables with densities fX ∈
M(a,b) and fY ∈ M(c,d), and Mellin transformsM[X ] andM[Y ] for a < b, c < d, (a, b)∩
(c, d) �= ∅. Then XY has a density fXY ∈ M(a,b)∩(c,d), and

M[XY ](s) = M[X ](s)M[Y ](s)
for all s ∈ C with Re(s) ∈ (a, b) ∩ (c, d).

In the setting of Theorem 3 it is easy to see that fXY is identical to

( fX 	 fY )(s) :=
∫ ∞

0
fX

( s

x

)
fY (x)

1

x
dx (4)

for all s ∈ Cwith Re(s) ∈ (a, b)∩ (c, d). The function fX 	 fY is called Mellin convolution
of fX and fY .

For a < b denote the space of holomorphic functions on {s ∈ C|Re(s) ∈ (a, b)} by
H(a, b). The mapping M : M(a,b) → H(a, b), f 
→ M[ f ] is injective. Given the Mellin
transform of a function f we can reconstruct f :

Theorem 4 For a < γ < b let f ∈ M(a,b). If
∫ ∞

−∞
|M[ f ](γ + iv)|dv < ∞,

then the inversion formula

f (x) = 1

2π

∫ ∞

−∞
M[ f ](γ + iv)x−γ−ivdv

holds almost everywhere for x ∈ R+.

Another important result in the theory of Mellin transforms is the Parseval formula for
Mellin tranforms (see (Bleistein and Handelsman 1986, page 108) for the proof):

Theorem 5 Let f , g : R+ → R be measurable functions such that
∫ ∞

0
f (x)g(x)dx

exists. Suppose that M[ f ](1 − ·) and M[g](·) are holomorphic on some vertical strip
S := {z ∈ C|a < Re(z) < b} for a, b ∈ R. If there is a γ ∈ (a, b) with

∫ ∞

−∞
|M[ f ](1 − γ − is)|ds < ∞ and

∫ ∞

0
xγ−1|g(x)|dx < ∞,

123



480 Statistical Inference for Stochastic Processes (2021) 24:477–498

then
∫ ∞

0
f (x)g(x)dx = 1

2π i

∫ γ+i∞

γ−i∞
M[ f ](1 − s)M[g](s)ds.

3 Construction of the estimator

We consider a real-valued stochastic process (Yt )t≥0 with càdlàg paths which is self-similar
with scaling parameter H (for short, H -ss), that is

(Yat )t≥0
d= (aH Yt )t≥0 for all a > 0. (5)

Here,
d= denotes identity of all finite dimensional distributions. Let T ≥ 0 be a stopping time

with density fT independent of Y . Let X1, . . . , Xn be iid samples of YT . In order to construct
a non-parametric estimator for fT we use the simple consequence of (5) that

T H Y1
d= YT . (6)

We take the absolute value on both sides and assume that fT ∈ M(a,b) with 0 ≤ a < b and
that the density of Y1 is in M(0,∞), so we can apply the Mellin transform on both sides of
(6) and obtain

M[|YT |](s) = M[T H ](s)M[|Y1|](s) = M[T ] (Hs − H + 1)M[|Y1|](s)
for max{0, a+H−1

H } < Re(s) < b+H−1
H . Setting z := Hs − H + 1 we conclude that

M[T ](z) = M[|YT |] ( z+H−1
H

)

M[|Y1|]
( z+H−1

H

) , max{1 − H , a} < Re(z) < b. (7)

If the Mellin inversion formula (Lemma 4) is applicable to T , we may write

fT (x) = 1

2π i

∫ γ+i∞

γ−i∞
M[T ](z)x−zdz = 1

2π

∫ ∞

−∞
M[T ](γ + iv)x−γ−ivdv (8)

for a < γ < b. Combining (7) and (8) we obtain the representation

fT (x) = 1

2π

∫ ∞

−∞

M[|YT |]
(

γ+H−1+iv
H

)

M[|Y1|]
(

γ+H−1+iv
H

) x−γ−ivdv (9)

for max{1 − H , a} < γ < b. In order to obtain an estimator of fT based on (9) we would
like to replace M[|YT |] by its empirical counterpart

Mn[|YT |](s) := 1

n

n∑

k=1

|Xk |s−1.

However, this substitutionmayprevent the integral in (9) fromconverging. Thus,we introduce
a sequence (gn)n∈N with gn → ∞ (chosen later) in order to regularize our estimator. In view
of (9) define

f̂n(x) := 1

2π

∫ gn

−gn

Mn[|YT |]
(

γ+H−1+iv
H

)

M[|Y1|]
(

γ+H−1+iv
H

) x−γ−iv dv (10)

for x > 0 and max{1 − H , a} < γ < b as an estimator for fT .

123



Statistical Inference for Stochastic Processes (2021) 24:477–498 481

4 Convergence analysis

For the sake of brevity we introduce the notation f (x) � g(x) for x → a, if f = O(g) in
the Landau notation. We write f (x) ∼ g(x) for x → a, if f (x) � g(x) and g(x) � f (x)

for x → a. For 0 ≤ a < b and β ∈ (0, π) consider the class of densities

C(β, a, b) :=
{

f ∈ M(a,b)

∣∣∣∣
∃ f̃ :Sβ→C holomorphic with f̃ |R+= f ,

f̃ (z)�z−a as z→0, f (z)�z−b as |z|→∞

}
,

where

Sβ := {z ∈ C : | arg(z)| ≤ β} and C(β, a,∞) :=
⋂

b≥0

C(β, a, b),

For the bias of the estimator (10) we have:

Theorem 6 Let (Yt )t≥0 be H-ss with càdlàg paths. Let T ≥ 0 be a stopping time independent
of Y with density fT . If fT ∈ C(β, a, b) with β ∈ (0, π) and 0 ≤ a < b, then

E[ fT (x) − f̂n(x)] � x−γ e−βgn (11)

for all x > 0, γ ∈ (max{a, 1 − H}, b).

