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Abstract
This paper deals with the parametric inference for integrated continuous time signals embed-
ded in an additive Gaussian noise and observed at deterministic discrete instants which are
not necessarily equidistant. The unknown parameter is multidimensional and compounded of
a signal-of-interest parameter and a variance parameter of the noise. We state the consistency
and the minimax efficiency of the maximum likelihood estimator and of the Bayesian esti-
mator when the time of observation tends to infinity and the delays between two consecutive
observations tend to 0 or are only bounded. The class of signals in consideration contains
among others, almost periodic signals and also non-continuous periodic signals. However
the problem of frequency estimation is not considered here. Furthermore, in this paper the
signal-plus-noise discretely observed in time model is considered as a particular case of a
more general model of independent Gaussian observations forming a triangular array.

Keywords Maximum likelihood estimation · Bayesian estimation · High frequency
sampling · Low frequency sampling · Minimax efficiency · Asymptotic properties of
estimators · Triangular Gaussian array · Hellinger distance

1 Introduction

Consider the following integrated signal-plus-noise model

dXt = f (α, t) dt + σ(β, t) dWt , t ≥ 0 (1)
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where the functions f : A × R
+ → R and σ : B × R

+ → R
+ are measurable, f (α, t),

respectively σ(β, t), is continuous in the first component α ∈ A, respectively in β ∈ B; A
is a bounded open convex subset of Ra , B is a bounded open convex subset of Rb, a, b ≥ 0,
a + b > 0, and {Wt } is a Wiener process defined over a probability space (Ω,F,P). We
assume that the initial random variable X0 is independent on the Wiener process {Wt } and
does not depend on the unknown parameter θ := (α,β).

Since very long time, this model has received a considerable amount of investigation. The
statistical analysis of such signals has attracted much interest, its applications ranging from
telecommunications, mechanics, to econometrics and financial studies. For the continuous
time observation framework, we cite the well-known work by Ibragimov and Has’minskii
(1981) as well as the contributions by Kutoyants (1984) who studied the consistency and the
minimax efficiency of the maximum likelihood estimator and the Bayesian estimator.

However, in practice it is difficult to record numerically a continuous time process and
generally the observations take place at discrete moments (Mishra and Prakasa Rao 2001).
Most of the publications on discrete time observation concern regular sampling, that is the
instants of observation are usually equally spaced. Nevertheless, many applications make use
of non equidistant sampling. The sampled points can be associated with quantiles of some
distribution (see e.g. in another context Blanke and Vial 2014; see also Sacks and Ylvisaker
1968) or can be perturbated by some jitter effect (see e.g. Dehay et al. 2017).

In the present paper we study the asymptotic optimality of the maximum likelihood esti-
mator and the Bayesian estimator of the unknown parameter θ = (α,β) built from a discrete
time observation {Xt0 , . . . , Xtn }, 0 = t0 < t1 < · · · < tn = Tn of the process {Xt } as n
and Tn → ∞, when the delays between two consecutive observations tend to 0 or are only
bounded. The non uniform sampling scheme is scarcely taken in consideration in the usual
literature on the inference of such amodel (1) of integrated signal-plus-noise. For this scheme
of observation we state that the rate of convergence of the maximum likelihood estimator
and the Bayesian estimator for the parameter α of the signal-of-interest is

√
Tn while the

rate of convergence for the parameter β of the noise variance is
√
n, without any condition

on the convergence to 0 of the delay between two observations as n → ∞, in contrary to
the model of an ergodic diffusion (Florens-Zmirou 1989; Genon-Catalot 1990; Mishra and
Prakasa Rao 2001; Uchida and Yoshida 2012). This fact is due to the non-randomness of the
signal-of-interest f (α, t) and of the variance σ 2(β, t). Notice that model (1) is not ergodic,
and the signal-of-interest is not necessarily continuous or periodic in time. The problem of
frequency estimation is not tackled in this work.

The paper is organized as follows. The framework and the assumptions on the model are
introduced inSect. 2. In the followingwe are going to consider a general parametric estimation
problem for a triangular Gaussian array with independent components. The signal-plus-noise
discretely observed in time model (1) is a particular case of the general setting. Next specific
assumptions for the general model that fit this special case are presented. These conditions
are fulfilled for almost periodic signal-plus-noise Gaussian models.

The uniform local asymptotic normality of the log-likelihood in the setting of indepen-
dent random variables has been stated in Theorem II. 6.2 of Ibragimov and Has’minskii
(1981) under a Lindeberg condition. However, in our framework this condition can be sim-
plified using Hellinger-type distances (see Theorem 4.1 and relation (5.6) in Dzhaparidze
and Valkeila 1990). Moreover the Hellinger-type distances between two distributions of
the observation according two different values of the parameter can be easily estimated
(“Appendix A”, see also Gushchin and Küchler 2003). Then the local asymptotic normality
of the log-likelihood for our parametric Gaussian model is established in Sect. 3 following a
methodology presented in Gushchin and Valkeila (2017).
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Sections 4.1 and 4.2 are devoted to prove that the maximum likelihood estimator and
the Bayesian estimator are consistent, asymptotically normal and asymptotically optimal,
following the method of minimax efficiency from Chapter III in Ibragimov and Has’minskii
(1981). Again, using Hellinger-type distances allow us to simplify the computations.

To illustrate the previous results, the trivial example of the linear model is given in Sect. 5.
In “Appendix A”, some elementary results for Hellinger-type distances between products

of normal distributions and Hellinger integral of them are provided. These results generalize
results stated in Gushchin and Küchler (2003) for zero-mean normal distributions.

We complete this work in “Appendix B” by stating some expressions of the Fisher infor-
mation matrices and of the identifiability functions in the cases of almost periodic and of
periodic functions.

2 Framework

2.1 Triangular Gaussian arraymodel

First consider that the observations come from a triangular random array formed for each
n > 0 by independent Gaussian variables Yn,i , i = 1, . . . , n with mean Fn,i (α) and variance
G2

n,i (β) which depend on the unknown parameter θ = (α,β) ∈ Θ = A × B ⊂ R
a+b.

Hence the likelihood of the observation {Yn,i : i = 1 . . . , n} is equal to

Zn(θ) = exp

(
−n ln(2π)

2
−

n∑
i=1

lnGn,i (β) −
n∑

i=1

(
Yn,i − Fn,i (α)

)2
2G2

n,i (β)

)
.