Proof Let x > 0. By Fubini’s theorem and (7),

E[ f̂n(x)] = E

⎡

⎣ 1

2π

∫ gn

−gn

Mn[|YT |]
(

γ+H−1+iv
H

)

M[|Y1|]
(

γ+H−1+iv
H

) x−γ−iv dv

⎤

⎦

= 1

2π

∫ gn

−gn

E
[
Mn[|YT |]

(
γ+H−1+iv

H

)]

M[|Y1|]
(

γ+H−1+iv
H

) x−γ−iv dv.

= 1

2π

∫ gn

−gn

M[|YT |]
(

γ+H−1+iv
H

)

M[|Y1|]
(

γ+H−1+iv
H

) x−γ−iv dv

= 1

2π

∫ gn

−gn

M[T ](γ + iv)x−γ−ivdv. (12)

We combine Theorem 4 with (12) to get

| fT (x) − E[ f̂n(x)]| ≤ x−γ

2π

∫

{|v|>gn}
|M[T ](γ + iv)| dv. (13)

Since fT ∈ C(β, a, b) implies |M[T ](γ + iv)| � e−β|v| for v → ±∞, γ ∈ (a, b) (see
Proposition 5 in Flajolet et al. (1995)), we have

L :=
∫

{|v|>gn}
eβ|v| |M[T ](γ + iv)| dv < ∞. (14)

Moreover, (13) gives

| fT (x) − E[ f̂n(x)]| ≤ e−βgn
x−γ

2π

∫

{|v|>gn}
eβ|v| |M[T ](γ + iv)| dv ≤ e−βgn x−γ L

2π

for all x > 0, which is our claim. ��
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Having established an upper bound on the bias of f̂n , we now shall do the same for the
variance of our estimator.

Theorem 7 Let (Yt )t≥0 be H-ss with càdlàg paths. Let T ≥ 0 be a stopping time independent
of Y with density fT . If fT ∈ M(a,b) with 0 ≤ a < b and the density of |Y1| is in M(0,∞),
then

Var[ f̂n(x)] ≤
M[|Y1|]

(
2γ−2

H + 1
)
M[T ](2γ − 1)

4π2x−2γ n

×
⎛

⎝
∫ gn

−gn

1

|M[|Y1|]
(

γ+H−1+iv
H

)
|
dv

⎞

⎠
2

for all n ∈ N and all x > 0.

Proof Let x > 0, n ∈ N. As

Var

[∫ b

a
fvdv

]
≤
(∫ b

a

√
Var[ fv]dv

)2

,

for any bounded random function fv (continuous in v), we obtain

Var[ f̂n(x)] ≤ 1

4π2x−2γ

⎛

⎜⎜⎝

∫ gn

−gn

√
Var[Mn[|YT |]

(
γ+H−1+iv

H

)
]

|M[|Y1|]
(

γ+H−1+iv
H

)
|

dv

⎞

⎟⎟⎠

2

= 1

4π2x−2γ n

⎛

⎝
∫ gn

−gn

√
Var[|YT | γ−1+iv

H ]
|M[|Y1|]

(
γ+H−1+iv

H

)
|
dv

⎞

⎠
2

. (15)

In order to get a bound on Var[|YT | γ−1+iv
H ] we use the self-similarity of Y to get

Var[|YT | γ−1+iv
H ] ≤ E[(|YT |)(2γ−2)/H ]

=
∫ ∞

0
E[(|Yt |)(2γ−2)/H ] fT (t)dt

= E[(|Y1|)(2γ−2)/H ]
∫ ∞

0
t2γ−2 fT (t)dt,

which (together with (15)) gives the desired bound on Var[ f̂n(x)]. ��

5 Application to Bessel processes

In this section we choose Y to be a Bessel process B E S = (B E St )t≥0 starting in 0 with
dimension d ∈ [1,∞). Note that the case d = 1 leads to the absolute value of the one-
dimensional Brownianmotion and was already considered in Belomestny and Schoenmakers
(2015). We refer to Revuz and Yor (1999) for detailed information about Bessel processes. It
is well-known, that Bessel processes are 1

2 -ss and have continuous paths. Marginal densities
are given by:

123



Statistical Inference for Stochastic Processes (2021) 24:477–498 483

ft (y) = 21− d
2 t− d

2

Γ (d/2)
yd−1e− y2

2t , y ≥ 0.

In Example 2(ii) we calculatedM[B E S1](s) = 1
Γ (d/2)Γ

( s+d−1
2

)
2

s−1
2 . Looking at (10) we

obtain

f̂n(x) = 1

2π

∫ gn

−gn

Γ
( d
2

) 1
n

∑n
k=1 X2(γ−1+iv)

k

Γ
(
γ + d

2 − 1 + iv
)
2γ−1+iv

x−γ−iv dv (16)

as an estimator for the density fT (x) of a stopping time T ≥ 0 for x > 0 and max{1/2, a} <

γ < b, where a, b are such that fT ∈ M(a,b) and X1, . . . , Xn are independent samples of
B E ST . With our major result Theorem 8 we shall derive the convergence rates for (16).

Theorem 8 If fT ∈ C(β, a, b) for some 0 ≤ a < b, β ∈ (0, π) and if there is a γ ∈ (a, b)

with 2γ − 1 ∈ (a, b) and γ > (4 − d)/4, then

x2γ E[| fT (x) − f̂n(x)|2] ≤ CL,d,γ

(
1

n
eπgn + e−2βgn

)
, x > 0 (17)

for some CL,d,γ > 0 depending only on L, γ, d as well as T . Moreover, taking

gn = log n

π + 2β
(18)

in (17), one has for all x > 0 the polynomial convergence rate
√
E[| fT (x) − f̂n(x)|2] � x−γ n

−β
π+2β , n → ∞. (19)

Proof Let x > 0. We use the upper bound on variance obtained in Lemma 7 with H = 1/2
to get

Var[xγ f̂n(x)] ≤ C0(γ, d)

4π2n

(∫ gn

−gn

1

|M[B E S1](2γ − 1 + 2iv)|dv

)2

(20)

for some C0(γ, d) > 0. By Example 2(ii) and Lemma 21(ii) we have

Var[xγ f̂n(x)] ≤ C0(γ, d)Γ
( d
2

)2

π222γ n

(∫ gn

−gn

1

|Γ (
γ − 1 + d

2 + iv
) |dv

)2

≤ C0(γ, d)Γ
( d
2

)2

π222γ n
(C1(d, γ ) + C2eπgn/2)2 (21)

for some constants C1(d, γ ) and C2. Adding (21) and (11) gives

x2γ E[| fT (x) − f̂n(x)|2] ≤ C0(γ, d)Γ
( d
2

)2

π222γ n
(C1(d, γ ) + C2eπgn/2)2 + C2e−2βgn

≤ CL,d,γ

(
1

n
eπgn + e−2βgn

)
(22)

for some CL,d,γ > 0. The choice (18) yields the rate (19). ��
The class C(β, a, b) is fairly large. In particular, C(β, 0,∞) includes for all β ∈ (0, π/2)

such well-known families of distributions as Gamma, Weibull, Beta, log-normal and inverse
Gaussian. So, if T belongs to one of those families, Theorem 8 is true for any γ >

max{1/2, (4 − d)/4}. If d ≥ 2, then we only require γ > 1/2.
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6 Asymptotic normality for Bessel processes

Note that the estimator (16) can be written as

f̂n(x) = 1

n

n∑

k=1

Zn,k (23)

with

Zn,k := Γ
( d
2

)

π

∫ gn

−gn

X2(γ−1+iv)

k

Γ
(
γ + d

2 − 1 + iv
)
2γ+iv

x−γ−iv dv. (24)

Since f̂n is a sum of iid variables, we can show that (under mild assumptions on fT ) f̂n is
asymptotically normal. In fact, we have:

Theorem 9 Let fT ∈ M(a,b) for some 0 ≤ a < b. Suppose there is a γ ∈ (a, b) such that
2γ − 1 ∈ (a, b), γ > (4 − d)/4 and (δ + 2)γ − δ − 1 ∈ (a, b) for some δ > 0 and

∫ ∞

−∞
|M[T ](2γ − 1 + iv)|dv < ∞. (25)

If we choose gn ∼ log(n) in (16) then we have

√
nν

−1/2
n ( f̂n(x) − E[ f̂n(x)]) d→ N (0, 1) (26)

for all x > 0, where

νn := Var[Zn,1] = cΓ
( d
2

)

2π3x2γ
g−2γ+d−3

n eπgn log−2(gn)(1 + o(1)) (27)

with some c > 0 given by (47).

We present the proof in Sect. 10.1. As we mentioned in the end of Sect. 5, we can often
assume (a, b) = (0,∞), so that the choice ofγ is only restricted byγ > max{1/2, (4−d)/4}.
In this case a suitable δ can always be found: For γ ∈ (1/2, 1) choose δ < (1−2γ )/(1−γ ),
for γ > 1 choose δ > (1 − 2γ )/(1 − γ ) and for γ = 1 any δ > 0. If in addition to
(a, b) = (0,∞) we have d ≥ 2, then the statement is true for all γ > 1/2.

It is possible to give a Berry-Esseen type error estimate for the convergence in (26). This
is a new result even for dimension d = 1.

Theorem 10 Let fT ∈ M(a,b) for some 0 ≤ a < b. Suppose there is a γ ∈ (a, b) such that
2γ − 1 ∈ (a, b), γ > (4 − d)/4, 3γ − 2 ∈ (a, b) and (25) holds. Fix some x > 0. Denote
by Fn the distribution function of

√
nν

−1/2
n ( f̂n(x) − E[ f̂n(x)])

(where f̂n(x) is defined by (16) and νn = n Var[ f̂n(x)] is given by (27)) and by Φ the
distribution function of the standard normal distribution. If we choose gn ∼ log(n) in (16)
then we have

ρn := sup
y∈R

|Fn(y) − Φ(y)| �
{

n− 1
2 (log n)4γ−d+3 log3(log(n)), if γ < 3−d

2

n− 1
2 (log n)3(2γ−d+3)/2 log3(log(n)), if γ ≥ 3−d

2

(28)

for n → ∞.
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Proof Let x > 0 and n ∈ N. Consider the representation (23) of f̂n(x). Berry-Esseen
Theorem (see Gänssler and Stute 1977) states

ρn ≤ 6E[|Zn,1 − E[Zn,1]|3]
(Var[Zn,1])3/2n1/2 . (29)

We choose j = 3 in Lemma 11 to get

E[|Zn,1 − E[Zn,1]|3] � E[|Zn,1|3] �
{

g−γ−d/2+3/2
n e3πgn/2, if γ + d/2 − 3/2 < 0

e3πgn/2, if γ + d/2 − 3/2 ≥ 0
(30)

for n → ∞. By Theorem 9 we have (27). Choose gn ∼ log(n). Plugging (30) and (27) into
(29) concludes the proof. ��

Note that the signs of the powers 4γ − d + 3 and 3(2γ − d + 3)/2 in (28) are ambiguous
and depend on the relative positions of γ and d . However, if d ≥ 2 then we only have the
case γ + d/2 − 3/2 ≥ 0 and the power of the logarithm is positive.
The following observation about the absolute moments of Zn,1 is useful in the proof of
Theorem 9 but also holds some insights in itself.

Lemma 11 Let fT ∈ M(a,b) for some 0 ≤ a < b and (gn)n∈N ⊂ R+ with gn → ∞
as n → ∞. If there is a γ ∈ (a, b) such that 2γ − 1 ∈ (a, b), γ > (4 − d)/4 and
(γ − 1) j + 1 ∈ (a, b), then

E[|Zn,1| j ] �
{

g−γ−d/2+3/2
n eπgn j/2, if γ + d/2 − 3/2 < 0

eπgn j/2, if γ + d/2 − 3/2 ≥ 0
(31)

as n → ∞ for all j ∈ R+. In particular, all absolute moments of Zn,1 exist for all n ∈ N

greater than some n0 ∈ N.