Hereafter the properties of the likelihood Zn(θ)will be obtained under the following assump-
tions.

A1 For every n ≥ 1 and every i ∈ {1, . . . , n}, the functions α �→ Fn,i (α) and β �→ G2
n,i (β)

are differentiable. Moreover there exist a bounded family of positive numbers {hn,i : n ≥
1, i = 1, . . . , n}, and for every ε > 0 there is η > 0 such that for |α − α′| ≤ η and
|β − β ′| ≤ η we have that∣∣∇αFn,i (α) − ∇αFn,i (α

′)
∣∣ ≤ εhn,i and

∣∣∇βG
2
n,i (β) − ∇βG

2
n,i (β

′)
∣∣ ≤ εhn,i .

Here the a-dimensional vector∇αFn,i (α) is the gradient function of Fn,i (α)with respect
to α and the b-dimensional vector ∇βG2

n,i (β) is the gradient function of G2
n,i (β) with

respect to β.
A2 There exist constant values 0 < γ1 < γ2 < ∞ such that

0 < γ1hn,i ≤ inf
β

G2
n,i (β) ≤ sup

β

G2
n,i (β) < γ2hn,i ,

sup
α

|∇αFn,i (α)| < γ2hn,i and sup
β

|∇βG
2
n,i (β)| < γ2hn,i .

In the following we also assume that Tn :=∑n
i=1 hn,i → ∞, as n → ∞.

A3 There exist two positive definite matrices J (θ)
a and J (β)

b such that

J (θ)
a = lim

n→∞
1

Tn

n∑
i=1

∇ ∗
αFn,i (α)∇αFn,i (α)

G2
n,i (β)
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and

J (β)
b = lim

n→∞
1

2n

n∑
i=1

∇ ∗
β lnG2

n,i (β)∇β lnG2
n,i (β),

the convergences being uniform with respect to θ varying in Θ = A × B. Here and
henceforth the superscript

∗
designates the transpose operator for vectors and matrices.

A4 For every ν > 0 there exists μν > 0 and nν > 0 such that

1

Tn

n∑
i=1

(
Fn,i (α) − Fn,i (α

′)
)2

hn,i
≥ μν and

1

n

n∑
i=1

(
G2

n,i (β) − G2
n,i (β

′)
)2

(hn,i )2
≥ μν

for any n ≥ nν and all θ = (α,β), θ ′ = (α′,β ′) inΘ with |α−α′| ≥ ν and |β −β ′| ≥ ν.

Remarks 1. Assumptions A1 and A2 are technical conditions on the smoothness of the
functions Fn,i (α) and Gn,i (β).

2. With assumption A3 the asymptotic Fisher information d × d-matrix J (θ) of the model,
d := a + b, is equal to

J (θ) := diag
[
J (θ)
a , J (β)

b

]
=
[

J (θ)
a 0a×b

0b×a J (β)
b

]
.

Under assumptions A1, A2 and A3, the function θ �→ J (θ) is continuous on Θ =
A × B. Furthermore as J (θ) is a positive definite matrix, the square root

(
J (θ)
)−1

2 =
diag

[(
J (α,β)
a

)−1
2 ,
(
J (β)
b

)−1
2
]
of its inverse

(
J (θ)
)−1 is well defined and continuous in Θ .

3. AssumptionA4 is an identifiability condition. Assume that the following limits are finite:

μa(α,α′) := lim inf
n→∞

1

Tn

n∑
i=1

(
Fn,i (α) − Fn,i (α

′)
)2

hn,i
, (2)

μb(β,β ′) := lim inf
n→∞

1

n

n∑
i=1

(
G2

n,i (β) − G2
n,i (β

′)
)2

h2n,i

, (3)

the convergences being uniform with respect to α, α′ ∈ A, β, β ′ ∈ B with |α − α′| ≥ ν

and |β − β ′| ≥ ν, and assume that

μν := 1

2
min

{
inf

|α−α′|≥ν
μa(α,α′) , inf

|β−β ′|≥ν
μb(β,β ′)

}
> 0

for any ν > 0, then assumption A4 is fulfilled.

2.2 Discrete time observation of the signal-plus-noise model

As an application of the previous model, come back to the continuous time integrated signal-
plus-noise model (1) for which we assume that the observations during a time interval [0, Tn]
occur at instants 0 = tn,0 < tn,1 < · · · < tn,n = Tn of the interval [0, Tn], where 0 <

hn,i := tn,i − tn,i−1 ≤ hn := maxi hn,i . We also assume that Tn → ∞ as n → ∞ and the
set {hn : n ≥ 1} is bounded.

Then the observation of the sequence Xtn,i , i ∈ {0, . . . , n} corresponds to the observation
of Yn,0 := X0 and of the increments defined by Yn,i := Xtn,i − Xtn,i−1 , i ∈ {1, . . . , n}. Since
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the initial random variable X0 is independent of the Wiener process {Wt } and its distribution
does not depend on the parameter θ = (α,β), we do not take care of Yn,0 in the following.

For i ∈ 1, . . . , n, denote

Fn,i (α) :=
∫ tn,i

tn,i−1

f (α, t) dt and Gn,i (β) :=
(∫ tn,i

tn,i−1

σ 2(β, t) dt

)1/2

.

Thus, when the true value of the parameter is θ = (α,β), the increment Yn,i , i ≥ 1, is equal
to

Y (θ)
n,i := Fn,i (α) + Gn,i (β)W (β)

n,i

where

W (β)
n,i := 1

Gn,i (β)

∫ tn,i

tn,i−1

σ(β, t) dWt .

Notice that the random variables W (β)
n,i , i = 1, . . . , n, are independent with the same stan-

dard normal distribution N (0, 1). Hence the triangular Gaussian array model introduced in
Sect. 2.1 applies in the present situation.

Moreover, assumptions A1 and A2 are fulfilled when the following specific to model (1)
assumptions A1’ and A2’ are satisfied.

A1’ The functions f : A × R
+ → R, and σ : B × R

+ → R
+, are measurable. The

functions α �→ f (α, t) and β �→ σ 2(θ , t) are differentiable. Furthermore, for every
ε > 0 there exists η > 0 such that for |α − α′| ≤ η and |β − β ′| ≤ η we have:

sup
t

∣∣∇α f (α, t) − ∇α f (α′, t)
∣∣ ≤ ε and sup

t

∣∣∇βσ 2(β, t) − ∇βσ 2(β ′, t)
∣∣ ≤ ε.

A2’ The function t �→ f (α, t) is locally integrable in R for any α ∈ A; moreover

0 < inf
β,t

σ 2(β, t) ≤ sup
β,t

σ 2(β, t) < ∞,

sup
α,t

|∇α f (α, t)| < ∞ and sup
β,t

|∇βσ 2(β, t)| < ∞.

Remarks 1. We readily see that assumptions A1’ and A2’ (as well as A1 and A2) are
fulfilled when the parameter set Θ = A × B is compact and the functions (α, t) �→(
f (α, t),∇α f (α, t)

)
and (β, t) �→ (

σ 2(β, t),∇βσ 2(β, t)
)
are almost periodic in t uni-

formly with respect to θ = (α,β) ∈ Θ (see “Appendix B”).
2. Neither assumption A1’ nor assumption A1 are satisfied when we consider the problem

of frequency estimation for model (1). For example, the function f (α, t) = sin(αt) with
α ∈ A, A ⊂ R does not satisfied assumption A1 since supt | cos(αt) − cos(α′t)| = 2
when α �= α′.

3. For model (1), the limits J (θ)
a and J (β)

b in assumption A3 exist when the functions
∇α f (α, t), σ 2(β, t) and ∇βσ 2(β, t) are almost periodic in time t and hn → 0. This is
also true when these functions are periodic with the same period P > 0 and the delay
between two consecutive observations is constant and equal to h = P/ν for some fixed
positive integer ν (see “Appendix B”).

4. For model (1), when the functions f (α, t), f (α′, t), σ 2(β, t) and σ 2(β ′, t) are almost
periodic in time t , then the limits μa(α,α′) and μb(β,β ′) in relations (2) and (3) exist.
If in addition for α �= α′ we have supt | f (α, t) − f (α′, t)| > 0, and for β �= β ′,
supt |σ 2(β, t)−σ 2(β ′, t)| > 0, thenμa(α,α′) andμb(β,β ′) are positive. See “Appendix
B”.

123



22 Statistical Inference for Stochastic Processes (2021) 24:17–33

5. Some explicit expressions of J (θ)
a , J (β)

b ,μa(α,α′) andμb(β,β ′) are given in “Appendix
B” for functions f (θ , t) and σ 2(β, t) periodic in time t when the delays between two
consecutive observations tend to 0 as well as when the delays are constant.

3 LAN property of the triangular Gaussian arraymodel

From now on, we consider the general model of triangular Gaussian array presented in
Sect. 2.1. As already mentionned, the results stated in the following apply directely to the
integrated signal-plus-noise model described in Sect. 2.2. Under assumptions A1, A2 and
A3, the model of triangular Gaussian array is regular in the sense given in Ibragimov IA,
Has’minskii (1981, pp 65). To establish the asymptotic normality and the asymptotic effi-
ciency of the maximum likelihood estimator and of the Bayesian estimator, we will apply
the minimax efficiency theory from Ibragimov and Has’minskii (1981). Thus, we study the
asymptotic behaviour of the likelihood of the observation {Yn,1, . . . Yn,n} in the neighbour-
hood of the true value of the parameter. For this purpose let Z (θ ,w)

n be the likelihood ratio
defined by

Z (θ ,w)
n := dPθ+wΦ

(θ)
n

n

dPθ
n

(
Yn,1, . . . , Yn,n

) =
n∏

i=1

dPθ+wΦ
(θ)
n

n,i

dPθ
n,i

(Yn,i ).

for θ ∈ Θ and w ∈ Wθ,n := {w ∈ R
d : θ + wΦ

(θ)
n ∈ Θ}. Recall that d := a + b. Here the

invertible d×d-matrix (local normalizing matrix)Φ(θ)
n is equal toΦ

(θ)
n := diag

[
ϕ

(θ)
n ,ψ

(β)
n
]
,

setting ϕ
(α,β)
n := (Tn J (θ)

a
)−1

2 and ψ
(β)
n := (n J (β)

b

)−1
2 . Furthermore P(θ ′)

n , respectively P(θ ′)
n,i ,

is the distribution of (Yn,1, . . . , Yn,n), respectively of Yn,i , when the value of the parameter
is θ ′ ∈ Θ . Next we state that the log-likelihood ratio ln Z (θ ,w)

n is asymptotically normal as
n → ∞.

Proposition 1 Assume thatΘ = A×B is open and convex, and conditions A1, A2 and A3 are
fulfilled. Then the family {Pθ

n : θ ∈ Θ} is uniformly locally asymptotically normal (uniformly
LAN) in any compact subset K of Θ . That is for any compact subset K of Θ , for arbitrary
sequences {θn} ⊂ K and {wn} ⊂ R

d such that θn + wnΦ
(θn)
n ∈ K and wn → w ∈ R

d as
n → ∞, the log-likelihood ratio ln Z (θn ,wn)

n can be decomposed as

ln Z (θn ,wn)
n = Δ(θn)

n w
∗ − 1

2
|w|2 + rn(θn,wn) (4)

where the random vector Δ
(θn)
n converges in law to the d-dimensional standard normal

distribution and the random variable rn(θn,wn) converges in Pθn -probability to 0.

Proof The weak convergence of log-likelihood to a Gaussian limit holds if the Hellinger
process (of order 1/2) converges to a corresponding constant and the Lindeberg condition
holds, see Chapter 10 in Jacod and Shiryaev (1987). Dzhaparidze and Valkeila (1990, The-
orem 4.1) have shown that the Lindeberg condition can be replaced by convergence of the
so-called p-divergency process to 0. In the case of independent observations the Hellinger
process and the p-divergency process are just the sum of squared Hellinger distances and the
corresponding Hellinger p-distances, p > 2 integer (Jacod and Shiryaev 1987, Proposition
IV.1.73). Moreover, in the Gaussian case, these distances can be expressed via the means
and variances, and the Hellinger p-distances can be estimated via the Hellinger distance
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(Hellinger 2-distance ρ2). See inequality (18) in “Appendix A” below (see also, Gushchin
and Küchler 2003). In the following we do not apply directly the notion of Hellinger process
and p-divergency process. Thus we do not define them in the paper. For more information
on these notions the reader is referred to Jacod and Shiryaev (1987) and Dzhaparidze and
Valkeila (1990).