Proof Case γ + d/2 − 3/2 ≥ 0: By Jensen inequality, Lemma 21(ii) and (7) (with H =
1/2, Y = B E S there) we have

E[|Zn,1| j ] ≤ c E[X2(γ−1) j
1 ]

∫ gn

−gn

1

|Γ (γ + d/2 − 1 + iv)| j
dv

≤ cM[X1](2(γ − 1) j + 1)(Cγ,d, j + C j e
πgn j/2)

= cM[T ]((γ − 1) j + 1)M[B E S1](2(γ − 1) j + 1)(Cγ,d, j + C j e
πgn j/2),

where c := Γ
( d
2

) j
(2γ πxγ )− j and Cγ,d, j , C j > 0. The case γ + d/2 − 3/2 < 0 follows

similarly applying Lemma 21(i) instead of (ii). ��
For the special case (a, b) = (0, 1) and d = j = 1 this result is mentioned in Belomestny

and Schoenmakers (2015) but without an extensive proof which we provide here. Note that
for d ≥ 2 the assumption γ > (4−d)/4 is redundant. Moreover, we always have the smaller
bound of the second case in (31).

7 Some other self-similar processes

7.1 Normally distributed processes

Let Y = (Yt )t≥0 be H -ss with càdlàg paths and Y1 standard normally distributed. As example
consider a fractional Brownian motion. This setting is easily generalized to the case where
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Y1 ∼ N (0, σ 2)with σ 2 > 0 by considering the process (Ỹt )t≥0 := (Yt/σ)t≥0 andmodifying
our observations to X̃i := Xi/σ . Taking d = 1 in Example 2(ii) we see that estimator (10)
assumes the form

f̂n(x) = 1

2
√

π

∫ gn

−gn

1
n

∑n
k=1 X (γ−1+iv)/H

k

Γ
(

γ+H−1+iv
2H

)
2

γ+2H−1+iv
2H

x−γ−iv dv (32)

for x > 0 and max{1− H , a} < γ < b. We can prove a convergence result for this estimator,
similar to Theorem 8.

Theorem 12 Let 0 ≤ a < b. Suppose fT ∈ C(β, a, b) for some β ∈ (0, π). If there is some
γ ∈ (max{a, 1 − H , 3/4}, b), then

x2γ E[| fT (x) − f̂n(x)|2] �
{

1
n eπgn/(2H) + e−2βgn , if γ ≥ 1
1
n g(1−γ )/H

n eπgn/(2H) + e−2βgn , if γ < 1
(33)

for n → ∞ and all x > 0. Taking

gn =
{

2H log n
π+4Hβ

, if γ ≥ 1
2H log n−2(γ−1) log log n

π+4Hβ
, if γ < 1

, (34)

we obtain for all x > 0 the polynomial convergence rate

xγ

√
E[| fT (x) − f̂n(x)|2] �

⎧
⎨

⎩
n− 2Hβ

π+4Hβ , if γ ≥ 1

n− 2Hβ
π+4Hβ (log n)

(1−γ )2β
π+4Hβ , if γ < 1

(35)

for n → ∞.

Proof The proof is analogous to the one of Theorem 8 except for the upper bound on variance
which is in this case

Var[xγ f̂n(x)] ≤ C0(γ, H)H2

π2
γ+2H−1

2H n
×
⎧
⎨

⎩

(
C1(γ, H) + C2e

πgn
4H

)2
, if γ ≥ 1

C2
1 (2H/gn)

γ−1
H e

πgn
2H , if γ < 1

for some C0(γ, H) > 0. Combining this with the bound on the bias from Lemma 6(i) we
obtain (33). Plugging (34) into (33) gives the rate (35). ��

Taking H = 1/2 in Theorem 12 we obtain the same rates as for Bessel processes (see
Theorem 8). For smaller H the rate is worse and for greater H it is better. Note that we work
with observations of |YT | rather than YT .

7.2 Gamma distributed processes

Let Y = (Yt )t≥0 be H -ss with càdlàg paths such that Y1 has Gamma density (1) with r = 1.
We can easily generalize to the case r > 0, by considering the process (Ỹt )t≥0 := (rYt )t≥0

and modifying our observations to X̃i := r Xi . As an example consider the so-called square
of a Bessel process with dimension d starting at 0 (see Revuz and Yor 1999, Chapter XI, §1).
Considering Example 2(i) estimator (10) takes the form

f̂n(x) = Γ (σ)

2π

gn∫

−gn

1
n

∑n
k=1 X (γ−1+iv)/H

k

Γ
(

σ H+γ−1+iv
H

) x−γ−iv dv (36)
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for x > 0 and max{1 − σ H , a} < γ < b. We can prove a convergence result for this
estimator, that is similar to Theorems 8 and 12.

Theorem 13 Let 0 ≤ a < b. Suppose fT ∈ C(β, a, b) for some β ∈ (0, π). If there is some
γ ∈ (max{a, 1 − σ H , 1 − σ/4}, b) with 2γ − 1 ∈ (a, b), then

x2γ E[| fT (x) − f̂n(x)|2] �
{ 1

n e
πgn

H + e−2βgn , if γ ≥ 1 − σ H + H
2

1
n g

1− 2(γ+σ H−1)
H

n e
πgn

H + e−2βgn , if γ < 1 − σ H + H
2

(37)

for n → ∞ and all x > 0. If

gn =

⎧
⎪⎨

⎪⎩

log n
π
H +2β , if γ ≥ 1 − σ H + H

2

log n−
(
1− 2(γ+σ H−1)

H

)
log log n

π
H +2β , if γ < 1 − σ H + H

2

, (38)

then for all x > 0 we have

xγ

√
E[| fT (x) − f̂n(x)|2] �

⎧
⎨

⎩
n

− β
π
H +2β , if γ ≥ 1 − σ H + H

2

n
− β

π
H +2β (log n)−k, if γ < 1 − σ H + H

2

(39)

for n → ∞, where k = β
π
H +2β

(
2(γ+σ H−1)

H − 1
)

.

Proof In this case he upper bound on variance becomes

Var[xγ f̂n(x)] �
{ 1

n e
πgn

H , if γ ≥ 1 − σ H + H
2

1
n g

1− 2(γ+σ H−1)
H

n e
πgn

H , if γ < 1 − σ H + H
2

,

Rest is again analogue to the proof of Theorem 8. ��

8 Optimality

The rates from Theorems 8, 12 and 13 are optimal in the minimax sense.

Theorem 14 For all β ∈ (0, π) and 0 < a < b < π/β there is x > 0 such that

lim inf
n→∞ ψ−2

n inf
f̂n

sup
f ∈C(β,a,b)

E[| f̂n(x) − f (x)|2] ≥ c (40)

for some c > 0, where infimum is over all estimators based on samples of YT with

(i) a Bessel process Y with dimension d ∈ [1,∞) and ψn = n− β
π+2β ;

(ii) a H-ss. Gaussian process Y (H ∈ (0, 2)) and ψn = n
− β

π
2H +2β ;

(iii) a H-ss. Gamma distributed process Y (H ∈ (0, 2)) and ψn = n
− β

π
H +2β .

See Sect. 10.2 for the proof of this theorem. A similar optimality result was obtained
in Belomestny and Schoenmakers (2015) for the case where the absolute value of a one-
dimensional Brownian motion is observed. (40) means that for each estimator f̂n , that we
may construct with our observations, there is a true density f ∈ C(β, a, b) such that

√
E[| f̂n(x) − f (x)|2] � ψn, n → ∞
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for some x > 0, i.e. it is impossible to construct an estimator with a convergence rate (w.r.t.
L2-distance) faster than ψn for all f ∈ C(β, a, b) and all x > 0.

9 Simulation study

In this Sectionwe test our estimator (16) with some simulated data. Consider a Bessel process
with dimension d = 5 and a Gamma(2, 1) distributed stopping time T , i.e. T has the density

f (x) = xe−x , x ≥ 0.

In order to evaluate the estimator (16) we choose γ = 0.7. Take the cut-off parameter
gn = log(n)

(π+2β)
(in accordancewith (18)) andβ = 0. To chooseβ small appears counterintuitive

at first because we showed in Theorem 8 that the convergence rate is better for large β.
However, in our examples the choice β = 0 delivers the best results. This can be explained
as follows: Our bound on the bias of estimator f̂n contains the constant L (see (14)) as a factor.
This constant is growing in β and seems to make a crucial contribution to the overall error.
We refer to Belomestny and Schoenmakers (2015) and Schulmann (2019) for an alternative
choice of gn based purely on the data.

In order to test the performance of f̂n we compute it based on 100 independent samples
of B E ST of size n ∈ {1000, 5000, 10,000, 50,000}. In Fig. 1 we see the resulting box-plots
of the loss.

Let us demonstrate the performance of our estimator for different distributions of T . As
examples we consider Exponential, Gamma, Inverse-Gaussian and Weibull distributions. To
construct the estimate (16) we choose d = 5, γ = 0.8, n = 1000 and gn as before. Figure 2
shows the densities of the four distributions and their 50 respective estimates based on 50
independent samples of B E ST .

We can see that the error is particularly large in the neighborhood of 0. That is because
our estimator is not defined in 0 and lim

x→0
f̂n(x) does not exist for fixed n. Note also that the

variance of our estimator is large for small x (see (27)). Conversely, we obtain better results
for large x .

10 Proofs

10.1 Proof of Theorem 9

We roughly imitate the proof of an analogous result for the special case d = 1, (a, b) =
(0, 1) found in Belomestny and Schoenmakers (2015). In distinction from Belomestny and
Schoenmakers (2015) we do not restrict ourselves to the case x = 1 in the proof and provide
the specific form of νn for all x > 0.

Let x > 0. It suffices to show the Lyapunov condition, i.e. for a δ > 0:

lim
n→∞

E[|Zn,1 − E[Zn,1]|2+δ]
nδ/2(Var[Zn,1])1+δ/2 = 0. (41)

The claim (26) follows from (41) with νn = Var[Zn,1]. Note that E[Zn,1] → fT (x) for
n → ∞ by monotone convergence and (9) (if we choose Y = B E S there). So, (41) holds if
we can prove, that Var[Zn,1] → ∞ and
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Fig. 1 Box plot of the loss supx∈[0,10]{| f̂n(x) − fT (x)|} for different sample sizes

lim
n→∞

E[|Zn,1|2+δ]
nδ/2(Var[Zn,1])1+δ/2 = 0. (42)

In any case of Lemma 11 (for j = δ + 2) we have

E[|Zn,1|2+δ] � gc
neπ(2+δ)gn/2, n → ∞ (43)

for all δ ∈ R+ and some c > 0. Now we investigate the asymptotic behavior of Var[Zn,1].
Looking at (24) we use Fubini’s theorem to obtain

Var[Zn,1]

= Γ
( d
2

)2

π2

∫ gn

−gn

∫ gn

−gn

Cov[X2γ−1+iv
1 , X2γ−1+iu

1 ]dvdu

(2x)2γ+i(v−u)Γ
(
γ + d

2 − 1 + iv
)
Γ
(
γ + d

2 − 1 − iu
)

= Γ
( d
2

)2

π2

∫ gn

−gn

∫ gn

−gn

E[X4γ−4+2i(v−u)
1 ]dvdu

(2x)2γ+i(v−u)Γ
(
γ + d

2 − 1 + iv
)
Γ
(
γ + d

2 − 1 − iu
)

− Γ
( d
2

)2

π2

∫ gn

−gn

∫ gn

−gn

(2x)−2γ−i(v−u) E[X2γ−2+2iv
1 ]E[X2γ−2−2iu

1 ]dvdu

Γ
(
γ + d

2 − 1 + iv
)
Γ
(
γ + d

2 − 1 − iu
)

= Γ
( d
2

)2

π2

∫ gn

−gn

∫ gn

−gn

M[X1](4γ + 2i(v − u) − 3)dvdu

(2x)2γ+i(v−u)Γ
(
γ + d

2 − 1 + iv
)
Γ
(
γ + d

2 − 1 − iu
)

− Γ
( d
2

)2

π2

∣∣∣∣∣

∫ gn

−gn

M[X1](2γ − 1 + 2iv)

(2x)γ+ivΓ
(
γ + d

2 − 1 + iv
)dv

∣∣∣∣∣

2

=: R1 − R2.