Hence, following Gushchin and Valkeila (2017), to prove that the family {P(θ)
n : θ ∈ Θ}

is LAN uniformly in any compact subset K of Θ , it suffices to establish that

lim
n

sup
i

ρ2
2 (P

(θn)
n,i ,P(θn+wnΦ

(θn )
n )

n,i ) = 0 (5)

and

lim
n→∞

n∑
i=1

ρ2
2

(
P

(θn+wn,1Φ
(θn )
n )

n,i ,P
(θn+wn,2Φ

(θn )
n )

n,i

)− 1

4
|wn,1 − wn,2|2 = 0 (6)

for any {θn} ⊂ K and any bounded {wn, j } ⊂ R
d such that θn + wn,iΦ

(θn)
n ∈ Θ , j = 1, 2.

The definition of the Hellinger distance ρ2(·, ·) is recalled in “Appendix A”.
Let θn = (αn,βn) ∈ K, and let {wn, j } ⊂ R

d be bounded for j = 1, 2. Denote θ
( j)
n =

(α
( j)
n ,β

( j)
n ) := θn + wn, jΦ

(θn)
n for j = 1, 2, and wn = (un, vn) := wn,2 − wn,1. Thanks to

equality (12) in “Appendix A”, the Hellinger distance between the two normal distributions

P(θ
( j)
n )

n,i = N (Fn,i (α
( j)
n ),G2

n,i (β
( j)
n )
)
, j = 1, 2, is equal to

ρ2
2

(
P(θ

(1)
n )

n,i ,P(θ
(2)
n )

n,i

) = 2 − 2

(
1 + y2n,i

4(1 + yn,i )

)−1/4

exp

( −x2n,i

4(2 + yn,i )

)

where

xn,i := Fn,i
(
α

(2)
n
)− Fn,i

(
α

(1)
n
)

Gn,i (β
(1)
n )

= unϕ
(αn ,βn)
n

Gn,i (β
(1)
n )

∫ 1

0
∇ ∗

αFn,i
(
α(1)
n + tunϕ

(αn ,βn)
n

)
dt (7)

and

yn,i := G2
n,i

(
β(1)
n + vnφ

(βn)
n
)− G2

n,i

(
β(1)
n

)
G2

n,i (β
(1)
n )

= vnφ
(βn)
n

G2
n,i (β

(1)
n )

∫ 1

0
∇ ∗

βG
2
n,i

(
β(1)
n + tvnφ

(βn)
n
)
dt . (8)

From assumption A2, we readily obtain that

x2n,i ≤ T−1
n hn,i |un |2

∣∣(J (αn ,βn)
a

)−1/2∣∣2γ 2
2 γ −1

1 (9)

and
y2n,i ≤ n−1|vn |2

∣∣(J (βn)

b

)−1/2∣∣2γ 2
2 γ −2

1 . (10)

By remark 2 in Sect. 2.1,we know that the functions θ �→ ∣∣(J (θ)
a
)−1/2∣∣ and θ �→ ∣∣(J (β)

b

)−1/2∣∣
are well defined and continuous in Θ , so they are bounded in the compact subset K. Hence
when {θn} ⊂ K and the sequence {wn = (un, vn)} is bounded, we deduce that condition (5)
is fulfilled.
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Next, thanks to the Taylor expansion formula with integral reminder in expressions (7)

and (8), and to the asymptotic equality (15) in “Appendix A” applied to ρ2
2

(
P(θ

(1)
n )

n,i ,P(θ
(2)
n )

n,i

)
,

assumptions (A1), (A2) and (A3) imply that condition (6) is satisfied.
Hence the proposition is proved. �

Remarks By a direct but boring computation, we can prove the LAN decomposition (4) with
the random vector Δ

(θ)
n =∑n

i=1 Δ
(θ)
n,i where

Δ
(θ)
n,i :=

(
∇αFn,i (α)ϕ

(α,β)
n

Gn,i (β)
W (θ)

n,i ,

(∇β lnG2
n,i (β)

)
ψ

(β)
n

2

(
(W (θ)

n,i )
2 − 1

))

and W (θ)
n,i := (Yn,i − Fn,i (α))/Gn,i (β).

4 Efficient estimation

Cramér-Rao lower bound of the mean square risk is not entirely satisfactory to define the
asymptotic efficiency of a sequence of estimators. See e.g. Section I.9 in Ibragimov and
Has’minskii (1981), see also Section 1.2 in Höpfner (2014). Then we consider here the
asymptotic optimality in the sense of local asymptotic minimax lower bound of the risk for
the sequence {θ̄n} := {θ̄n, n > 0} for the estimation of θ , that is, of the risk

Rθ ({θ̄n}) := lim
ε→0

lim inf
n→∞ sup

|θ ′−θ |≤ε

Eθ ′
[
L
(√

Tn(ᾱn − α′) ,
√
n(β̄n − β ′)

)]

where θ̄n is any statistic function of the observation {Yn,i , i = 1, . . . , n}. The loss function
L(·) belongs to the set L of non-negative Borel functions on R

d which are continuous at 0
with L(0d) = 0, L(−x) = L(x), the set {x : L(x) < c} is a convex set for any c > 0, and
we also assume that the function L(·) ∈ L admits a polynomial majorant.

Clearly all functions L(θ) = |θ |r , r > 0, as well as L(θ) = 1{|θ |>r}, r > 0, belong to L.
(Here 1{x>r} denotes the indicator function of (r ,∞).)

Since the model of observation is locally asymptotically normal then the local asymptotic
minimax riskRθ ({θ̄n}) for any sequence {θ̄n = (ᾱn, β̄n)} of estimators of θ = (α,β) admits
a lower bound for any loss function L ∈ L. More precisely

Rθ ({θ̄n}) ≥ E
[
L
(
ξ (θ)
)]

(11)

where ξ (θ) is a random d-dimensional vector whose distribution is zero-mean Gaussian
with d × d-matrix variance equal to

(
J (θ)

)−1 (see Le Cam 1969 and Hájek 1972; see also
Ibragimov and Has’minskii 1981).

4.1 Maximum likelihood estimator

Recall that themaximum likelihood estimator θ̂n is any statistics defined from the observation
such that

θ̂n ∈ arg sup
θ∈Θ

Zn(θ).