By Example 2(ii) we can estimate

R2 ≤ 1

π2x2γ

(∫ gn

−gn

|M[T ](γ + iv)| dv

)2

< C < ∞

for some C > 0 and further
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R1 = Γ
( d
2

)

2π2x2γ

∫ gn

−gn

∫ gn

−gn

M[T ](2γ − 1 + i(v − u))Γ
(
2γ − 2 + d

2 + i(v − u)
)

xi(v−u)Γ
(
γ + d

2 − 1 + iv
)
Γ
(
γ + d

2 − 1 − iu
) dvdu.

Our strategy now is to decompose the double integral defining R1 into pieces that are easy
to estimate. To that end let ρn := gα

n , where 0 < α < 1/2 and define

I 1n :=
∫ gn

−gn

∫ gn

−gn

1|v−u|≥ρn

M[T ](2γ − 1 + i(v − u))Γ
(
2γ − 2 + d

2 + i(v − u)
)

xi(v−u)Γ
(
γ + d−2

2 + iv
)
Γ
(
γ + d−2

2 − iu
) dvdu.

By Lemma 20 there are C1, C2 > 0 such that

|Γ (γ + (d/2) − 1 + iv)| ≥ C11|v|≤2 + C21|v|>2|v|γ−1+ d−1
2 e−π |v|/2

|Γ (γ + (d/2) − 1 − iu)| ≥ C11|u|≤2 + C21|u|>2|u|γ−1+ d−1
2 e−π |u|/2

and K1, K2 > 0 such that

Γ (2γ − 2 + (d/2) + i(v − u)) ≤ K11|v−u|≤2

+ K21|v−u|>2|v − u|2(γ−1)+ d−1
2 e−π |v−u|/2.

With the help of these inequalities we deduce

|I 1n | � g3|γ−1|+d−2
n eπ(gn−ρn)/2 + g4|γ−1|+(3d−5)/2

n eπ(gn− ρn
2 ),

n → ∞.

Similarly,
∫ gn

−gn

∫ gn

−gn

1|u|≤gn−ρn1|v−u|≥ρn

M[T ](2γ − 1 + i(v − u))Γ
(
2γ + d−4

2 + i(v − u)
)

xi(v−u)Γ
(
γ + d−2

2 + iv
)
Γ
(
γ + d−2

2 − iu
) dvdu

� gl
neπ(gn−ρn), n → ∞ (44)

and
∫ gn

−gn

∫ gn

−gn

1|v|≤gn−ρn1|v−u|≥ρn

M[T ](2γ − 1 + i(v − u))Γ
(
2γ + d−4

2 + i(v − u)
)

xi(v−u)Γ
(
γ + d−2

2 + iv
)
Γ
(
γ + d−2

2 − iu
) dvdu

� gl
neπ(gn−ρn), n → ∞. (45)

for some l ≥ 0. Combine (44) and (45) to obtain

I 2n :=
∫ gn

−gn

∫ gn

−gn

1|v−u|≤ρn

M[T ](2γ − 1 + i(v − u))Γ
(
2γ + d−4

2 + i(v − u)
)

xi(v−u)Γ
(
γ + d−2

2 + iv
)
Γ
(
γ + d−2

2 − iu
) dvdu

�
∫ gn

−gn

∫ gn

−gn

1|v|≥gn−ρn1|u|≥gn−ρn1|v−u|≤ρn

× M[T ](2γ − 1 + i(v − u))Γ
(
2γ + d−4

2 + i(v − u)
)

xi(v−u)Γ
(
γ + d−2

2 + iv
)
Γ
(
γ + d−2

2 − iu
) dvdu + O(gl

neπ(gn−ρn))

=: I 3n + O(gl
neπ(gn−ρn)).
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Next, we examine the asymptotic behavior of the integral I 3n . To this end, we take advantage
of Stirling’s formula (Lemma 19)

Γ

(
γ + d − 2

2
+ iv

)
=
(

γ + d − 2

2
+ iv

)γ+ d−3
2 +iv

e−γ− d−2
2 −iv

√
2π(1 + O(v−1))

for v → ∞. Consider the integrand of I 3n . In the denominator it holds bymeans of the identity
log(iv) = log(v) + iπ

2 that

Γ (γ + (d/2) − 1 + iv)Γ (γ + (d/2) − 1 − iu)

= 2πeiv log v−iu log u−i(v−u)e− π
2 (u+v)(vu)

2γ+d−3
2 (1 + O(v−1) + O(u−1))

for u, v → ∞. On the set

{|u| ≥ gn − ρn} ∩ {|v| ≥ gn − ρn} ∩ {|v − u| ≤ ρn} ∩ {v ≥ 0, u ≥ 0}
we define u = gn − r , v = gn − s with 0 < r , s < ρn , |r − s| < ρn to obtain

Γ (γ + (d/2) − 1 + iv)Γ (γ + (d/2) − 1 − iu)

= 2π exp[i(gn − s) log(gn − s) − i(gn − r) log(gn − r) − i(r − s)]
× g2γ+d−3

n e−πgn eπ(r+s)/2(1 + O(g−1
n ))(1 + O(ρng−1

n )

+ O(ρ2
n g−1

n ))γ+(d−3)/2.

Note that due to the choice of ρn , we have ρng−1
n → 0 and ρ2

n g−1
n → 0. We use the

asymptotic decomposition

(gn − s) log(gn − s) − (gn − r) log(gn − r) − (r − s) = (r − s) log(gn) + O(ρ2
n/gn)

to obtain

Γ (γ + (d/2) − 1 + iv) Γ (γ + (d/2) − 1 − iu)

= 2πg2γ+d−3
n exp(i(r − s) log(gn))

× e−πgn eπ(r+s)/2(1 + O(ρ2
n g−1

n )).

Analogously, on the set

{|u| ≥ gn − ρn} ∩ {|v| ≥ gn − ρn} ∩ {|v − u| ≤ ρn} ∩ {v ≤ 0, u ≤ 0}
we define u = −gn + r , v = −gn + s with 0 < r , s < ρn , |r − s| < ρn to obtain

Γ (γ + (d/2) − 1 + iv) Γ (γ + (d/2) − 1 − iu)

= 2πg2γ+d−3
n exp(−i(r − s) log(gn))

× e−πgn eπ(r+s)/2(1 + O(ρ2
n g−1

n )).

Hence, I 3n can be decomposed as follows:

I 3n = 1

2π

exp(πgn)

g2γ+d−3
n

∫ ρn

0

∫ ρn

0
1|r−s|≤ρn xi(s−r)e− π

2 (r+s)Γ (2γ + d − 4

2
+ i(r − s))

× M[T ](2γ − 1 + i(r − s)) exp(i(s − r) log(gn))(1 + O(ρ2
n g−1

n ))−1drds

= 1

2π

exp(πgn)

g2γ+d−3
n

{Re[I 4n ] + O(ρ2
n g−1

n )]},
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where

I 4n :=
∫ ρn

0

∫ ρn

0
1|r−s|≤ρn e− π

2 (r+s)Γ (2γ + d − 4

2
+ i(r − s))

× M[T ](2γ − 1 + i(r − s)) exp(i(s − r) log(gn))xi(r−s)drds

=
∫ ρn

0
e−πv Rn(v)dv

with

Rn(v) :=
∫ ρn−v

0
e− π

2 u xiuΓ (2γ + d − 4

2
+ iu)M[T ](2γ − 1 + iu)eiu log(gn)du. (46)

The integral in (46) allows a series representation via Lemma 22. In fact,

Rn(v) = iΓ

(
2γ + d − 4

2

)
M[T ](2γ − 1) log−1(gn)

− d

du
[e− π

2 u xiuΓ

(
2γ + d − 4

2
+ iu

)
M[T ](2γ − 1 + iu)]

∣∣∣∣
u=0

log−2(gn)

+ O(log−3(gn))

uniformly in v. Thus,

Re[I 4n ] = c

π
log−2(gn) + O(log−3(gn))

holds with

c := Re

[
d

du
e− π

2 u xiuΓ

(
2γ + d − 4

2
+ iu

)
M[T ](2γ − 1 + iu)

∣∣∣∣
u=0

]

= π

2
Γ

(
2γ + d − 4

2

)
M[T ](2γ − 1). (47)

Summing up the auxiliary quantities introduced above we get

Var[Zn,1] = Γ
( d
2

)

2π2x2γ

[
g−2γ+d−3

n eπgn
{ c

π
log−2(gn) + O(log−3(gn)) + O(ρ2

n g−1
n )

}

+ O(gl
neπ(gn−ρn))

]
+ O(1)

and thus (27). If gn ∼ log(n), then (27) and (43) imply (42) and hence the claim.

10.2 Proof of Theorem 14

The basic construction used in this proof is due to Belomestny and Schoenmakers (2016),
where it is used in the context of an observed Brownian motion. Define the χ2-divergence

χ2(P1|P0) := χ2(q1|q0) :=
∫

(q0(x) − q1(x))2

q0(x)
dx (48)

between two probability measures P0 and P1 with densities q0 and q1. The following general
result forms the basis for the subsequent steps (see Tsybakov 2008 for a proof).
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Theorem 15 Let {Pf | f ∈ Θ} be family of probability measures indexed by a non-
parametrical class of densities Θ . Suppose that X1, . . . , Xn are iid observations in model n
with L(X1) ∈ {Pf | f ∈ Θ}. If there are fn,0, fn,1 ∈ Θ such that

| f0,n(x) − f1,n(x)| � ψn, n → ∞ (49)

and if
(1 + χ2(Pf1,n |Pf0,n ))

n ≤ α (50)

holds for some α > 0 independent of n, then

lim inf
n→∞ ψ−2

n inf
f̂n

sup
f ∈Θ

E[| f̂n(x) − f (x)|2] ≥ c (51)

holds for some c > 0, where the infimum is over all estimators.

Let β ∈ (0, π) and 0 < a < b < π/β. Define for M > 0

q(x) := sin(β)

β

1

1 + xπ/β
and ρM (x) := 1√

2π
e− log2(x)/2 sin(M log(x))

x
, x ≥ 0.

The following lemma provides some properties of the functions q and ρM .

Lemma 16 The function q is a probability density on R+ with Mellin transform

M[q](z) = sin(β)

sin(βz)
, 0 < Re(z) < π/β. (52)

The Mellin transform of the function ρM is given by

M[ρM ](z) = e(z−1+i M)2/2 − e(z−1−i M)2/2

2i
, z ∈ C. (53)

Proof Formula (52) can be found in Oberhettinger (2012) and (53) is shown in (Belomestny
and Schoenmakers 2016, Lemma 6.2). ��

Set now for any M > 0 and some δ > 0,

f0,M (x) := q(x) and f1,M (x) := q(x) + δ(q 	 ρM )(x) (54)

for x ≥ 0, where q 	ρM is defined by (4). The following lemmawill help us verify condition
(49).

Lemma 17 For any M > 0 and some δ > 0 not depending on M the function f1,M is a
probability density satisfying

sup
x≥0

| f0,M (x) − f1,M (x)| � exp(−Mβ), M → ∞. (55)

Moreover, f0,M and f1,M are in C(β, a, b) for all β ∈ (0, π) and 0 < a < b < π/β.

Proof For (55) see (Belomestny and Schoenmakers 2016, Lemma 6.3) where it is also shown
that for δ small enough:

δ|(q 	 ρM )(x)| ≤ δ

∫ ∞

0

∣∣∣∣
q(t)ρM (x/t)

t

∣∣∣∣ dt ≤ f0,M (x), x ≥ 0. (56)

It is easy to see that f0,M ∈ C(β, a, b) for all β ∈ (0, π), 0 < a < b < π/β and (56)
implies the same for f1,M . ��
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Looking further towards applying Theorem 15 let us consider the densities pM,0 and pM,1

of an observation associated with the hypotheses f0,M and f1,M , respectively. At this point
we have to differentiate between the models we discussed so far. We will only present the
proof for the Bessel case, parts (ii) and (iii) of Theorem 14 can be showed along the same
lines.