In the next theorem we establish that θ̂n is an efficient estimator of θ in the sense that its
asymptotic minimax risk Rθ ({̂θn}) is equal to the lower bound E

[
L
(
ξ (θ)
)]
.
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Theorem 1 LetΘ = A×B be open, convex and bounded. Assume that conditions A1–A4 are
fulfilled. Then the maximum likelihood estimator θ̂n = (̂αn, β̂n) of θ = (α,β) is consistent
and asymptotically normal uniformly with respect to θ varying in any compact subset K of
Θ = A × B,

lim
n→∞Lθ

[(√
Tn (̂αn − α),

√
n(β̂n − β)

)]
= Nd

(
0d , (J (θ))−1)

setting J (θ) = diag
[
J (θ)
a , J (β)

b

]
. Moreover it is locally asymptotically minimax at any θ ∈ Θ

for any loss function L(·) ∈ L, in the sense that inequality (11) becomes an equality for
θ̄n = θ̂n.

Accordingly, under assumptionsA1’, A2’, A3 andA4, the conclusions of the theorem are also
valid for the integrated signal-plus-noise model (1) observed at discrete instants as presented
in Sect. 2.2.

Proof To prove this theorem, we state that in our framework the conditions in Theorem 1.1
and Corollary 1.1 from Chapter III in Ibragimov and Has’minskii (1981) are fulfilled. Then
we are going to establish the following properties.

N1 The family {Pθ
(n), θ ∈ Θ} is uniformly LAN in any compact subset of Θ .

N2 For every θ ∈ Θ , the d × d-matrix Φ
(θ)
n is positive definite, d = a + b, and there

exists a continuous d×d-matrix valued function (θ , θ ′) �→ B(θ , θ ′) such that for every
compact subset K of Θ

lim
n→∞

∣∣Φ(θ)
n

∣∣ = 0 and lim
n→∞

(
Φ(θ)

n

)−1
Φ(θ ′)

n = B(θ , θ ′)

where the convergences are uniform with respect to θ and θ ′ varying in K.
N3 For every compact subset K of Θ , there exist s > a + b, p ≥ 1, B = B(K) > 0 and

q = q(K) ∈ R, such that

sup
θ∈K

sup
w1,w2∈Wθ,r,n

|w1 − w2|−sρ
p
p

(
P(θ+w1Φ

(θ)
n )

n ,P(θ+w2Φ
(θ)
n )

n

)
< B(1 + rq)

for any r > 0. Here Wθ,r ,n := {w ∈ R
d : |w| < r and θ + wΦ

(θ)
n ∈ Θ}.

N4 For any compact subset K of Θ , and for every N > 0, there exists n1 = n1(N ,K) > 0
such that

sup
θ∈K

sup
n>n1

sup
w∈Wθ,n

|w|N H
(
P(θ)
n ,P(θ+wΦ

(θ)
n )

n

)
< ∞.

Here ρp(·, ·) is the Hellinger p-distance, and H(·, ·) is the Hellinger integrale. Their

definitions are recalled in “Appendix A”. Recall that Wθ ,n := {w ∈ R
d : θ + wΦ

(θ)
n ∈

Θ}.

(1) In Proposition 1 we have stated that the family {P(n)
θ , θ ∈ Θ} is uniformly LAN in

any compact subset of Θ (condition N1). In addition, as Φ
(θ)
n = diag

[
ϕ

(θ)
n ,ψ

(β)
n
]
,

ϕ
(θ)
n := (

Tn J
(θ)
a
)−1

2 and ψ
(β)
n := (

n J (β)
b

)−1
2 , from the continuity of θ �→ J (θ)

a and

β �→ J (β)
b we deduce that condition N2 is fulfilled with

B(θ , θ ′) = diag

[(
J (θ)
a

) 1
2
(
J (α′,β ′)
a

)−1
2 ,
(
J (β)
b

) 1
2
(
J (β)
b

)−1
2

]
.
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(2) Now we check condition N3. Let be fixed the compact subsetK ⊂ Θ , the integer p ≥ 2
and r > 0. Denote θ (i)

n = (α
(i)
n ,β(i)

n ) := θ + wiΦ
(θ)
n , and w = (u, v) := w2 − w1.

Thanks to the independence of the Gaussian random variables Yn,i , i = 1, . . . , n, we
have that (see inequality (18))

ρ
p
p
(
P(θ

(1)
n )

n ,P(θ
(2)
n )

n

) ≤ Cpρ
p
2

(
P(θ

(1)
n )

n ,P(θ
(2)
n )

n

)
.

From inequalities (19) as well as (9) and (10) we obtain that

ρ2
2

(
P(θ

(1)
n )

n ,P(θ
(2)
n )

n

) ≤ C
(
|u|2∣∣(J (θ)

a

)−1/2∣∣2 + |v|2∣∣(J (β)
b

)−1/2∣∣2)
for some C > 0. We know that the functions θ �→ ∣∣(J (θ)

a
)−1/2∣∣ and θ �→ ∣∣(J (β)

b

)−1/2∣∣
are continuous (remark 2 Sect. 2.1), they are bounded on the compact subset K ⊂ Θ .
Hence there exists a constant b(K) > 0 such that

ρ2
2

(
P(θ

(1)
n )

n ,P(θ
(2)
n )

n

) ≤ b(K) |w|2

and condition N3 is fulfilled with p even integer, s = p > min{3, a + b} , q = 0, and
B = Cp b(K)p/2.

(3) It remains to prove that condition N4 is fulfilled. For that purpose we study the Hellinger
integral H

(
P(θ)
n ,P(θn)

n
)
where θ = (α,β) and θn = (αn,βn) := θ + wΦ

(θ)
n . The

independence of theGaussian random variables Yn,i , i = 1, . . . , n, implies the equality:

H
(
P(θ)
n ,P(θn)

n

) =
n∏

i=1

(
1 + y2n,i

2(1 + yn,i )

)−1/4

exp

( −x2n,i

4(2 + yn,i )

)

where xn,i and yn,i are defined according to relations (7) and (8) with evident modifi-
cations.

(i) Assume that θ ∈ K and |wΦ
(θ)
n | ≤ γ1γ

−1
2 /2. Then equality (8) and assumption (A2)

imply that |yn,i | ≤ 1/2 for every i . Thanks to inequality (1 + a)−1/4 ≤ e−a/8 for
0 ≤ a ≤ 1/2, we deduce that

H
(
P(θ)
n ,P(θn)

n

) ≤
n∏

i=1

exp

( −y2n,i

16(1 + yn,i )

)
exp

( −x2n,i

4(2 + yn,i )

)

≤ exp

(
−1

24

n∑
i=1

(x2n,i + y2n,i )

)
.