Let T0,M and T1,M be two random variables with respective densities f0,M and f1,M . The
density of the random variable B E STi,M , i = 0, 1 is obtained via (4):

pi,M (x) = 21− d
2

Γ (d/2)
xd−1

∫ ∞

0
λ−d/2e− x2

2λ fi,M (λ)dλ, x > 0, d ≥ 1, i = 0, 1.

For the Mellin transform of pi,M we use self-similarity of B E S and (3) to get

M[pi,M ](s) = M[B E S1](s)M[Ti,M ]((s + 1)/2)

= 1

Γ (d/2)
Γ

(
s + d − 1

2

)
2

s+1
2 M[ fi,M ]((s + 1)/2), i = 0, 1 (57)

for Re(s) > 1 − d and Re(s) ∈ (−1, 2π
β

+ 1).

Lemma 18 For all d ≥ 1 and β ∈ (0, π) we have

χ2(p1,M |p0,M ) � M (π/β)+d−2e−M(π+2β), M → ∞

Proof Define cβ,d := 21−
d
2

Γ (d/2)
sin(β)

β
. By the change of variables y = 1

λ
,

p0,M (x) = cβ,d xd−1
∫ ∞

0
λ−d/2e− x2

2λ
1

1 + λπ/β
dλ

= cβ,d xd−1
∫ ∞

0
e−y x2

2 y
π
β

+ d
2 −2

(
1 − yπ/β

yπ/β + 1

)
dy

= cβ,d xd−1
(∫ ∞

0
e−y x2

2 y
π
β

+ d
2 −2dy − R

)

= cβ,d

(
Γ

(
π

β
+ d

2
− 1

)
2

π
β

+ d
2 −1x− 2π

β
+1 − xd−1R

)

� x− 2π
β

+1
, x → ∞ (58)

with

R :=
∫ ∞

0
e−y x2

2
y2π/β+d/2−2

yπ/β + 1
dy ≤

∫ ∞

0
e−y x2

2 y
π
β

+ d
2 − 3

2 dy � x− 2π
β

−d+1
, x → ∞.

For the next step let a ∈ {0, (2π/β)−1}.We apply Theorem 5 and the ruleM[(·)a f (·)](z) =
M[ f (·)](z + a) and obtain

∫ ∞

0
xa(p0,M (x) − p1,M (x))2dx

= δ22
3+a
2

π iΓ (d/2)2

∫ γ+i∞

γ−i∞
Γ

(
z + d − 1

2

)
M[q 	 ρM ]

(
z + 1

2

)
(59)

× Γ

(
a + d − z

2

)
M[q 	 ρM ]

(
2 + a − z

2

)
dz

for suitable γ , where M[q 	 ρM ] = M[q]M[ρM ]. Due to (53), we can estimate
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|M[ρM ](u + iv)| ≤ e
(u−1)2

2
ϕ(v + M) + ϕ(v − M)

2
(60)

with ϕ(v) = e− v2
2 . Next, we use Lemma 20 in (59) to estimate the gamma terms, then plug

in (60) and |M[q](u + iv)| ≤ ce−β|v| for some c > 0 to obtain
∫ ∞

0
xa(p1,M (x) − p0,M (x))2dx � M

2d+a−3
2 e−Mπ(1+2β/π), M → ∞ (61)

for a ∈ {0, (2π/β) − 1}. By (58) and (61),

χ2(p1,M |p0,M ) =
∫ ∞

0

(pM,1(x) − pM,0(x))2

pM,0(x)
dx

�
∫ ∞

0
(pM,1(x) − pM,0(x))2dx

+
∫ ∞

0
x− 2π

β
+1

(pM,1(x) − pM,0(x))2dx

� M (2d−3)/2e−M(π+2β) + M (π/β)+d−2e−M(π+2β), M → ∞,

where M (π/β)+d−2e−M(π+2β) is the dominating term. This proves the lemma. ��

Lemma 18 implies (50). With the choice

M = log(n)

π + 2β

Lemma 17 implies (49). Claim of Theorem 14(i) follows with Theorem 15.
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Appendix

For proof of Lemmas 19 and 20 we refer to Andrews et al. (1999).

Lemma 19 For | arg(s)| ≤ π we have Γ (s) ∼ √
2πss−1/2e−s for |s| → ∞.
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Lemma 20 For all α ∈ R there are C1, C2 ≥ 0 such that

C1|β|α−1/2e−|β|π/2 ≤ |Γ (α + iβ)| ≤ C2|β|α−1/2e−|β|π/2, |β| ≥ 2.

Corollary 21 (i) For all α ∈ (0, 1/2), δ > 0 and U > 2 there is a C(α, δ) > 0 such that
∫ U

−U

1

|Γ (α + iv)|δ dv ≤ C(α, δ)U (1/2−α)δeUπδ/2.

(ii) For all α ≥ 1/2, δ > 0 and U > 2 there are C1(α, δ) and C2(α, δ) > 0 with
∫ U

−U

1

|Γ (α + iv)|δ dv ≤ C1(α, δ) + C2(α, δ)eUπδ/2.

Proof Define C := ∫ 2
−2

1
|Γ (α+iv)|δ dv. For α ∈ (0, 1/2) Lemma 20 gives a C1 > 0 such that

∫ U

−U

1

|Γ (α + iv)|δ dv ≤ C + C1

∫

{2<|v|<U }
|v|(1/2−α)δe|v|πδ/2dv

≤ C + 2C1U (1/2−α)δ

∫ U

2
evπδ/2dv

= C + 4C1(πδ)−1U (1/2−α)δ(eUπδ/2 − eπδ)

which implies the claim with C(α, δ) := max{2C, 8C1(πδ)−1}. The case α ≥ 1
2 follows

similarly with C1(α, δ) := C and C2(α, δ) := 4C1(πδ)−1. ��
Lemma 22 Let α < β. If f : (α, β) → C is N times continuously differentiable (N ∈ N),
then we have the expansion

∫ β

α

f (u)eixudu =
N−1∑

n=0

in−1

xn+1 f (n)(β)eixβ

−
N−1∑

n=0

in−1

xn+1 f (n)(α)eixα + o(x−N ), x → ∞.

Proof See Erdélyi (1956, page 47). ��
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