First, Taylor expansion formula applied to equalities (7) and (8) with assumptions (A1)
and (A2), entail that for any ε > 0, there exists νε > 0 such that for |wΦ

(θ)
n | ≤ νε we

have the inequality:∣∣∣∣∣∣x2n,i −
(
uϕ

(θ)
n ∇ ∗

αFn,i (α)

Gn,i (β)

)2
∣∣∣∣∣∣ ≤ T−1

n hn,i |u|2∣∣(J (θ)
a )

−1
2
∣∣2ε.

Second, by assumption (A3), for every ε > 0, there exists nε > 0 such that for n ≥ nε ,∣∣∣∣∣∣
n∑

i=1

(
uϕ

(θ)
n ∇ ∗

αFn,i (α)

Gn,i (β)

)2

− |u|2
∣∣∣∣∣∣ ≤ |u|2∣∣(J (θ)

a )
−1
2
∣∣2ε.
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In the same way we can study y2n,i . Then, by the continuity of the positive functions

θ �→ ∣∣(J (θ)
a
)−1/2∣∣ and θ �→ ∣∣(J (β)

b

)−1/2∣∣, we deduce the existence of n1 = n1(K) > 0

and ν > 0 such that for every θ ∈ K, n ≥ n1 andw ∈ Wθ,n with
∣∣wΦ

(θ)
n
∣∣ ≤ ν we have:

H
(
P(θ)
n ,P(θn)

n

) ≤ exp

(
−1

24

n∑
i=1

(x2n,i + y2n,i )

)
≤ e−|w|2/48.

(ii) Assumption (A2) implies that

|xn,i |2 ≥ γ −1
1 h−1

n,i

(
Fn,i (α) − Fn,i (αn)

)2
.

Then, from the identifiability assumption A4, for ν > 0 there exist μν,1 > 0 and
nν,1 > 0 such that for n > nν,1, with |uϕ

(θ)
n | = |αn − α| ≥ ν we have:

1

Tn

n∑
i=1

|xn,i |2 ≥ μν,1.

Since |uφ
(θ)
n | = |αn − α| ≤ diam(A), we deduce that

n∑
i=1

|xn,i |2 ≥ Tnμν,1|uφ
(θ)
n |2

diam(A)2
≥ |u|2μν,1

∣∣(J (θ)
a
) 1
2
∣∣2

diam(A)2
.

Notice that for the last inequalitywehaveused the relation : |uφ
(θ)
n |2 = T−1

n

∣∣u(J (θ)
a
)−1

2
∣∣2

≥ T−1
n |u|2∣∣(J (θ)

a
) 1
2
∣∣2.Next, from the equality ln(1+a) = a

∫ 1
0 (1+ta)−1dt fora > −1,

and thanks to assumption (A2) we easily establish that

ln

(
1 + y2n,i

1 + yn,i

)
=
∫ 1

0

(
G2

n,i (βn) − G2
n,i (β)

)2
dt

tG4
n,i (βn) + tG4

n,i (β) + (1 − t)G2
n,i (βn)G

2
n,i (β)

≥
(
G2

n,i (βn) − G2
n,i (βn)

)2
2G2

n,i (β
(2)
n )G2

n,i (β
(1)
n )

≥
(
G2

n,i (βn) − G2
n,i (β)

)2
2γ 2

1 h
2
n,i

.

The identifiability assumption (A4) entails that for ν > 0 there exist μν,2 > 0 and

nν,2 > 0 such that for n > nν,2 and |vψ
(β)
n | = |βn − β| ≥ ν we have:

1

n

n∑
i=1

ln

(
1 + y2n,i

1 + yn,i

)
≥ μν,2.

As previously we deduce that

n∑
i=1

ln

(
1 + y2n,i

1 + yn,i

)
≥ |v|2μν,2

∣∣(J (β)
b

) 1
2
∣∣2

diam(B)2
.

Then, by the continuity of the positive functions θ �→ ∣∣(J (θ)
a
)−1/2∣∣ and θ �→∣∣(J (β)

b

)−1/2∣∣, we deduce the existence of μν = μ(ν,K) > 0 and n2 = n2(ν,K) > 0

such that for every θ ∈ K, n ≥ n2 and w ∈ Wθ,n and
∣∣wΦ

(θ)
n
∣∣ ≥ ν we have

H
(
P(θ)
n ,P(θn)

n

) ≤ e−|w|2μν .
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(iii) From previous parts (i) and (ii), there exists no > 0 and μ > 0 such that for every
θ ∈ K, n ≥ no and w ∈ Wθ,n , we have:

H
(
P(θ)
n ,P(θn)

n

) ≤ e−|w|2μ.

Hence condition N4 is satisfied. This achieves the proof of the theorem. �

4.2 Bayesian estimator

In this section, the unknown parameter θ = (α,β) is supposed to be a random vector with
known prior density distribution π(·) on the parameter setΘ = A×B. We are going to study
the property of the Bayesian estimator θ̃n that minimizes the mean Bayesian risk defined as

Rn(θ̄n) :=
∫

Θ

Eθ

[
l
(
(θ̄n − θ)δn

)]
π(θ) dθ ,

where for simplicity of presentation the loss function l(·) is equal to l(θ) = |θ |r for some
r > 0 (see e.g. Ibragimov and Has’minskii 1981). Here δn = diag

[√
TnIa×a,

√
nIb×b

]
.

Then, we state that

Theorem 2 Let Θ = A × B be open convex and bounded. Assume that the conditions of
Theorem 1 are fulfilled. Assume that the prior density π(θ) is continuous and positive on
Θ and that the loss function l(θ) = |θ |a for some a > 0. Then, uniformly with respect to
θ = (α,β) varying in any compact subset K of Θ , the corresponding Bayesian estimator
θ̃n = (̃αn, β̃n) converges in probability and is asymptotically normal:

lim
n→∞Lθ

[(√
Tn (̃αn − α),

√
n(β̃n − β)

)]
= Nd

(
0d , (J (θ))−1).

Moreover, the Bayesian estimator θ̃n is locally asymptotically minimax at any θ ∈ Θ for any
loss function L(·) ∈ L, in the sense that inequality (11) becomes an equality for θ̄n = θ̃n.

Proof This is a direct consequence of Theorem 2.1 in Chapter III of Ibragimov and
Has’minskii (1981) and the proof of Theorem 1. �

5 Linear parameter models

Consider the specific casewhere f (α, t) = α f (t)
∗ = α1 f1(t)+· · ·+αa fa(t), andσ 2(β, t) =

βσ 2(t). θ = (α, β) and Θ = A × B ⊂ R
a × R

+:

dXt = α f (t)
∗
dt +√βσ(t) dWt .

In this case a ≥ 1, b = 1. We assume that

sup
t

| f j (t)| < ∞, 0 < inf
t

σ 2(t) ≤ sup
t

σ 2(t) < ∞

and there exists a positive definite a × a-matrix Ja which fulfils:

Ja = lim
n→∞

1

Tn

n∑
i=1

F
∗
n,i Fn,i

G2
n,i

.

Here f (·) := ( f1(·), . . . , fa(·)
)
, Fn,i := ∫ tn,i

tn,i−1
f (t) dt and G2

n,i := ∫ tn,i
tn,i−1

σ 2(t) dt .
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Using the notation of Sect. 2 we have that Fn,i (α) = αFn,i and G2
n,i (β) = βG2

n,i ,

J (θ)
a = β−2 Ja , J

(β)
b = β−2/2,

μa(α,α′) = lim inf
n→∞ (α − α′)

(
1

Tn

n∑
i=1

F
∗
n,i Fn,i

tn,i − tn,i−1

)
(α − α′)∗

,

and

μb(β, β ′) =
(
lim inf
n→∞

1

n

n∑
i=1

G4
n,i

(tn,i − tn,i−1)2

)
(β − β ′)2.

Then Theorems 1 and 2 can be applied in this case. Furthermore the maximum likelihood
estimator θ̂n = (̂αn, β̂n) has an explicit expression

α̂n =
(

n∑
i=1

F
∗
n,i Fn,i

G2
n,i

)−1 ( n∑
i=1

Yn,i Fn,i

G2
n,i

)
, β̂n = 1

n

n∑
i=1

(Yn,i − α̂nF
∗
n,i )

2

G2
n,i

,

and we readily obtain that θ̂n converges in norm Lr to θ as n → ∞ for any r ≥ 1.
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6 Appendix A

First we recall the definitions of some notions that are needed in the paper. For more infor-
mation the readers are referred to Jacod and Shiryaev (1987) and Dzhaparidze and Valkeila
(1990).

Let P and P̃ be two probability measures on a measurable space (Ω,F), and let Q be any
measure dominating P and P̃. Put Z = dP/dQ and Z̃ = dP̃/dQ. The Hellinger p-distance
ρp(P, P̃) of order p ≥ 1 between P and P̃, is defined by ρ

p
p (P, P̃) := EQ

[|Z1/p − Z̃1/p|p],
and ρ2(P, P̃) is called simply Hellinger distance. The Hellinger integral of order α ∈ (0, 1) of
P and P̃ is equal to H(α;P, P̃) := EQ

[
Zα Z̃1−α

]
. When α = 1/2, H(P, P̃) := H(1/2;P, P̃)

is the Hellinger integral of P and P̃, and H(P, P̃) = 1 − 1
2ρ

2
2 (P, P̃). Finally introduce the

symmetrized Kullback-Leibler divergence by J (P, P̃) := EQ
[
Z ln(Z/Z̃) + Z̃ ln(Z̃/Z)

]
if

P ∼ P̃, and J (P, P̃) = ∞ otherwise. It is easy to verify that all the previous definitions do
not depend on the choice of Q.

Next, we establish some technical results for non-centered normal distributions. These
results have been stated in Lemma 4.1 and 4.2 of Gushchin and Küchler (2003) in the case
of zero-mean normal distributions.

First we consider two normal distributions on R.

Lemma 1 Consider two normal distributions � = N (μ, σ 2) and �̃ = N (μ̃, σ̃ 2) on R. Let
�o = N (0, 1) and �̃′ = N (x, 1 + y) where x = (μ̃ − μ)/σ and y = (σ̃ 2 − σ 2)/σ 2. Then,

H(�, �̃) = H(�o, �̃
′) =

(
1 + y2

4(1 + y)

)−1/4

exp

( −x2

4(2 + y)

)
, (12)

J (�, �̃) = J (�o, �̃
′) = y2

2(1 + y)
+ x2(2 + y)

2(1 + y)
(13)
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and for every p ≥ 1 there exists Cp > 0, such that

ρ
p
p (�, �̃) ≤ Cp(|x |p + |y|p). (14)

Moreover,

ρ2
2 (�, �̃) = x2

4
+ y2

8
+ o
(
x2 + y2

)
(15)

as |x | + |y| → 0.

Proof The lemma can be established with elementary computations. The proof is left to the
reader (see Gushchin and Küchler 2003). Notice that 1 + y = σ̃2/σ2 > 0. �

WhenΩ = R
n , Pn = �1×· · ·×�n and P̃n = �̃1×· · ·× �̃n where �i and �̃i , i = 1, . . . , n

are probability measures on R, it is easy to verify

H(Pn, P̃n) =
n∏

i=1

H(�i , �̃i ) and J (Pn, P̃n) =
n∑

i=1

J (�i , �̃i ). (16)

Lemma 2 If �i and �̃i are any normal distributions, then

exp
(−1

8
J (Pn, P̃n)

)
≤ H(Pn, P̃n) ≤

(
1 + 1

2
J (Pn, P̃n)

)−1/4
. (17)

For every even integer p ≥ 2 there exists Cp > 0 depending only of p such that

ρ
p
p (Pn, P̃n) ≤ Cpρ

p
2 (Pn, P̃n). (18)

Moreover, there exists C > 0 such that if �i = N (μi , σ
2
i ), �̃i = N (μ̃i , σ̃

2
i ) and where

xi = (μ̃i − μi )/σi and yi = (σ̃ 2
i − σ 2

i )/σ 2
i , we have:

ρ2
2 (Pn, P̃n) ≤ C

n∑
i=1

(x2i + y2i ). (19)

Proof (i) Inequalities (17) are direct consequence of Lemma 1 as well as the inequalities,
1 +∑i ai ≤∏i (1 + ai ) ≤ exp

(∑
i ai
)
for ai ≥ 0, i = 1, . . .

(ii) To prove inequality (18) we adapt the proof given by Gushchin and Küchler (2003) when
the normal distributions have zero means.
First, let p > 2, integer and even. From relation (4.1) in Gushchin and Küchler (2003)
(see also Corollary 3.1 in Dzhaparidze and Valkeila 1990), we know that

ρ
p
p (Pn, P̃n) ≤ Cp

⎛
⎝(1

2

n∑
i=1

ρ2
2 (�i , �̃i )

)p/2

+
n∑

i=1

ρ
p
p (�i , �̃i )

⎞
⎠

for some Cp > 0. Then thanks to equalities (12) and (13), we can consider that �i =
N (0, 1) and �̃i = N (xi , yi ), yi > −1, without loss of generality. Then inequality (14)
and the fact that p ≥ 2 imply that

ρ
p
p (Pn, P̃n) ≤ C ′

p

(
n∑

i=1

(x2i + y2i )

)p/2

. (20)

for someC ′
p > 0.Hence inequality (19) is proved. From relation (13) applied to J (�i , �̃i ),

we also deduce that

ρ
p
p (Pn, P̃n) ≤ C ′

p(1 + sup
i

yi )
p/2(J (Pn, P̃n)

)p/2
.
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If ρ2
2 (Pn, P̃n) ≥ 1 we trivially have that ρ

p
p (Pn, P̃n) ≤ 2 ≤ 2ρ p

2 (Pn, P̃n). Assume
now that ρ2

2 (Pn, P̃n) ≤ 1, that is, H(P, P̃) ≥ 1
2 . In this case, relation (17) entails that

J (Pn, P̃n) ≤ 30ρ2
2 (Pn, P̃n). Moreover, the Hellinger integrales being bounded by 1, from

equalities (16) and (12) we obtain that

24 ≥ H−4(Pn, P̃n) ≥ H−4(�i , �̃i ) ≥ 1 + y2i
4(1 + yi )

and yi ≤ yo := 30 + 8
√
15, i = 1, . . . , n. Then inequality (20) entails that

ρ
p
p (P, P̃) ≤ 60C ′

p(1 + yo)
p/2ρ

p
2 (P, P̃).

Hence inequality (18) is proved. �

7 Appendix B

To illustrate assumptions A3 and A4 we state the following results the proofs of which are
left to the reader. (See also the particular case of the linear parameter model in Sect. 5).
Almost periodic functions First recall that a function t �→ φ(χ , t) is almost periodic in R

uniformly with respect to χ varying in a set X when for every ε > 0, there exists lε > 0 such
that for any a ∈ R there is ρ ∈ [a, a + lε] for which

sup
χ ,t

∣∣φ(χ , t + ρ) − φ(χ, t)
∣∣ ≤ ε.

See e.g chapters II and IV in Corduneanu (1968). As an example, let k be a positive number
and let λ1, . . . , λk be k distinct real numbers. Then the function φ(χ , t) = χ1 cos(λ1t) +
· · ·+χk cos(λk t) is almost periodic in t uniformly with respect to χ = (χ1, . . . , χk) varying
in any compact subset X of Rk .

Now assume that the function t �→ (
f (α, t),∇α f (α, t)

)
is almost periodic inR uniformly

with respect to α varying in A, the function t �→ (
σ 2(β, t),∇βσ 2(β, t)

)
is almost periodic

in R uniformly with respect to β varying in B, infβ,t σ
2(β, t) > 0 and hn → 0 as n → ∞.

Then J (θ)
a and μa(α,α′) exists and

J (θ)
a = lim

T→∞
1

T

∫ T

0

∇ ∗
α f (α, t)∇α f (α, t)

σ 2(β, t)
dt,

μa(α,α′) = lim
T→∞

1

T

∫ T

0

(
f (α, t) − f (α′, t)

)2
dt .

the convergences being uniform with respect to α and α′ varying in A and with respect to β

varying in B. Notice thatμa(α,α′) > 0 as soon as there exists t such that f (α, t) �= f (α′, t).
If in addition, tn,i − tn,i−1 = hn then J (β)

b and μb(β,β ′) exist and

J (β)
b = lim

T→∞
1

2T

∫ T

0
∇ ∗

β ln σ 2(β, t)∇β ln σ 2(β, t) dt,

μb(β,β ′) = lim
T→∞

1

T

∫ T

0

(
σ 2(β, t) − σ 2(β ′, t)

)2
dt .

the convergences being uniform with respect to β and β ′ varying in B.
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Periodic functions When the functions f (α, t) and σ 2(β, t) are periodic in t with the same
period P > 0, we obtain expressions for J (θ)

a ,μa(α,α′), J (β)
b andμb(β,β ′). For continuous

functions when hn → 0 we have the relations:

J (θ)
a = 1

P

∫ P

0

∇ ∗
α f (α, t)∇α f (α, t)

σ 2(β, t)
dt,

and

μa(α,α′) = 1

P

∫ P

0

(
f (α, t) − f (α′, t)

)2
dt .

If in addition, tn,i − tn,i−1 = hn then

J (β)
b = 1

2P

∫ P

0
∇ ∗

β ln σ 2(β, t)∇β ln σ 2(β, t) dt,

and

μb(β,β ′) = 1

P

∫ P

0

(
σ 2(β, t) − σ 2(β ′, t)

)2
dt .

Now we no longer assume that the delays between two observations tend to 0, but we
assume that the sampling scheme has some periodic feature, that is the instants of observation
are defined as 0 ≤ t0 < · · · < tν = P , and ti+ jν = ti + j P , for some ν ∈ N, and for any
i = 0, . . . , ν and any j ∈ N. Then we obtain that

J (θ)
a = 1

P

ν∑
i=1

∇ ∗
αFi (α)∇αFi (α)

G2
i (β)

and

μa(α,α′) = 1

P

ν∑
i=1

(
Fi (α) − Fi (α′)

)2
ti − ti−1

where we have omitted the unnecessary index n. Furthermore

J (β)
b = 1

2ν

ν∑
i=1

∇ ∗
β lnG2

i (α)∇β lnG2
i (β)

and

μb(β,β ′) = 1

ν

ν∑
i=1

(
G2

i (β) − G2
i (β

′)
)2

(ti − ti−1)2
.

Furthermore when we assume that ti − ti−1 = h > 0 fixed and P = νh, ν ∈ N, we obtain
that

μa(α,α′) = 1

Ph

ν∑
i=1

(
Fi (α) − Fi (α

′)
)2

and

μb(β,β ′) = 1

Ph

ν∑
i=1

(
G2

i (β) − G2
i (β

′)
)2

.
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